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Symmetric Methods
Synonym

time reversible

Definition

This entry is concerned wittymmetric method®r solving ordinary differential equations

(ODEsSs) of the form

g=1r(y) eR", y(0) =y 1)
Throughout this article, we denote By ((y,) the flow of equation (1) with vector field,
i.e. the exact solution at timewith initial conditiony(0) = y,, and we assume that the
conditions for its well-definiteness and smoothnessger|¢|) in an appropriate subsét of
R™ x R, are satisfied. Numerical methods for (1) implement numefioas ¢, ; which,
for small enoughstep sizes:, approximatey; ;. Of central importance in the context of

symmetric methods is the conceptanfjoint method
Definition 1. The adjoint method; ; is the inverse o®; ; with reversed time steph:

Q)Z,f = gpjl,f (2)



A numerical metho@;, is then said to be symmetricd, ; = D, ;-

Overview

Symmetry is an essential property of numerical methods mgjards toorder of accuracy
and geometricproperties of the solution. We briefly discuss the implieas of these two
aspects and refer to the corresponding sections for a nvobr/ed presentation:

e A method@,, ; is said to be of ordep if

Pnp(y) = onp(y) + O(WPHY),

and, if thelocal error has the following first-term expansion

By 1 (y) = ons(y) + K7 C(y) + O(hF?),

then straightforward application of the implicit functidmeorem leads to

@y 1 (y) = ensly) — (=h)PHCy) + O(hPT2).

This implies thata symmetric method is necessarily of even ordep = 2¢q, since

Py s(y) = 5 ;(y) means thatl + (—1)7*")C(y) = 0. This property plays a key-role in
the construction ofompositiormethods bytriple jump techniqueésee section on composi-
tion methods) and this is certainly no coincidence that Ruiigtta methods adptimalorder
(Gauss methods) are symmetric (see section on Runge-Kattaods). It also explains why
symmetric methods are used in conjunction with (Richarylsgtrapolation techniques.

e The exact flowy, ; is itself symmetric owing to thgroup propertyy,, ; = @55 © @1 ;.
Consider now an isomorphispof the vector spacR” (the phase space of (1)) and assume
that the vector fieldf satisfies the relatiopo f = —f o p (see Figure 1). Them, ; is said

to bep-reversible, that it to say the following equality holds:

PO Pur=1pr;0p. 3)
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Fig. 1. p-reversibility of f, ¢,  and@®y, ¢.

Example 1Hamiltonian systems

)
Y= g(yaz)
f= -G

with an Hamiltonian functiorf (¢, p) satisfyingH (y, —z) = H(y, z) are p-reversible for

p(y,2) = (y, —2).

Definition 2. A method®,, applied to ap-reversible ordinary differential equation, is said

to bep-reversible if
poPy = Cﬁﬁf o p.
Note that if®;, ; is symmetric, it isp-reversible if and only if the following condition holds:
podr==>o_;o0p. (4)
Besides, if (4) holds for an invertibjg then®,, ; is p-reversible if and only if it is symmetric.

Example 2The trapezoidal rule, whose flow is defined by timplicit equation

Pry(y) =y +hf <%y + %‘Ph,f(?/)) , (5)

Is symmetric and ig-reversible when applied t@reversiblef.

Since most numerical methods satisfy relation (4), synynistthe required property for
numerical methods to share with the exact flow not only tieaeersibility but alsop-

reversibility. This illustrates thaa symmetric method mimics geometric properties of
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the exact flow Modified differential equationsustain further this assertion (see next sec-
tion) and allow for the derivation of deeper resultsiftiegrable reversiblesystems such as
thepreservation of invariants and the linear growth of errors by symmetric methods (see

Section on reversible KAM theory).

Modified equations for symmetric methods

Constant stepsize backward error analysisConsidering a numerical methdg (not nec-
essarily symmetric) and the sequence of approximatioraradad by application of the for-
mulay,+1 = @5 ¢(yn),n = 0, 1,2, ..., from the initial valuey,, the idea otbackward error

analysisconsists in searching formodified vector field;" such that

On,gv (Y0) = Pr,f(yo) + O(h"*?), (6)

where the modified vector fieldniquelydefined by a Taylor expansion of (6), is of the form

) = fy) +hfi(y) + 12 fa(y) + ...+ WY (). )

Theorem 1.The modified vector field of a symmetric metldigd has an expansion in even
powers of, i.e. fo; 11 = 0for j =0, 1,... Moreover, iff and®,, ; are p-reversible, thery¥

is p-reversible as well for anyv > 0.

