An adaptive method for free energy computations

Kimiya Minoukadeh (CERMICS, ENPC)

Joint work with Tony Lelièvre (CERMICS), Chris Chipot (University of Illinois)

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Sampling the canonical measure

Consider a system of N particles with coordinates $q \in \mathbb{R}^{3N}$ interacting through the potential $V : \mathbb{R}^{3N} \to \mathbb{R}$.

In statistical physics we are often interested in sampling the canonical measure

$$\mu(dq) = Z^{-1} e^{-\beta V(q)} dq$$

where $\beta = 1/(k_B T)$.

・ロト ・回ト ・ヨト ・ヨト

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Sampling the canonical measure

Consider a system of N particles with coordinates $q \in \mathbb{R}^{3N}$ interacting through the potential $V : \mathbb{R}^{3N} \to \mathbb{R}$.

In statistical physics we are often interested in sampling the canonical measure

$$\mu(dq) = Z^{-1}e^{-\beta V(q)}dq$$

where $\beta = 1/(k_B T)$.

To sample this measure we use the overdamped Langevin dynamics

$$dX_t = -
abla V(X_t) dt + \sqrt{2eta^{-1}} dW_t$$

where $X_t \in \mathbb{R}^d$ is the system trajectory and W_t a standard Brownian motion.

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Free Energy

However, sampling is often difficult due to metastabilities

・ロト ・回ト ・ヨト ・ヨト

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Free Energy

However, sampling is often difficult due to metastabilities

- Assume that the slow variable is $\xi(q) = z$, where $\xi : \mathbb{R}^{3N} \to \mathbb{R}$.
- ξ is called the collective variable or reaction coordinate (RC).
- The image of the canonical measure in ξ has density

$$\psi^{\xi}(z) = \int_{\mathbb{R}^d} \psi(q) \delta_{\xi(q)-z}$$

• The free energy is then defined by $A(z) = -\beta^{-1} \ln \psi^{\xi}(z)$.

How can we efficiently compute the free energy?

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Free Energy difference

One more often computes the free energy difference

$$\Delta A = A(z_1) - A(z_0) = \int_{z_0}^{z_1} A'(z) dz.$$

イロト イポト イヨト イヨト

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Free Energy difference

One more often computes the free energy difference

$$\Delta A = A(z_1) - A(z_0) = \int_{z_0}^{z_1} A'(z) dz.$$

It can be shown that A'(z) is the conditional expectation

$$A'(z) = \mathbb{E}\left[F^{V}(X)|\xi(X) = z\right]$$

where $F^{V} = \frac{\nabla V \cdot \nabla \xi}{|\nabla \xi|^{2}} - \beta^{-1} \operatorname{div}\left(\frac{\nabla \xi}{|\nabla \xi|^{2}}\right).$

소리가 소문가 소문가 소문가

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Adaptive Biasing Force methods

The idea of the Adaptive Biasing Force (ABF) method is to bias the standard dynamics:

$$\begin{cases} dX_t = -\nabla (V - A_t \circ \xi)(X_t) dt + \sqrt{2\beta^{-1}} dW_t \\ A'_t(z) = \mathbb{E} \left[F^V(X_t) | \xi(X_t) = z \right] \end{cases}$$

If the process X_t has law $\psi_t dq$ then the marginal law in ξ satisfies

$$\partial_t \psi_t^{\xi} = \beta^{-1} \partial_{zz} \psi_t^{\xi}$$

Furthermore, if $A'_t = A'$, then $\psi_{\infty} = Z^{-1}e^{-\beta(V-A\circ\xi)}$ and the marginal measure in ξ is uniform.

・ロン ・回と ・ヨン・

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Adaptive Biasing Force method

The aim of the ABF method is therefore twofold:

- **1** to serve as an adaptive importance sampling method.
- to compute free energy differences efficiently.

But in practice, how is A'_t computed?

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Single-replica ABF

Original ABF: trajectorial averaging (Darve et al., 2001)

$$A'_t(z) = \frac{\int_0^t F^V(X_s) \delta_{\xi(X_s)-z} \, ds}{\int_0^t \delta_{\xi(X_s)-z} \, ds}$$

- Single-replica simulations can lead to slow convergence
- We may be overlooking other slow degrees of freedom

イロト イヨト イヨト イヨト

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Multiple-replica ABF

Use of multiple replicas can speed up convergence (Lelièvre et al., 2007)

2 MR-ABF: averaging over trajectories and R > 1 replicas

$$A'_{t}(z) = \frac{\sum_{i=0}^{R-1} \int_{0}^{t} F^{V}(X^{i}_{s}) \delta_{\xi(X^{i}_{s})-z} \, ds}{\sum_{i=0}^{R-1} \int \delta_{\xi(X^{i}_{s})-z} \, ds}$$

イロト イポト イヨト イヨト

Free Energy Computation Adaptive Biasing Force method Computing the biasing force Selection

Multiple-replica ABF

Use of multiple replicas can speed up convergence (Lelièvre et al., 2007)

2 MR-ABF: averaging over trajectories and R > 1 replicas

$$A'_{t}(z) = \frac{\sum_{i=0}^{R-1} \int_{0}^{t} F^{V}(X^{i}_{s}) \delta_{\xi(X^{i}_{s})-z} \, ds}{\sum_{i=0}^{R-1} \int \delta_{\xi(X^{i}_{s})-z} \, ds}$$

- Replicas are likely to explore different valleys
- Method is easily parallelized...

