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Abstract

The stroboscopic averaging method (SAM) is a technique for the integration
of highly oscillatory differential systems dy/dt = f(y, t) with a single high fre-
quency. The method may be seen as a purely numerical way of implementing the
analytical technique of stroboscopic averaging which constructs an averaged dif-
ferential system dY/dt = F (Y ) whose solutions Y interpolate the sought highly
oscillatory solutions y. SAM integrates numerically the averaged system without
using the analytic expression of F ; all information on F required by the algorithm
is gathered on the fly by numerically integrating the originally given system in
small time windows. SAM may be easily implemented in combination with stan-
dard software and may be applied with variable step sizes. Furthermore it may also
be used successfully to integrate oscillatory DAEs. The paper provides an analytic
and experimental study of SAM and two related techniques: the LISP algorithms
of Kirchgraber and multirevolution methods.

1 Introduction
The stroboscopic averaging method (SAM) is a technique, introduced in [10], for the
integration of highly oscillatory differential systems dy/dt = f(y, t) with a single high
frequency 1/ε, ε ¿ 1. The method may be seen as a purely numerical way of imple-
menting the analytical technique of stroboscopic averaging [29] which constructs an
averaged differential system dY/dt = F (Y ) whose solutions Y (approximately) inter-
polate the sought highly oscillatory solutions y at times tn = t0 + 2πεn, (n integer).
In the spirit of the Heterogeneous Multiscale Methods (HMM) (see [16], [15], [18],
[17], [1]; cf. [22], [25], [2], [34]), SAM integrates numerically the averaged system
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without using the analytic expression of F ; all information on F required by the al-
gorithm is gathered on the fly by numerically integrating the original system in small
time windows.

This paper provides a number of contributions to the study of SAM and related
techniques. We present a detailed discussion of families of problems to which SAM
is applicable (see Section 2). An analysis of the method (Section 3) reveals that the
choice of micro-integrator plays an important role in the error behaviour; in particular
the combination of the SAM approach with splitting micro-integrators offers substan-
tial potential advantages. In Section 4, we discuss in detail the relations between SAM
and two closely related methodologies: the LISP algorithms of Kirchgraber [23], [24]
and the family of multirevolution methods (see [28] for a survey). We provide numer-
ical tests (Section 5) that compare the performance of SAM both with conventional
integrators and with LISP and multirevolution methods. Of interest is the fact that
SAM may be easily implemented in combination with standard software and may be
applied with variable step sizes. An additional contribution of the present paper is that
it shows (Section 6) that SAM may also be successfully applied to highly oscillatory
Differential Algebraic Equations (DAEs). An assessment of the relative merits of the
integrators considered is presented in the final Section 7.

2 Highly oscillatory problems
We study differential systems of the form

d

dt
y = f

(
y,

t

ε
; ε

)
, (1) eq:ode

where y is a D-dimensional real vector, ε > 0 is a small parameter and the smooth
function f is assumed to depend 2π-periodically on its second argument t/ε. Our
interest lies in solving numerically initial value problems for (1) on intervals t0 ≤ t ≤
t0 + L in situations where, as ε ↓ 0, L = O(1) but the time-derivatives of the solution
become unbounded. In such cases, conventional integrators require high computational
effort if ε is small.

In many applications the problem appears in an equivalent form in terms of the
variable τ = t/ε

d

dτ
y = εf

(
y, τ ; ε

)
, (2) eq:odetau

and then the length L/ε of the integration interval increases unboundedly as ε ↓ 0.
Even in cases where the system appears in the form (1), the format (2) is often more
convenient for analytical purposes; in this paper both formats are used.

We shall need repeatedly the solution operator ϕt0,t;ε : RD → RD, i.e. the mapping
such that

y(t) = ϕt0,t;ε(y0)

solves (1) with initial condition y(t0) = y0. Then

Ψt0;ε = ϕt0,t0+2πε;ε (3) eq:poincare
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is the corresponding one-period (or Poincaré) map. Our attention is restricted to cases
where

εf = O(1), ε ↓ 0, (4) eq:boundf

and

Ψt0;ε(y0) = y0 +
∞∑

j=1

εjMj(y0), (5) eq:yn

with suitable smooth maps Mj : RD → RD (independent of ε) so that Ψt0;ε is a smooth
near-to-identity map.1 These cases fall within the scope of the analytical techniques
of averaging and also allow the construction of special-purpose efficient numerical
integrators (see Sections 3 and 4).

Let us now present some families of systems for which (4)–(5) hold.

(i) If f in (1) is of the form

f(y, τ ; ε) =
∞∑

j=1

εj−1fj(y, τ). (6) f1

where the fj(y, τ) are smooth 2π-periodic functions of τ , then f = O(1) as ε ↓ 0 and
therefore y(t) − y(t0) undergoes O(ε) changes in the interval t0 ≤ t ≤ t0 + 2πε so
that (5) holds. Presented in [14] is a way of systematically constructing with the help
of rooted trees the functions Mj that feature in (5).

The format (6) is the standard starting point to perform averaging analytically; any
system to be averaged has first to be brought to that format via suitable changes of
variables.

(ii) Consider second order systems of the form

d2

dt2
q = G(q,

t

ε
; ε), (7) 2ode

where q ∈ Rd and the force G has an expansion (the Gj are 2π-periodic in τ )

G(q, τ ; ε) =
∞∑

j=0

εj−1Gj(q, τ).

To treat this case, we begin by rewriting (7) as a first order system

d

dt
q = p,

d

dt
p = G(q,

t

ε
; ε) (8) 2odebis

for the vector y = (q, p) in RD, D = 2d. Note that here G = O(1/ε) and the solution
y will undergoO(1) changes in the interval t0 ≤ t ≤ t0 +2πε. However, if the leading
term (1/ε)G0 of G averages to zero over one period, i.e.

∫ 2π

0

G0(q, τ) dτ = 0, (9) mean

1Cases where f and Ψt0;ε are of limited smoothness may also be integrated by SAM; the exposition
focuses on the smooth case only for simplicity.
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then (5) holds as proved in [14]. This reference also presents a technique for explicitly
constructing the functions Mj in (5).