Proof. Reversing the time stepin (6) and taking the inverse of both sides, we obtain

(O )" (o) = (Pong) " (yo) + O(RNF2).

Now, the group property of exact flows implies tii@t ,, .~ )~ (yo) = ¢, s~ (yo), SO that

ey (10) = P ((yo) + O(RNF?),
and by uniquenessfi¥)* = f% . This proves the first statement. Assume now thas

p-reversible, so that (4) holds. It follows froift", = f/¥ that

O(hN+2) O(hN+2
POP_pfN=pPCPpyN = PO P _py=Pppop = Ph,fN © p-
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where the second and last equalities are valid u@ta”™ 2)-error terms. Yet the group
property then implies thato ¢_,, ;v = @ 5 0 p + O,,(hN*2) where the constant in the

O,-term depends on and an interpolation argument shows that for fixéénd small|

pop_y v =gy op+ORN,

where theO-term depends smoothly grand onN. Finally, differentiating with respect to

t, we obtain

d d
—pofu = 2P0 P iy et 0+O(hN+2) = fNop+ ORNY),
t= t=

and consequently-po f¥ = fN o p.

Remark 1The expansion (7) of the modified vector figlf) can be computed explicitly at

any orderN with the substitution producof B-serieq2].

Example 3Consider the Lotka-\olterra equations in Poisson form

U 0 wv V.H(u,v)
= . H(u,v) =log(u) + log(v) — u — v,
v —uv 0 Vo H (u,v)
i.e.y’ = f(y) with f(y) = (u(l —v),v(u—1))T. Note thatp o f = —f o p with p(u,v) =

(v,u). The modified vector fieldg;  for theimplicit Eulermethod andf;, . for the implicit
midpoint rule read (withV = 2)
) 1, .. h*,, n* ., ., 5 h? h* , .,
Thie =140 f+ I G+ ST T and e = f = 20" (F )+ 3500
The exact solutions of the modified ODEs are plotted on Fi@ui@gether with the corre-
sponding numerical solution. Though the modified vectod§elre truncated only at second
order, the agreement is excellent. The difference of belawf the two solutions is also

striking: only the symmetric method captures the perioditure of the solutioh This will

be further explored in next section.

! The good behaviour of the midpoint rule can not be attribuiteds symplecticitysince the system is a

non-canonical Poisson system
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Fig. 2. Exact solutions of modified equations (red lines) versus erizal solutions by Implicit Euler and

Midpoint Rule (blue points).

Variable stepsize backward error analysisln practice, it is often fruitful to resort to vari-
able step-size implementations of the numerical #igyy. In accordance with [17], we con-
sider step-sizes that are proportional to a functiefy, ¢) depending only on the current
statey and of a parameter prescribed by the user and aimed at controlling the errce. Th

approximate solution is then given by

Yn+1 = @es(yn,e),f(yn)a n = 07 ey
A remarkable feature of this algorithm is that it preseryesdymmetry of the exact solution
as soon ag,, ; is symmetric and satisfies the relation
S(Pes(ye).1 (), —€) = s(y, ),

and preserves thereversibility as soon a8, ; is p-reversible and satisfies the relation

S(pil © @Es(y7€)7f<y)7 _E) = 8(y7 E)'
A result similar to Theorem 1 then holds withreplaced by.

Remark 2A recipe to construct such a functiensuggested by Stoffer in [17], consists in
requiring that the local error estimate is kept constaniyat to a tolerance parameter. For

the details of the implementation, we refer to the origiregbgr or to Chap. VII1.3 of [10].



Reversible Kolmogorov-Arnold-Moser theory

The theory ofintegrable Hamiltoniarsystems has its counterpart fi@versible integrable

ones. A reversible system

v = f(y,2), 2=g(y,z) wherepo (f,g) = —(f,g) o pwith p(y, z) = (y, —2), (8)

is reversible integrable if it can be brought, through a reise transformatioria, ) =

(I(y, ), O(y, 2)), to thecanonicalequations

An interesting instance is the casecoimpletely integrable Hamiltoniasystems

. OH ) OH
y= E(%z)a z = _8—y(y’z>’

with first integralsi;’s in involutior? such that/; o p = I; . In the conditions where Arnold-
Liouville Theorem (see Chapter X.1.3. of [10]) can be applihen, under the additional

assumption that

E|<y*7 0) € {(y7 Z),Vj, [j(y,Z) = Ij<y07 ZO)}? (9)

such a system is reversible integrable. In this situapieneyersible methods constitute a very

interesting way around symplectic method, as the followesult shows:

Theorem 2.Let®, ;) be areversible numerical method of orgeapplied to an integrable
reversible system (8) with real-analytfcand g. Considera® = (1;(y°®, 2°), ..., La(y®, z*)):

If the condition

4 v
Vk € Z¢/{0}, |k - w(a®)] >~ <Z |k2|>

is satisfied for some positive constantand v, then there exist positiv€, ¢ and hy such

that the following assertion holds:
2 Thatis to say such thd¥,I,) - (V.I;) = (V.1;) - (V,1;) forall 4, j.