Selection: improving sampling in ξ

Advantage of MR-ABF: we can further accelerate the diffusion in ξ :

$$\partial_t \psi_t^{\xi} = \beta^{-1} \partial_{zz} \psi_t^{\xi} + S(t, z) \psi_t^{\xi}$$

Choosing $S(t,z) = c \frac{\partial_{zz} \psi_t^{\xi}(z)}{\psi_t^{\xi}(z)}$ gives rise to

$$\partial_t \psi_t^{\xi} = (\beta^{-1} + c) \ \partial_{zz} \psi_t^{\xi}$$

・ロト ・回ト ・ヨト ・ヨト

Selection: improving sampling in ξ

Advantage of MR-ABF: we can further accelerate the diffusion in ξ :

$$\partial_t \psi_t^{\xi} = \beta^{-1} \partial_{zz} \psi_t^{\xi} + S(t, z) \psi_t^{\xi}$$

Choosing
$$S(t,z) = c rac{\partial_{zz} \psi_t^{\xi}(z)}{\psi_t^{\xi}(z)}$$
 gives rise to

$$\partial_t \psi_t^{\xi} = (\beta^{-1} + c) \ \partial_{zz} \psi_t^{\xi}$$

This can be implemented by assigning each replica i with weight

$$w_t^i \propto \exp\left(\int_{t_0}^t S(s,\xi(X_s^i))ds\right)$$

イロト イポト イヨト イヨト

Selection: improving sampling in ξ

Advantage of MR-ABF: we can further accelerate the diffusion in ξ :

$$\partial_t \psi_t^{\xi} = \beta^{-1} \partial_{zz} \psi_t^{\xi} + S(t, z) \psi_t^{\xi}$$

Choosing $S(t,z) = c \frac{\partial_{zz} \psi_t^{\xi}(z)}{\psi_t^{\xi}(z)}$ gives rise to

$$\partial_t \psi_t^{\xi} = (\beta^{-1} + c) \partial_{zz} \psi_t^{\xi}$$

This can be implemented by assigning each replica i with weight

$$w_t^i \propto \exp\left(\int_{t_0}^t S(s,\xi(X_s^i))ds\right)$$

Extended conformations Compact conformations

Application: deca-alanine

These two methods are compared for the unfolding of the deca-alanine peptide

Extended conformations Compact conformations

Application: deca-alanine

These two methods are compared for the unfolding of the deca-alanine peptide

The reaction coordinate ξ is chosen as the end-to-end distance of the peptide chain.

- From α -helix to extended states $\xi : 12 32$ Å
- Compact states $\xi : 4 16$ Å

Extended conformations Compact conformations

Extended conformations

Results from simulations after 0.25 ns:

- Single-replica simulations rarely stretch beyond $\xi = 22$ Å
- Multiple-replica simulations explore the whole RC space and mean force approximations nearly converged

Original ABF (1 replica)
 MR-ABF (16 replicas)
 Reference

- **A B A B A B**

Extended conformations Compact conformations

Results in range ξ : **12** – **32** Å

ξ: 12 – 32 Å

Results from 16-replica simulations after 0.25 ns

< E

-···· MR-ABF ····· MR-ABF with selection —— Reference

Extended conformations Compact conformations

Results in range ξ : $\mathbf{12} - \mathbf{32}$ Å

Results from 16-replica simulations after 0.25 ns

-·-·	MR-ABF
	MR-ABF with selection
	Reference

Relative entropy of weights:

$$E_{w}(t) = \sum_{i=0}^{R-1} w_{t}^{i} \log(w_{t}^{i}) - \log(1/R)$$

Kimiya Minoukadeh (CERMICS, ENPC)

Extended conformations Compact conformations

Results in range ξ : $\mathbf{12} - \mathbf{32}$ Å

Results from 16-replica simulations after 0.25 ns

-·-·	MR-ABF
	MR-ABF with selection
	Reference

Relative entropy of weights:

$$E_w(t) = \sum_{i=0}^{R-1} w_t^i \log(w_t^i) - \log(1/R)$$

Stop selection when
$$E_w(t) < \varepsilon \log(R)$$

Kimiya Minoukadeh (CERMICS, ENPC) An adaptive method for free energy computations

Extended conformations Compact conformations

Compact conformations: 1-replica ABF

イロト イヨト イヨト イヨト

æ

Compact conformations: 1-replica ABF

ξ: **4 – 16 Å** Ο Γ

Results from four independent single-replica simulations after 100 ns:

- Mean force estimations are inconsistent
- One simulation shows global minimum at $\xi = 6 \text{ \AA}$

イロト イポト イヨト イヨト

Why? Metastabilities at fixed ξ .

Extended conformations Compact conformations

Compact conformations: 32-replica ABF

ξ: 4 – 16 Å **ΟΓΛΓ**

Results from four independent 32-replica simulations after 100 ns:

- Qualitatively consistent mean force approximations
- The α -helix conformation recovered as the global minimum

Conclusion

Conclusion

Multiple replicas speed up convergence of ABF

- well chosen RC: selection can accelerate diffusion in ξ .
- suboptimal RC: multiple replicas help to explore parallel valleys

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conclusion

Conclusion

Multiple replicas speed up convergence of ABF

- well chosen RC: selection can accelerate diffusion in ξ .
- suboptimal RC: multiple replicas help to explore parallel valleys

Current work

Mathematical proof of the convergence of MR-ABF in the case of multiple valleys.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conclusion

Conclusion

Multiple replicas speed up convergence of ABF

- well chosen RC: selection can accelerate diffusion in ξ .
- suboptimal RC: multiple replicas help to explore parallel valleys

Current work

Mathematical proof of the convergence of MR-ABF in the case of multiple valleys.

Reference: K. Minoukadeh, C. Chipot and T. Lelièvre, *Parallel algorithms for free energy calculations: a multiple replicas adaptive biasing force approach.* In preparation