A simple alternative proof of the fact that (9) implies (5) will now be given. Con-
sider the system obtained by keeping the leading O(1/ε) terms in the right hand-side
of (8)

d

dt
q = 0,

d

dt
p =

1
ε
G0

(
q,

t

ε

)
, (10) leading

and denote by ϕ̂t0,t;ε its solution operator. The time-dependent change of variables

(q(t), p(t)) = ϕ̂t0,t;ε

(
q̂(t), p̂(t)

)
(11) eq:chov

obviously reduces the system (10) to the trivial form (d/dt)q̂ = 0, (d/dt)p̂ = 0.
Therefore, when applied to the full (8), the change reduces the system to the format
(6) (i.e. the new right-hand side contains no O(1/ε) term). From case (i) above we
conclude that (5) holds after changing variables. However the solution operator is
explicitly given by

ϕ̂t0,t;ε(q0, p0) =
(
q0, p0 +

∫ t

t0

1
ε
G0(q0,

t′

ε
) dt′

)
, (12) eq:cv

an expression that, in tandem with (9), shows that the associated one-period map
ϕ̂t0,t0+2πε;ε is the identity. Therefore at t = t0 + 2πε the values of the new vari-
ables (q̂, p̂) coincide with the values of the old variables (q, p) and (5) also holds in
the original variables. This implies that SAM is applicable to the problem as given as
distinct from the situation for analytical averaging where the change of variables (11)
cannot be dispensed with.

Note that (12) reveals that in the interval t0 ≤ t ≤ t0 + 2πε, the oscillations in
the variable p(t) have amplitude O(1) and those in q(t) are O(ε). Nevertheless, at the
end of the interval, both q(t0 + 2πε) and p(t0 + 2πε) are O(ε) away from their initial
values q(t0) and p(t0) in view of (5).

A well-known instance of (7) is given by the vibrated inverted pendulum equation

d2

dt2
q = G(q,

t

ε
; ε) =

(
1
ε

vmax

`
cos

(
t

ε
+ θ0

)
+

g

`

)
sin q; (13) pendulum

additional examples of systems stabilized by vibration may be seen in [11].

(iii) Assume now that in (1), f is of the form

f(y, τ ; ε) =
∞∑

j=0

εj−1fj(y, τ),

and that all the solutions of
d

dt
y =

1
ε
f0(y,

t

ε
) (14) leading3

are periodic with the common period 2πε or, equivalently, all solutions of

d

dτ
y = f0(y, τ) (15) leading3bis
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are 2π-periodic. This situation includes (8)–(9) as a particular case where (10) corre-
sponds to (14). If ϕ̂t0,t;ε denotes the solution operator of (14), the change of variables

y(t) = ϕ̂t0,t;ε(ŷ(t)) (16) eq:chov2

reduces (1) to a system whose right hand-side is of the form (6) and, by arguing as in
(ii) above, we conclude that (5) holds in the original variables and therefore SAM may
be applied to the problem as originally given. On the other hand, analytical averaging
requires finding ϕ̂t0,t;ε explicitly and carrying out the change (16).

Note that the solution y(t) undergoes O(1) changes on the interval t0 ≤ t ≤
t0 + 2πε but is O(ε) away from y0 at the end point t0 + 2πε.

Commonly occurring examples within this family are given by systems where D =
2 and (15) is the standard harmonic oscillator; this is the case for the van der Pol system

d

dτ
q = p,

d

dτ
p = −q + ε(1− q2)p. (17) eq:vdpol

Other familiar instances include Fermi-Pasta-Ulam-type problems where a number of
harmonic oscillators with a common period are coupled nonlinearly (see [14]).

(iv) Finally we point out that other problems may be brought to the form considered
in (iii) via a change of variables. The following example is taken from [24]. Consider
the perturbed Kepler problem (sometimes called ‘main problem of artificial satellite
theory’) given (in nondimensional variables) by

d

ds
x = v,

d

ds
v = − 1

r3
x + εG(x), (18) eq:kepler

where x, v ∈ R2 and

G(x) = −∇V (x), V (x) = − 1
2r3

+
3x2

1

2r5
, r =

√
x2

1 + x2
2.

For ε = 0, (18) reduces to Kepler’s problem, and therefore has periodic solu-
tions with (solution-dependent) period T = 2π(−2E(x(0), v(0)))3/2 for initial values
x(0), v(0) with negative energy E(x(0), v(0)) (here E(x, v) = 1/2 |v|2 − 2/r). We
now introduce the fictitious time τ = λ(x, v)s, with λ(x, v) = (−2E(x, v))−3/2, so
that the system becomes

d

dτ
x = λ(x, v)v,

d

dτ
v = λ(x, v)

(
− 1

r3
x + εG(x)

)
. (19) eq:kepler2

In the region of phase space of negative energy, all solutions of the unperturbed problem
obtained by setting ε = 0 in (19) are 2π periodic and therefore (19) is a member of the
family studied in (iii). The numerical methods studied in this paper and the technique
of analytical averaging are applicable to (19) but not to the original (18).

3 Stroboscopic averaging method (SAM)
In this section we describe the stroboscopic averaging method introduced by the present
authors in [10].
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3.1 Analytic preliminaries
We begin by noting that the one-period map Ψt0;ε = ϕt0,t0+2πε;ε in (3) depends
on t0 in a 2πε-periodic manner; this is proved by noting that both ϕt0,t;ε(y0) and
ϕt0+2πε,t+2πε;ε(y0) satisfy the same initial value problem

d

dt
y(t) = f

(
y(t),

t

ε
; ε

)
= f

(
y(t),

t + 2πε

ε
; ε

)
, y(t0) = y0.

It follows that, at the stroboscopic times tn = t0 + 2πεn, n = 0,±1,±2, . . . ,

y(tn) = ϕt0,tn;ε(y0) = ϕtn−1,tn;ε(ϕt0,tn−1;ε(y0)) = ϕt0,t0+2πε;ε(ϕt0,tn−1;ε(y0))

and, hence, we arrive at the fundamental formula:

y(tn) = (Ψt0;ε)
n(y0), n = 0,±1,±2, . . . , (20) fundamental

that shows that the knowledge of Ψt0;ε determines the solution values at stroboscopic
times.