Vh < hg, ¥(z0,yo) Such that‘n%axd 11 (yo, 20) — a®| < c|logh|™ 71, (10)
=

.....

V¢ h< hP ||¢Z,(f,g)(x07 yO) - (y(t)v Z(t))H < Cth?
=N < ,

() (40, 20)) = (30, 20)| < Ch¥ for all j
Analogously to symplectic methodg;reversible methods thus preserve invariant fpri=
cst over long intervals of times and the error growth is lineartirRemarkably and in
contrast with symplectic methods, this result remainsdvedr reversible variable stepsize
implementations (see Chapter X.1.3 of [10]). However, itngortant to note that for an
Hamiltonian reversible system, the Hamiltonian ceasestprbserved when condition (9)

is not fullfilled. This situation is illustrated on Figure 8rfthe Hamiltonian system with

H(q,p) = 3p* + cos(q) + 1 sin(2¢), an example borrowed from [4].

4 ‘ ‘ : ‘ 1.071
NN

qO:O and p0:2.034
qO:O and p0:2.033 |

1.0705F

1.071

Hamiltonian

1.0695F

1.0691

T : SN : 1.0685

0 5 10 15 0 2000 4000 6000 8000 10000
q Time

Fig. 3. Level sets ofH (left) and evolution ofd w.r.t. time for two different initial values

Symmetric methods of Runge-Kutta type

Runge-Kutta methods form a popular class of numerical nategs for (1). Owing to their
importance in applications, we consider general systemarn(d subsequently partitioned
systems.

Methods for general systemsWe start with the following
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Definition 3. Consider a matrixA = (a; ;) € R®* x R® and a vectorb = (b;) € R®. The

Runge-Kutta method denotéd, b) is defined by

}/z:y_'_hzaz,jf(}/])v Z:L,S (11)
j=1

j=y+hY bif(¥y). (12)
j=1

Note that strictly speaking, the method is properly definely éor small|%|. In this case,
the corresponding numerical flo#, ; mapsy to y. VectorY; approximates the solution at
intermediate pointy + ¢;h, wherec; = Zj a;; and it is customary since [1] to represent a

method by itdableau

C1 ai e ai s
(13)

Cg Qs 1 e Qg s

by ... b

Runge-Kutta methods automatically satisfy fieompatibility condition (4): changing

into —A in (11, 12), we have indeed by linearity pfand by usingpo f = —fop
p(V) = p(y) = h D aisf (p(V)), i=1... s
j=1
p(7) = ply) = h > bif (p(17)).
j=1
By construction, thisig(?_; ((y)) and by previous definitio?t,, ((p(y)). As a consequence,

p-reversible Runge-Kutta methods coincide with symmetmithrods. Nevertheless, symme-

try requires an additional algebraic condition stated ixt tieeorem:
Theorem 3.A Runge-Kutta metho, b) is symmetric if

PA+ AP = eb” andb = Pb, (14)
wheree = (1,...,1)" € R* and P is the permutation matrix defined by; = d; 51—

T T
Proof. DenotingY” = (YlT, . ,Y;,T> andF(Y) = (f(Yl)T, . .,f(YS)T> , @ more com-

pact form for (11, 12) is
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V=e@y+h(A D)F(Y), (15)

J=y+hb" @ HF). (16)

On the one hand, premultiplying (15) BY® I and noticing that
(P@DFuj:FQP®nY)

it is straightforward to see thdt, ; can also be defined by coefficientsA P” and Pb. On
the other hand, exchangiigand—h, y andy, it appears thad;, , is defined by coefficients
A* = eb” — Aandb* = b. The flowdy, ; is thus symmetric as soon &’ — A = PAP and

b = Pb, which is nothing but condition (14).

Remark 3For methods without redundant stages, condition (14) s raésessary.

