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Sampling the canonical measure

Consider a system of N particles with coordinates q ∈ R3N

interacting through the potential V : R3N → R.

In statistical physics we are often interested in sampling the
canonical measure

µ(dq) = Z−1e−βV (q)dq

where β = 1/(kBT ).

To sample this measure we use the overdamped Langevin dynamics

dXt = −∇V (Xt)dt +
√

2β−1dWt

where Xt ∈ Rd is the system trajectory and Wt a standard
Brownian motion.
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Free Energy

However, sampling is often difficult due to metastabilities

Assume that the slow variable is ξ(q) = z , where
ξ : R3N → R.

ξ is called the collective variable or reaction coordinate (RC).

The image of the canonical measure in ξ has density

ψξ(z) =

∫
Rd

ψ(q)δξ(q)−z

The free energy is then defined by A(z) = −β−1 lnψξ(z).

How can we efficiently compute the free energy?
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Free Energy difference

One more often computes the free energy difference

∆A = A(z1)− A(z0) =

∫ z1

z0

A′(z) dz .

It can be shown that A′(z) is the conditional expectation

A′(z) = E
[
FV (X )|ξ(X ) = z

]
where FV = ∇V ·∇ξ

|∇ξ|2 − β
−1div

(
∇ξ
|∇ξ|2

)
.
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Adaptive Biasing Force methods

The idea of the Adaptive Biasing Force (ABF) method is to bias
the standard dynamics: dXt = −∇(V−At ◦ ξ)(Xt)dt +

√
2β−1dWt

A′t(z) = E
[
FV (Xt)|ξ(Xt) = z

]
If the process Xt has law ψtdq then the marginal law in ξ satisfies

∂tψ
ξ
t = β−1∂zzψ

ξ
t

Furthermore, if A′t = A′, then ψ∞ = Z−1e−β(V−A◦ξ) and the
marginal measure in ξ is uniform.
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Adaptive Biasing Force method

The aim of the ABF method is therefore twofold:

1 to serve as an adaptive importance sampling method.

2 to compute free energy differences efficiently.

But in practice, how is A′t computed?
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Single-replica ABF

1 Original ABF: trajectorial averaging (Darve et al., 2001)

A′t(z) =

∫ t

0

FV (Xs)δξ(Xs )−z ds∫ t

0

δξ(Xs )−z ds

Single-replica simulations can lead
to slow convergence

We may be overlooking other slow
degrees of freedom
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Multiple-replica ABF

Use of multiple replicas can speed up convergence (Lelièvre et al., 2007)

2 MR-ABF: averaging over trajectories and R > 1 replicas

A′t(z) =

R−1∑
i=0

∫ t

0

FV (X i
s )δξ(X i

s )−z ds

R−1∑
i=0

∫
δξ(X i

s )−z ds

Replicas are likely to explore
different valleys

Method is easily parallelized...
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Selection: improving sampling in ξ

Advantage of MR-ABF: we can further accelerate the diffusion in ξ:

∂tψ
ξ
t = β−1∂zzψ

ξ
t +S(t, z)ψξt

Choosing S(t, z) = c ∂zzψ
ξ
t (z)

ψξ
t (z)

gives rise to

∂tψ
ξ
t = (β−1+c) ∂zzψ

ξ
t

This can be implemented by assigning
each replica i with weight

w i
t ∝ exp

(∫ t

t0

S(s, ξ(X i
s ))ds

)
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Extended conformations
Compact conformations

Application: deca-alanine

These two methods are compared for the unfolding of the
deca-alanine peptide

→

The reaction coordinate ξ is chosen as the end-to-end distance of
the peptide chain.

From α-helix to extended states ξ : 12− 32 Å

Compact states ξ : 4− 16 Å
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Extended conformations

ψξ

A′t

ξ : 12− 32 Å

Results from simulations after 0.25 ns:

Single-replica simulations rarely
stretch beyond ξ = 22 Å

Multiple-replica simulations explore
the whole RC space and mean force
approximations nearly converged

−−− Original ABF (1 replica)
− · −· MR-ABF (16 replicas)
——– Reference
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Extended conformations
Compact conformations

Results in range ξ : 12− 32 Å

ξ : 12− 32 Å

Results from 16-replica simulations after 0.25
ns

− · −· MR-ABF
· · · · ·· MR-ABF with selection
——– Reference

Relative entropy of weights:

Ew (t) =
R−1∑
i=0

w i
t log(w i

t )− log(1/R)

Stop selection when Ew (t) < εlog(R)
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Compact conformations: 1-replica ABF

ψξ

A′t

ξ : 4− 16 Å

Results from four independent single-replica
simulations after 100 ns:

Mean force estimations are inconsistent

One simulation shows global minimum at
ξ = 6 Å

Why? Metastabilities at fixed ξ.
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Extended conformations
Compact conformations

Compact conformations: 32-replica ABF

ψξ

A′t

ξ : 4− 16 Å

Results from four independent 32-replica
simulations after 100 ns:

Qualitatively consistent mean force
approximations

The α-helix conformation recovered as
the global minimum
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Conclusion
Multiple replicas speed up convergence of ABF

well chosen RC: selection can accelerate diffusion in ξ.

suboptimal RC: multiple replicas help to explore parallel valleys

Current work
Mathematical proof of the convergence of MR-ABF in the case of
multiple valleys.

Reference: K. Minoukadeh, C. Chipot and T. Lelièvre, Parallel algorithms for

free energy calculations: a multiple replicas adaptive biasing force approach. In

preparation
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