Since the map being iterated in (20) is close to the identity (see (5)), standard results
from the backward error analysis of numerical integrators [31], [21] imply the existence
of an autonomous system (the modified system of Ψt0;ε)

d

dt
Y = F (Y ; ε) = F1(Y ) + εF2(Y ) + ε2F3(Y ) + · · · (21) eq:aodebis

whose (formal) solutions satisfy that Y (tn) = Ψt0;ε(Y (tn−1)) for n = 0,±1,±2, . . .
so that

Y (tn) = (Ψt0;ε)
n(Y0) n = 0,±1,±2, . . . (22) fundamental2

(F and the Fj depend on t0 —because Ψt0;ε does—, but this dependence has not
been incorporated into the notation.) We conclude from (20) and (22) that, if one
chooses Y (t0) = y(t0), then Y (t) exactly coincides with y(t) at the stroboscopic times
tn = t0 + 2πεn. In this way it is possible in principle to find y(tn) by solving the
system (21), where all t-derivatives of Y remain bounded as ε ↓ 0. Furthermore y
may be recovered from Y even at values of t that do not coincide with one of the
stroboscopic times. In fact,

y(t) =
(
ϕtn,t;ε ◦ Φtn−t;ε

)(
Y (t)

)
,

where tn is the largest stroboscopic time smaller than t and Φ·;ε denotes the flow of
(21). In this way, y is ‘enslaved’ to Y through the mapping ϕtn,t;ε ◦ Φtn−t;ε whose
dependence on t is easily seen to be 2πε-periodic.

For future reference we note that an alternative way of writing (22) is

Ψn
t0;ε ≡ Φ2πεn;ε; (23) eq:coinciden

after a whole number n of periods the solution operator Ψn
t0;ε = ϕt0,t0+2πεn of the

non-autonomous system (1) coincides with the flow of the autonomous (21).

6



-r r r
£

£
£

££

£
£

£
££

£
£

£
££

B
B
B
BB

B
B
B
BB

B
B
B
BB

± ± ±M M M

Y t- -H

h

Figure 1: Schematic view of the numerical integration. The t-axis above represents the
macro-integration of the averaged system with (large) macro-steps H . Whenever the
macro-solver requires information on the averaged system, the algorithm carries out a
micro-integration of the original problem in a small time-window. The micro-step size
h is small with respect to ε

It is well known that the series (21) does not converge in general, and in order to get
rigorous results one has to consider a truncated version (J ≥ 1 is an arbitrarily large
integer)

d

dt
Y = F (J)(Y ; ε) = F1(Y ) + εF2(Y ) + ε2F3(Y ) + · · ·+ εJ−1FJ(Y ), (24)

whose solutions satisfy that Y (tn)−Ψt0;ε(Y (tn−1)) = O(εJ+1). If Y solves (24) with
Y (t0) = y(t0) then Y (tn) and y(tn) differ by an O(εJ) amount, where the constant
implied in the O notation is uniform as the stroboscopic time tn ranges in the time
interval t0 ≤ tn ≤ t0 + L where L = O(1) as ε ↓ 0.

The process of obtaining the autonomous system (21) (or (24)) from the original
system (1) is referred to in the averaging literature [29] as high-order stroboscopic
averaging. As a rule, the amount of work required to find analytically the functions
Fj is formidable, even when the interest is limited to the lowest values of j. The
stroboscopic averaging method introduced in [10] is a purely numerical method that
bypasses the need for finding analytically the functions Fj .

3.2 The numerical procedure
To simplify the exposition, we will ignore hereafter the O(εJ) remainder that arises
from truncating (21), i.e. we will proceed as if the series (21) were convergent. Since
J may be chosen arbitrarily large, the disregarded truncation errors are, as ε ↓ 0,
negligible when compared with other errors present in the method to be described.2

In order to integrate the highly oscillatory system (1) with initial condition y(t0) =
y0, we (approximately) compute the corresponding smooth interpolant Y (t), i.e. the
solution of the initial value problem specified by the averaged system (21) together with
the initial condition Y (t0) = y0. We integrate (21) by a standard numerical method,
the so-called macro-solver, with a macro-step H that ideally should be substantially

2It is well known that, under suitable smoothness assumptions, the optimal choice of J = J(ε) results in
errors that are exponentially small.
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larger than the small period 2πε. In the spirit of HMM, the information on F required
by the macro-solver is gathered on the fly by integrating, with a micro-step h, the
original system (1) in time-windows of length O(ε). These auxiliary integrations are
also performed by means of a standard numerical method, the micro-solver, see Figure
1. It is not necessary that the choices of macro and micro-solver coincide and both
solvers may be used in variable step-size implementations. In typical applications, h is
taken to be proportional to ε and therefore the computational work is independent of ε.

If the macro-solver is a linear multistep or Runge-Kutta (RK) method, then the only
information on the system (21) required by the solver are function values F (Y ∗; ε) at
given values of the argument Y ∗ and we shall presently show how to obtain them via
micro-integrations. Since, by definition, Φt;ε is the flow of (21) we may write

F (Y ∗; ε) =
d

dt
Φt;ε(Y ∗)

∣∣∣∣
t=0

,

or, after approximating the time-derivative by central differences,

F (Y ∗; ε) =
1
2η

[Φη;ε(Y ∗)− Φ−η;ε(Y ∗)] +O(η2).

We now set η = 2πε and use (23) to conclude that the formula

F̃ (Y ∗; ε) =
1

4πε
[Ψt0;ε(Y

∗)−Ψ−1
t0;ε(Y

∗)], (25) eq:cd

provides anO(ε2) approximation F̃ (Y ∗, ε) to F (Y ∗, ε) that may be found by means of
micro-integrations. In fact, one has to integrate (1) with initial condition y(t0) = Y ∗

first from t = t0 to t = t0 +2πε and then from t = t0 to t = t0−2πε to find Ψt0;ε(Y
∗)

and Ψ−1
t0;ε(Y

∗).
Some important remarks are in order. The initial condition for each micro-integra-