Example 4Theimplicit midpoint rule defined byA = 1 andb = 1 is a symmetric method
of order2. More generally, the-stage Gauss collocation method based on the roots efthe

shifted Legendre polynomial, is a symmetric method of o&der~or instance, the-stage

and3-stage Gauss methods of orderand6 have the following coefficients:

1_ V5| 5 2 _ V15 5 _ 15
1 V3 1 1 V3 2 10 36 9 15 36 30
S A 1|5, ¥B 2 5 _ i
% i ? i_'_ % i 1 2\/ﬁ 356 2?5 2 9 15 ’ 5 ) (17)
} ; R R
? 5 4 5
18 9 18
Methods for partitioned systems.For systems of the form
y=1rf(z), Z=g(y), (18)

it is natural to apply two different Runge-Kutta methods triablesy and z: Written in
compact form, a partitioned Runge-Kutta method reads:

Y=e@y+h(ARDF(Z), Z=e@y+hAxDG(Y),

j= y+h(V"@DF(Z), = y+h("HGY),
and the method is symmetric if botfi, b) and(A, b) are. An important feature of partitioned

Runge-Kutta method is that they can be symmetricexgdicit for systems of the form (18).
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Example 5The Verlet method is defined by the following two Runge-Kuialeaux:

1 1
0] 0 0 L1
1 11 and 1 1o (29)
11 L1
2 2 2 2

The method becomes explicit owing to the special structtiteeopartitioned system:
Y1 = o, Zy =2+ 2 f(Y1),
Yo =yo + hg(Z1), Zo = Z,

v =Y. 2=+ 5 (F07) + 1))

The Verlet method is the most elementary method of the clapantitioned Runge-Kutta
methods known as Lobatto IlIA-IIIB. Unfortunately, metteodf higher orders within this
class are no longer explicit in general, even for the eqoatmf the form (18). It is nev-
ertheless possible to construct symmetric explicit Rukgta methods, which turn out to
be equivalent to compositions of Verlet's method, and whogeduction is for this reason

postponed to next section.

Note that a particular instance of partitioned systemsacersd-order differential equations

of the form

y=z 2=g(y), (20)
which covers many situations of practical interest (fotamgse mechanical systems governed

by Newton'’s law in absence of friction).

Symmetric methods obtained by composition

Another class of symmetric methods is constituted of symmebmposition®f low-order
methods. The idea consists in applying a basic methpgdwith a sequence of prescribed
step-sizes: Given real numbersy, ..., s, its composition with step sizegh, ..., v:h

gives rise to a new method
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Lph,f :@%hJO...OQ‘sﬁﬂh’f. (21)

Noticing that the local error o, ; , defined by, ¢(y) — ¢n.(v), is of the form

(T 4 RO (y) + O(RP2),

S

assoonas; + ...+, =1,%, ;is of order at leasp + 1 if
AT AP =0

This observation is the key toiple jump compositions, as proposed by a series of authors
[3; 5; 18; 21]: Starting from a symmetric methdyd ; of (even) orderq, the new method

obtained for
91/(2q+1)

y andy, = 9 _ 91/(2q+1)

1
== 5T 51/

IS symmetric

=D 0D 0Py s = Pogn g0 Poyng 0Py =W s

and of order at leastg + 1. Since the order of a symmetric method is ev&y, is in fact
of order2q + 2. The procedure can then be repeated recursively to conathitrarily high-
order symmetric methods of ordeg + 2, 2¢ + 4, 2¢ + 6, ...., with respectivel\3, 9, 27,
..., compositions of the original basic methég ;. However, the construction is far from
being the most efficient, for the combined coefficients bezdainge, some of which being
negatives. A partial remedy is to envisage compositionk wit= 5. We hereby give the
coefficients obtained by Suzuki [18]:

A41/(20+1)
M= === T e andy; = T4 a/@arD

which give rise to very efficient methods fgr= 1 andq = 2. The most efficient high-
order composition methods are nevertheless obtained byngathe full system of order
conditions, i.e. by raising the order directly frdrio 8 for instance, without going through

the intermediate steps described above. This requires maoheffort though, first to derive
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the order conditions, and then to solve the resulting patyiabsystem. It is out of the scope
of this article to describe the two steps involved and weaiatafer to the paper [15] on the
use ofoco B-series for order conditions and to Chapter V.3.2. of [10]various examples

and numerical comparisons. An excellent method of oédeith 9 stages has been obtained

by Kahan and Li [12] and we reproduce here its coefficients:

Y1 = 79 = 0.3921614440073141, N T

10t o —————+——— Triple jump

Y2 = s = 0.3325991367893594,

v3 = y7 = —0.7062461725576393,

Error at time t=100

Y4 = Y6 = 0.0822135962935508,

v5 = 0.7985439909348299.