tion is always prescribed at t = t0, regardless of the point of the time axis the macro-
solver may have reached when the micro-integration is performed. We have tried to
make this fact apparent in Figure 1 by enclosing different micro-integrations in boxes
that are not connected by a common time-axis (cf. Figure 1.1 in [18] or Figure 2
in [32]). All micro-integrations find solutions of (1) in the interval [t0 − 2πε, t0 +
2πε]. With the terminology of [11] we may say that the algorithm suggested here
is asynchronous. Figure 2 may be of assistance in understanding the situation. This
figure should also make it clear that it is not at all necessary that the step-points used
by the macro-integrator be stroboscopic times; this is a particularly valuable feature if
the macro-solver employs variable steps. The macro-integration has to be arranged in
such a way that its output takes place at stroboscopic times so that the macro-solution
approximates the original solution y. This requirement may be trivially met if the
macro-solver has dense output capabilities; in other case the sequence of macro-step-
sizes has to be chosen in a suitable way. Approximations to the values y(t) with t
non-stroboscopic may be obtained by first approximating with SAM the value y(tn) at
the nearest stroboscopic time and then performing a short integration of (1) from tn to
t with y(tn) as initial value.
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Figure 2: The wiggly solid lines represent the solutions y(1)(t) and y(2)(t) of the
oscillatory problem with initial conditions y(1)(t0) = y0 and y(2)(t0) = y∗. We
have also represented the solutions of the averaged system with Y (1)(t0) = y0 and
Y (2)(t0) = y∗; the graphs of Y (1)(t) and Y (2)(t) are translates along the time-axis
of one another because the averaged system is autonomous. At stroboscopic times
each oscillatory solution y(i)(t) coincides with the corresponding averaged solution
Y (i)(t). Now assume that we are computing numerically Y (1), that the macro-solver
has reached the point (t∗, y∗) (t∗ is not a stroboscopic time) and that it requires the
value of the slope F (y∗; ε). The correct procedure is based on the fact that the slope of
Y (1)(t) at (t∗, y∗) coincides with the slope of Y (2)(t) at (t0, y∗); micro-integrations on
the intervals t0 ≤ t ≤ t0 + 2πε and t0 ≥ t ≥ t0 − 2πε (this is not shown in the figure)
are performed to find y(2)(t0 ± 2πε) = Y (2)(t0 ± 2πε) and the values Y (2)(t0 ± 2πε)
are then used to find the slope by means of finite differences. Micro-integrating in the
intervals t∗ ≤ t ≤ t∗ + 2πε and t∗ ≥ t ≥ t∗ − 2πε will not do: the averaged system
depends on t0 —see Section 2— and such micro-integrations (discontinuous wiggly
lines) would provide information on a solution (discontinuous line without wiggles) of
the wrong averaged system.
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Of course, other difference formulae may also be used instead of (25). For instance,
we may approximate F (Y ∗; ε) with an O(ε4) error by means of the standard 5-point
formula:

1
24πε

(
− Φ4πε;ε(Y ∗) + 8Φ2πε;ε(Y ∗)− 8Φ−2πε;ε(Y ∗) + Φ−4πε;ε(Y ∗)

)
(26)

=
1

24πε

(
−Ψ2

t0;ε(Y
∗) + 8Ψt0;ε(Y

∗)− 8Ψ−1
t0;ε(Y

∗) + Ψ−2
t0;ε(Y

∗)
)
.

Now the integrations to be carried out to find Ψ2
t0;ε(Y

∗) = ϕt0,t0+4πε;ε(Y ∗) and
Ψ−2

t0;ε(Y
∗) = ϕt0,t0−4πε;ε(Y ∗) work in the intervals t0 ≤ t ≤ t0 + 4πε and t0 ≥ t ≥

t0 − 4πε respectively. Difference formulae of arbitrarily high orders may obviously be
employed, but higher order implies a wider stencil and costlier micro-integrations.

3.3 Error analysis
3.3.1 Basic estimate

In order to analyze the errors in SAM, we begin by recalling that the method consists
of integrating (21) with the chosen macro-integrator and using inexact values of the
right-hand side F whose analytical form is unavailable to the user. There are then three
sources of errors (cf. [30]):

(i) The approximation of the exact values F by finite-difference approximations F̃
(see (25) or (26)).

(ii) The replacement in the finite-difference formulae (25) or (26) of the true val-
ues of Poincaré map Ψ by numerical approximations Ψ̃ obtained via micro-
integrations.

(iii) The discretization error introduced by the macro-integrator.

Let us discuss successively these sources. At each evaluation of F , the error from
source (i) is O(εδ), where δ denotes the order of the finite-difference formula (e.g.
δ = 2 for (25) and δ = 4 for (26)). Due to the stability of the macro-integrator, these
evaluation errors introduce O(εδ) errors in the computed values of Y .

The errors from source (ii) are best studied with the oscillatory system written in
the form (2), for which the right hand-side is bounded (see (4)) and the required micro-
integrations take place in intervals whose lengths do not increase as ε ↓ 0.3 It is then
clear that the errors |Ψ̃k

t0;ε(Y )−Ψk
t0;ε(Y )| (k = ±1 for (25) and k = ±1,±2 for (26))

can be bounded by K(∆τ)p, where K is a constant independent of ε, p is the order of
the micro-integrator and ∆τ = h/ε is the step-length in the variable τ . These errors in
Ψ̃ − Ψ imply (see (25) or (26)) errors of magnitude O(ε−1(h/ε)p) in the values of F
and, again via the stability of the macro-integrator, errors of magnitude O(ε−1(h/ε)p)
in the computed values of Y .

3Note that it is irrelevant whether in practice the micro-integrator is applied to (1) with step h or to (2)
with step ∆τ = h/ε: all integrators commute with the rescaling t ↔ τ .
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Finally the discretization errors introduced by the macro-integrator are O(HP ),
where H is the macro-step and P the order of the macro-integrator. Combining (i)–
(iii), we conclude that SAM provides approximations with error

O
(

εδ + HP +
1
ε

(h

ε

)p
)

= O
(

εδ + HP +
1
ε
(∆τ)p

)
, (27) eq:error

where the constant implied in the O notation is independent of ε, H and h.
The presentation above has tacitly assumed that the macro- and micro-integrator

are used with constant step-sizes. However it is clear that (27) also holds for variable
step-size implementations provided that H and h are understood as the corresponding
maximum values.

3.3.2 Refinements

By choosing the micro-integrator suitably, the micro-integration errors, that in the
derivation of (27) were assumed to behave as (h/ε)p, actually behave as εν(h/ε)p,
where ν > 0 is an integrator-dependent parameter, and then (27) may be replaced by
the improved estimate:

O
(

εδ + HP + εν−1
(h

ε

)p
)

= O (
εδ + HP + εν−1(∆τ)p

)
. (28) eq:error2

Let us present choices of micro-integrators for which such an improved bound
holds. Consider first those problems in family (iii) in Section 2 for which the cor-
responding leading system (14) can be integrated analytically (we recall that this in-
tegrability is required to perform analytical averaging but it is not needed in order to
integrate numerically with SAM; the systems (17) and (19) provide specific examples).
For such problems it is possible to perform the micro-integrations by decomposing f
as f = F1 +F2, F1 = f0/ε, F2 = f−F1 and using splitting schemes [33], [3], [4], [5]
that integrate exactly the split system associated with F1. Then the micro-integration
errors vanish in the limit where ε ↓ 0 with ∆τ fixed, because, for ε = 0, εf reduces to
F1. Accordingly the micro-integration errors may be expected to behave as Kεν(∆τ)p

with ν > 0. The specific value of ν will of course depend on the splitting formulae
being used and on the system under consideration.

As a second example consider the case of problems in family (ii) in Section 2 where
the micro-integrator is a standard RK formula used with constant step-sizes. As proved
in [10], an estimate of the form (28) with ν = 1 then holds.

Generally speaking, the micro-integrator should be chosen in such a way that the
computation of the Poincaré map of (2) becomes exact as ε ↓ 0 with ∆τ = h/ε fixed;
this is not a formidable aim since for ε = 0 the map reduces to the identity!

4 Alternative techniques
In this section we review some techniques for the integration of (1) that are related to
SAM. As pointed out above, the present authors introduced SAM in [10] after their

11



work on HMMs (see [11] and Section 5 of [14]). In fact (25) may be rewritten as

F̃ (Y ∗; ε) =
1

4πε

∫ t0+2πε

t0−2πε

f(y(σ),
σ

ε
; ε) dσ,

where y(·) denotes the solution of (1) with y(t0) = Y ∗, a formula that shows that F̃
may be regarded as an average of values of f and that therefore SAM may be seen as
a particular instance of the asynchronous HMMs introduced in [11]. Also SAM has
been presented above by using the terminology (macro-integrator, micro-integrator,
etc.) that is standard in HMMs. This terminology will also be used in our presentation
below of the LIPS code and the multirevolution approach.

4.1 Kirchgraber’s LIPS code
In [23] and [24], Kirchgraber suggested and analyzed a method called LISP (Long-
term integration of periodic systems). The SAM and LISP methodologies are closely
related but originated differently: Kirchgraber’s starting point was the analytical the-
ory of averaging. In the LISP code, as in SAM, there is a macro-integration of an
averaged differential equation; this is different from the situation for the multirevo-
lution approaches that we shall discuss in the next subsection. An early contribution
where highly-oscillatory problems are solved by integrating a differential equation with
slowly varying solution is due to Petzold [27]; an extensive list of references may be
obtained from [28].

References [23] and [24] consider the problems of family (iii) in Section 2 above
(with the additional hypothesis that f0 in (15) is independent of τ ) and assume that
macro- and micro-integrations are performed with one-step integrators with constant
step-sizes. In the LISP method the recovery of the values F (Y ∗; ε) required by the
macro-integrator is not performed by finite-differences, as in (25) or (26), but via spe-
cially constructed Runge-Kutta-like formulae based on nested evaluations of Ψt0;ε.4

For instance the formula

F̃ (Y ∗; ε) =
1

2πε

(
−3

2
Y ∗ +

1
2
Ψt0;ε(Y

∗) + Ψt0;ε

(3
2
Y ∗ − 1

2
Ψt0;ε(Y

∗)
))

(29) eq:k

provides an O(ε2) approximation to F (Y ∗; ε) based on two micro-integrations over
the interval t0 ≤ t ≤ t0 + 2πε. Reference [24] also includes more complex formulae
with errors O(ε3) or O(ε4) based respectively on three or four micro-integrations on
t-intervals of length 2πε.

A rigorous analysis leading to the bound (27) is presented in [24] but the possibility
of improved bounds of the form (28) is not envisaged there.

4.2 The multirevolution approach
If χ : RD → RD is a given near-identity mapping and M a positive integer, a Runge-
Kutta multirevolution method computes an approximation z∗ to χM (z) by using less

4Reference [26] discusses in detail the numerical analysis of the recovery of a vector field F from its
flow.
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than M evaluations of χ. The recipe for computing z∗ is given by

z∗ = z + M

m∑

i=1

bi (χ(Zi)− Zi) (30) eq:multi1

together with

Zi = z + M

m∑

j=1

aij (χ(Zj)− Zj) . (31) eq:multi2

Here m is the number of stages of the method and bi and aij denote method-dependent
coefficients whose values change with M . We restrict the attention to the case where
aij = 0 for j ≥ i; then the method is explicit and z∗ is obtained after m evaluations of
χ. Therefore for this approach to be meaningful it has to be applied with M > m. An
example of a method with m = 4 is given by

b1 = b4 =
M + 1

6(M − 1)
, b2 = b3 =

M − 2
3(M − 1)

,

a21 =
M − 1
2M

, a31 = a41 =
1
M

, (32)

a32 =
M − 3
2M

, a42 =
2(M − 2)
M(M + 1)

a43 =
(M − 1)(M − 2)

M(M + 1)
.

This will be used in Section 5 below.
Multirevolution RK or multistep techniques were introduced by astronomers more

than fifty years ago (see the references in [28]); in a typical application the method
would be used with the role of χ played by the transformation that maps one inter-
section of a satellite orbit with the Earth’s equatorial plane into the next intersection.
Recent valuable references are [8] and [7].

In our setting, the method is applied to the one-period mapping χ = Ψt0;ε, first with
z = y0 to obtain in view of (20) an approximation YM to y(tM ), then with z = YM

to obtain an approximation to y(t2M ), etc. Set H = 2πMε so that H is the time
increment between two consecutive approximations Yj , Yj+1; then (30) and (31) may
be rewritten as

z∗ = z + H

m∑

i=1

bi

(
1

2πε
(Ψt0;ε(Zi)− Zi)

)
(33) eq:multi3

and

Zi = z + H

m∑

j=1

aij

(
1

2πε
(Ψt0;ε(Zj)− Zj)

)
. (34) eq:multi4

For a multirevolution method of order P , z∗ and Ψt0;ε(z) differ inO(HP+1) terms, see
e.g. [7]. A standard consistency+stability argument then shows that the multirevolution
solution Yj differs from the exact y(t0 + jH) by an O(HP ) error as t0 + jH ranges
in a bounded interval. These estimates assume that Ψt0;ε is exactly known; in practice
Ψt0;ε is of course computed through a micro-integration and then by arguing as in the
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derivation of (27)–(28) we would conclude that the error in the multirevolution solution
is given by

O
(

HP +
1
ε

(h

ε

)p
)

= O
(

HP +
1
ε
(∆τ)p

)
, (35) eq:errorbis

or

O
(

HP + εν−1
(h

ε

)p
)

= O (
HP + εν−1(∆τ)p

)
. (36) eq:error2bis

To our best knowledge there has been no discussion in the literature of bounds such as
(35) or (36) that take into account the effects of using inexact values of Ψt0;ε.