Number of Verlet steps

For the sake of illustration, we have computed the solutfdfepler’s equations with
this method and the method of order six obtained by the tpysig technique. In both cases,
the basic method is Verlet's scheme. The gain offered by tethod of Kahan and Li is

impressive (it amounts to two digits of accuracy on this egi@n Other methods can be

found for instance in [10; 14].

Remark 4ltis also possible to consider symmetric compositions oFspmmetric methods.

In this situation, raising the order necessitates to comlos basic method and its adjoint.

Symmetric methods for highly-oscillatory problems

In this Section, we present methods aimed at solving prablefithe form

(j = _vvfast(Q) - stlow(Q) (22)

whereV,,, andVy,,, are two potentials acting on different time scales, typycailich that

V2V}4st IS positive semi-definite aniVv>Vy,q| >> [[V2Vaewl|. Explicit standard methods
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suffer from severe stability restrictions due to the preseof high-oscillations at the slow
time scale and necessitate small steps and many evaluafitmsforces. Since slow forces
—V V0w are in many applications much more expensive to evaluateftfsa ones, efficient

methods in this context are thus devised to require significéewer evaluations per step of

the slow force.

Example 6In applications to molecular dynamics for instance, fastés deriving from
Vrast (Short-range interactions) are much cheaper to evaluatesiow forces deriving from

Viow (lOng-range interactions). Other examples of applicatiame presented in [11].

Methods for general problems with nonlinear fast potentiak. Introducing the variable

p = ¢in (22), the equation reads

q P 0 0
= - -
p O _qufast(Q) _vq‘/slow(Q)
W—/ - 4 [\ ~ _,
] fr(y) fr(y) fs(y)

The usual Verlet method [20] would consist in composing the/$ly, (r, 1y andey, r, as
follows

Ph(frtfs) © Phti © PL (fp+fs)
or, if necessary, numerical approximations thereof, andlevtypically be restricted to very
small step-sizes. The Impulse Method [8; 19; 6] combinesttree pieces of the vector field
differently

SO%JS O Ph,(fx+fr) © SDg,fs'

Note thatyy, ;. is explicit

q q
Sthfs -
p P = hVViiouw(q)
while ¢y, (1,4 -) May require to be approximated by a numerical metpg, , ;) which

uses step-sizes that are fractionshoflf &;, (s, ) is symmetric (and/or symplectic), the

overall method is symmetric as well (and/or symplectic) atidws for larger step-sizes.
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However, it still suffers from resonances and a better ogs@iven by the mollified Impulse
methods, which considers a the mollified poteritia),, (¢) = Viiow(a(q)) inloco of Vi, (q),

wherea(q) anda’(q) areaveragedvalues given by

ol = [ el a3 [ X
where
#=—=VViau(2),2(0) = ¢,2(0) = p, X = =V*Vjeu(2)X, X(0) = I, X(0) (23)

The resulting method uses the mollified foree’(q)” (V,Viow)(a(q)) and is still symmet-

ric (and/or symplectic) provided (23) is solved with a syntmegand/or symplectic) method.

Methods for problems with quadratic fast potentials In many applications of practical
importance, the potentidly,; is quadratic of the formV,.(q) = %qTQZq. In this case,

the mollified impulse method falls into the class of trigoredrnc symmetric methods of the

form

o, p _ R(hQ) p —%h w(J(hQ)VV;low <¢(hQ)QO) -+ 1/11 (hQ)VVszow <¢<hQ>Q1>
1 q P (h2) ¥ Vit (61 2)a0 )

whereR(h{?2) is the block-matrix given by

cos(hf2) —2sin(h{2)
R(h$2) =
27 tsin(h§2)  cos(h$?)
and the function®, v, v, and; are even functions such that

sin(z)

(2) = T2 (2), d(z) = cos(2)ea(z),  andy(0) = §(0) = 1.

N z
Various choices of functions and ¢ are possible and documented in the litterature. Two

particularly interesting ones arg(z) = 25 ¢(z) = 1 (see [9]) orh(z) = S ¢(z) =

23

Sin2) (see [7]).

z
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onclusion

This entry should be regarded as an introduction to the subisymmetric methods. Several

topics have not been exposed here, such as symmetric poojéat ODEs on manifolds,

DAEs of indexl1 or 2, symmetric multistep methods, symmetric splitting metheagmmetric

Lie-group methods, ... and we refer the interested read@0tdl6; 13] for a comprehensive

presentation of these topics.
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