We conclude this section by comparing the multirevolution and SAM approaches.
Unlike the situation for SAM or the LISP code, multirevolution methods do not make
reference to any averaged differential equation; the computed approximations Y0, Y1,
. . . form a discrete sequence of vectors in RD and are not seen as samples of a function
Y (t) of the continuous variable t. This implies that the time-increment H , as distinct
from the situation for SAM, has to be an integer multiple of the period 2πε. Therefore
multirevolution techniques are not well suited to be used with varying values of H . On
the other hand, while it is clear that a multirevolution scheme may be applied with a
value of M that changes along the integration, this possibility does not appear to have
been investigated in the literature.

Assume now that in (33)–(34) the coefficients bi, aij are M -independent and taken
from a standard RK method rather than from a multirevolution scheme. Then (33)–
(34) are precisely the formulae that define the application of SAM with the chosen RK
method as macro-integrator and a forward differencing retrieval of F (Y ∗; ε) (cf. (25)):

F̃ (Y ∗; ε) =
1

2πε
[Ψt0;ε(Y

∗)− Y ∗].

We may think that the multirevolution scheme adjusts the coefficients bi, aij in an M -
dependent manner to cater for the fact that (33)–(34) do not use the exact F but rather
the approximation F̃ . For this reason the estimates (35)–(36) do not include any term
εδ as (27)–(28) do: the differencing error is offset by the variation of the bi and aij as
functions of M .

In the limit where ε ↓ 0 and M ↑ ∞ with H constant, the approximation F̃ co-
incides with the exact F and the multirevolution method should approach a standard
RK scheme. This is apparent for the (fourth-order) method (32) whose coefficients
converge to those of the classical fourth-order RK formula.

5 Numerical experiments
In this section we present experiments that test the efficiency of SAM. In Subsection
5.1 we employ constant macro-step size implementations and Subsection 5.2 considers
variable time-steps.

5.1 A perturbed Kepler problem
As in [24], we integrate (19) with initial values x1(0) = 1, x2(0) = 0, v1(0) = 0,
v2(0) = 1. We consider three different parameter values, ε = 2−12, 2−13, 2−14
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(2−12 ≈ 2.4 × 10−4) and an integration interval 0 ≤ τ ≤ (π/8)ε−1 of length pro-
portional to ε−1.

5.1.1 Runge-Kutta micro-integrations

We first use the classical fourth-order RK method to perform both the macro- and
micro-integrations. It is clear that we may have chosen a better ‘modern’ RK formula
but we felt that such a choice would have introduced additional non-essential points
in the discussion. We applied second-order differencing (25) and therefore the SAM
errors are bounded by (27) with δ = 2, P = p = 4.

Figure 3 is an efficiency diagram that shows, in a doubly-logarithmic plot, error
as a function of the total number of micro-steps. On the top panel, SAM is used with
N = 8 macro-steps to cover the interval 0 ≤ τ ≤ (π/8) ε−1 and with micro-steps-
sizes ∆τ = 2π/n, n = 2j , j = 4, 5, 6, 7; the total required number of micro-steps is
then 8Nn = 64n (each macro-step needs four function evaluations and each of these
takes 2n micro-steps: there are two evaluations of the Poincaré map and each uses
n micro-steps). Each of the straight lines on the left of the panel corresponds to the
SAM results with ε = 2−12 (left-most line), ε = 2−13 and ε = 2−14 (right-most line).
In these runs the values of ε and N are such that the bound (27) is dominated by the
term ε−1(∆τ)4 arising from the micro-integration errors. The behaviour ε−1(∆τ)4 is
clearly borne out by the figure: doubling n with fixed ε divides the error by 24 and
halving ε with constant ∆τ doubles the error. For comparison, we have included in the
panel the results for a standard integration of the problem with the classical RK method
with ∆τ = 2π/n, n = 2j , j = 4, 5, 6, 7. For this conventional integrator the error also
behaves as ε−1(∆τ)4 (the factor (∆τ)4 reflects the order of the method and the factor
ε−1 arises from the interval length5). For given ∆τ and ε, the standard integration
yields errors that are somewhat larger than those of SAM. However the number of
steps in the conventional integration is (1/16)nε−1 which compares unfavourably with
the corresponding number 64n for SAM. The relative merit of SAM increases as ε
decreases and for ε = 2−14 the work in SAM for a given error is approximately 20
times smaller than the work in the conventional integration.

The bottom panel of Figure 3 corresponds to a fixed value ε = 2−12. The right-
most line (circles) depicts once more the results for the standard RK4 integration with
∆τ = 2π/n, n = 2j , j = 4, 5, 6, 7. The lines with the ∗ sign correspond to SAM
with a number N of macro-steps equal to 2 (left line), 4 and 8 (right line) and, once
more, ∆τ = 2π/n, n = 2j , j = 4, 5, 6, 7. For N = 2 and N = 4 the lines ‘bend’ to
the right: for small ∆τ and small N (large macro-steps) the error associated with the
macro-integrator manifest itself. The bound (27) may be used as in [24] to determine,
for fixed ε, the most efficient value of the micro-step-length for a chosen value of
the macro-step-length, but this will not be pursued here. The lines with the × sign
correspond to the LISP method with RK4 macro-integrator and second order recovery
of F (see (29)); the results are hardly different from those of SAM. Finally the + signs
correspond to the multirevolution method (32): for each value of N and ∆τ the error is

5In problems where all solutions are periodic with the same period, numerical integrators typically lead
to errors that grow linearly as a function of time [12], [13].
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Figure 3: Efficieny diagrams (error vs number of RK steps) for different numerical inte-
gration schemes based on RK4 micro-integrations. The circles correspond to standard
integration with RK4. The stars to SAM with RK4 macro-integration and second or-
der central differences. The × sign to the LISP algorithm with RK4 macro-integration
and second order recovery. The + sign to the multirevolution generalization of RK4 in
formula (32). On the top panel, different lines correspond to different values of ε and a
fixed number N = 8 of macro-steps. On the bottom panel ε = 2−12 and different lines
correspond to different values of N = 2, 4, 8.fig:satrk4
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the same as in SAM but the computational cost is halved because the micro-integrations
only span one period.

5.1.2 Splitting micro-integrations

We now use a splitting method as micro-integrator. The system (19) is decomposed as
the Kepler problem

d

dτ
x = λ(x, v)v,

d

dτ
v = −λ(x, v)

r3
x,

and the perturbation
d

dτ
x = 0,

d

dτ
v = ε λ(x, v)F (x),

with flows φ
(1)
τ and φ

(2)
τ respectively. The mapping φ

(1)
τ is of course available in closed

form; we approximate φ
(2)
τ by the mapping φ̃

(2)
τ corresponding to one step of the im-

plicit mid-point rule (the associate implicit equations are easily solved as x remains
constant and v appears in the right hand-side only through the scalar λ). With these
ingredients we define one step of the splitting integrator by the symmetric, à la Strang
[33] composition

φ̃
(2)
τ/2 ◦ φ(1)

τ ◦ φ̃
(2)
τ/2.

The macro-integrator in SAM is still taken to be the classical RK4 formula and
second-order differencing is used. The error of the splitting method over an interval
0 ≤ τ ≤ 2π can be shown to behave essentially as O(ε2(∆τ)2).6 As a consequence
the SAM errors behave as in (28) with δ = 2, P = 4, p = 2, ν = 2.

In the top panel of Figure 4, SAM is used with N = 16 macro-steps to cover the
interval 0 ≤ τ ≤ (π/8)ε−1 and ∆τ = 2π/n, n = 2j , j = 3, 4, 5, 6. The total number
of micro-steps is then 8Nn = 128n, a quantity independent of ε. Each of the lines
on the left of the panel corresponds to the SAM results with ε = 2−14 (leftmost line),
ε = 2−13, ε = 2−12 (note that the relative position of these three lines is reversed
with respect to that in Figure 3). In this panel the values of ε and N are such that
the bound (28) is dominated by the term ε(∆τ)2 arising from the micro-integration
errors. The behaviour ε(∆τ)2 manifests itself in the figure: doubling n with fixed ε
divides the error by 4 and halving ε with constant ∆τ halves the error, in spite of the
fact that then the integration interval is twice as long; this should be compared with the
situation for the RK4 micro-integrations in Figure 3. For purposes of comparison we
have included in the panel the results of a standard integration of the problem with the
splitting scheme with ∆τ = 2π/n, n = 2j , j = 3, 4, 5, 6. For this integrator the error,
as for SAM, behaves as ε(∆τ)2 (over one period of length 2π the error is O(ε2(∆τ)2)
and we compute a number of periods proportional to ε−1). In fact, for given ∆τ and
ε, the errors in the standard integration are comparable to those of SAM. However the
number of steps (1/16)nε−1 in the standard integration is proportional to ε−1.

6For a problem of the form (d/dτ)y = f(y)+ εg(y), the local error for Strang’s splitting is readily seen
to behave as O(ε(∆τ)3 + ε2(∆τ)3) (note that the bound vanishes in the limit ε ↓ 0 with fixed ∆τ ). As
proved in [35], Strang’s method may be conjugated through a change of variables (processing) to a method
with local errorO(ε(∆τ)m + ε2(∆τ)3), where the integer m may be chosen arbitrarily large.
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Figure 4: Efficiency diagrams (error vs number of steps of the splitting algorithm) for
different numerical methods based on splitting micro-integrations. The circles corre-
spond to standard integration with the splitting scheme. The stars to SAM with RK4
macro-integrations and second order differencing. The × sign to the LISP algorithm
with RK4 macro-integrations and second order recovery. The + to the multirevolution
version of RK4 in formula (32). On the top panel different lines correspond to different
values of ε. On the bottom panel ε = 2−12 and different lines correspond to different
numbers N = 4, 8, 16 of macro-steps.fig:satS2
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At the risk of some repetition, we summarize the findings on the top panels of
Figures 3 and 4 as follows. When ∆τ is kept fixed and ε is halved:

• The standard RK integrator works twice as much and doubles the error.

• The standard splitting scheme works twice as much and halves the error.

• SAM with RK micro-integrations uses the same work and doubles the error.

• SAM with splitting micro-integration uses the same work and halves the error.

The bottom panel of Figure 4 is similar to the corresponding panel in Figure 3. It has
ε = 2−12 and ∆τ = 2π/n, n = 2j , j = 3, 4, 5, 6. The circles originate from the
standard splitting integration. The stars are from SAM with RK4 macro-integration,
N = 4, 8, 16, and splitting micro-integration. The × signs differ from the circles in
that they are based on the LISP recovery (29). Finally the + signs are from the multi-
revolution method (32) with splitting micro-integrations.

5.2 The van der Pol oscillator
We now consider the well-known van der Pol problem (17). An application of the
analytic method of stroboscopic averaging leads to the averaged system

d

dτ
Q = − ε

8
Q

(
R2 − 4

)− ε2

256
P

(
5R2 + 16R4 − 48 + 16(Q2 − 2)2

)
+O(ε3),

d

dτ
P = − ε

8
P

(
R2 − 4

)
+

ε2

256
Q

(
5R2 + 80R4 + 16 + 16(Q2 − 4)2

)
+O(ε3),

where R2 = q2 + p2. If we set

R1 = R2 − ε
P 3Q

Q2 + P 2
,

then
d

dt
R1 = −εR1(R1 − 4) +O(ε3),

an equation that shows both that, up to an O(ε2) error, the equation of the van der Pol
limit cycle is R1 = 4 and that the limit cycle is exponentially attractive. For an ini-
tial condition (q(0), p(0)) away from the limit cycle, the solution (q(τ), p(τ)) of (17)
requires a τ -interval of length O(1/ε) to reach the limit cycle; while this approach is
taking place q and p vary by anO(ε) amount from one stroboscopic time τn to the next
τn + 2π. Once the limit cycle has been reached, the solution, when sampled at stro-
boscopic times, changes in a much slower time-scale because then dQ/dτ = O(ε2),
dP/dτ = O(ε2) as it may be seen in the averaged differential equations. Therefore the
numerical integration of the averaged system performed by SAM may be expected to
benefit from the use of variable step-sizes.

Since the systems
{

d
dτ q = p
d
dτ p = −q

,

{
d
dτ q = 0
d
dτ p = ε(1− q2)p
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are trivially integrated in closed form, it is natural to employ a splitting scheme as
a micro-integrator. The experiments reported below correspond to Strang’s splitting;
higher order splittings [3], [4], [5] were also implemented but did not lead to substantial
improvements. In all numerical experiments that we present here we use ∆τ = π/16
(32 micro-steps per period of the harmonic oscillator). Second order differences are
used and as macro-integrator we consider two alternatives: the variable step-size solver
‘ode45’ of MATLAB (based on a 5(4)th order embedded pair of RK methods due to
Dormand and Prince) and the underlying 5th order RK method implemented with con-
stant step-size. The experiments have initial values q(0) = p(0) = 0.5 and integration
interval 0 ≤ τ ≤ τend = 32πε−1.

We first set ε = 2−9 and compare three numerical integrations:

(i) SAM with the variable step-size macro-integrator ‘ode45’ with absolute and rel-
ative tolerances tol = 2−16. This required only 40 macro-steps to reach the
final τend ≈ 51, 000. (Recall that the solution of (17) is almost-periodic with an
almost period of 2π.)

(ii) SAM with constant step-size macro-integration with macro-step (π/4)ε−1, so
that 128 macro-steps are needed to cover the integration interval.

(iii) Standard integration with second order Strang splitting with step-size ∆τ . The
number of splitting steps is then τend/∆τ = 512/ε ≈ 260, 000.

While integration (i) is cheaper than integration (ii) and both much cheaper than
integration (iii), the errors are comparable as shown in the top panel of Figure 5, that
presents, in a doubly logarithmic scale, global error vs. τ . The saving in macro-steps
due to the use of the variable step-size implementation of the macro-solver can be ob-
served in the bottom panel of the figure, where the step-sizes chosen by ‘ode45’ are
plotted as a function of τ , together with the constant-step size in integration (ii). The
change in time-scale of the solution once the limit cycle has been reached is detected
by the solver, which accordingly increases the macro-step. Of course, the gain in ef-
ficiency of the variable step-size macro-solver would increase if a longer integration
interval had been considered.

We repeated the experiment after setting ε = 2−10 while keeping fixed all remain-
ing parameters but do not show the corresponding figures. The variable-step method
again uses 40 steps and furthermore the step-size sequence remains virtually the same.
The errors in the three integrations are halved thus reflecting the fact that an estimate
of the form (28) holds with ν = 2, as expected for Strang’s splitting.

6 Differential-algebraic equations
The idea behind SAM is also applicable to systems of DAEs. In this section we illus-
trate this application by studying, as in [11], constrained mechanical systems whose
active forces exhibit a rapidly oscillatory behaviour.
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Bottom: Macro-step length vs. τ for SAM with variable step-size macro-integration
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6.1 Constrained mechanical systems
While in [11] the index-3 formulation was used, we consider the Gear-Gupta-Leimkuhler
(GGL) formulation [19]:

q̇ = u−M−1(q)GT (q)µ, (37)

u̇ = M−1(q)f(q,u,
t

ε
)−M−1(q)GT (q)λ, (38)

g(q) = 0, (39)
G(q)u = 0. (40)

Here a dot represents differentiation with respect to t, q are the coordinates, u the
velocities, M the mass matrix and f the active forces. It is assumed that f is of size
O(1/ε), depends 2π-periodically on its third argument and has an O(1) average over
one period (these are the hypotheses on the force imposed in Section 2 (ii)). Equations
(39) and (40) (where G = ∂g/∂q) correspond respectively to the imposed holonomic
constraints and the implied velocity constraints. The (index 2) GGL formulation in-
cludes two sets µ and λ of Lagrange multipliers, while the standard index 3 formula-
tion only uses the multipliers λ associated with the force M−1(q)GT (q)λ exerted by
the constraints.

In analogy with the material in [11], it is plausible to assume that there exists an
averaged system in GLL formulation

Q̇ = FQ(Q,U)−M−1(Q)GT (Q)M, (41)

U̇ = FU(Q,U)−M−1(Q)GT (Q)Λ, (42)
g(Q) = 0, (43)

G(Q)U = 0, (44)

for suitable functions FQ, FU whose analytic expressions do not need to be known to
the user.

Collecting the differential variables in a vector y, and the Lagrange multipliers in z,
both the original system (37)–(40) and its averaged counterpart (41)–(44) are index-2
differential algebraic systems of the form

ẏ = F(y, z), G(y) = 0

and therefore may be integrated numerically by means of the half-explicit RK methods
introduced in [20] and further developed and analyzed in [6]. Given consistent initial
values (y0, z0) a step of such a method reads:

Yi = y0 + h

i−1∑

j=1

aijF(Yj , Zj), i = 1, . . . , s, (45)

G(Yi) = 0, (46)

y1 = y0 + h

s∑

i=1

biF(Yi, Zi), (47)

G(y1) = 0. (48)
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For i = 1, (45) reduces to Y1 = y0. For 2 ≤ i ≤ s, substitution of (45) into (46)
leads to a nonlinear equation for Zi−1. Once Zi−1 has been computed, (45) explicitly
defines Yi. In a similar way, Zs is computed by solving the nonlinear system obtained
by the substitution of (47) into (48) and, finally, y1 is computed explicitly from (47).
The nonlinear equations can be solved by using Newton iteration.

SAM is used here by applying the half-explicit method to (41)–(44); when the algo-
rithm demands the evaluation of the right-hand sides of (41)–(42), the required values
are obtained by numerical differentiation of Q and U. In turn, the values of positions
and velocities that feature in the numerical differentiation formulae are obtained by
micro-integrating the original (37)–(40) with the half-explicit method.

6.2 Numerical results
As in [11], we integrate the cartesian equations of a double pendulum subject to violent
vertical vibration. The GGL formulation is

m1ẋ1 = m1u1 − 2x1µ1 − 2(x1 − x2)µ2,

m1ẏ1 = m1v1 − 2y1µ1 − 2(y1 − y2)µ2,

m2ẋ2 = m2u2 − 2(x2 − x1)µ2,

m2ẏ2 = m2v2 − 2(y2 − y1)µ2,

m1u̇1 = − 2x1λ1 − 2(x1 − x2)λ2,

m1v̇1 = −m1(g + a(t))− 2y1λ1 − 2(y1 − y2)λ2,

m2u̇2 = − 2(x2 − x1)λ2,

m2v̇2 = −m2(g + a(t)) − 2(y2 − y1)λ2,

with constraints

x2
1 + y2

1 − `21 = 0,

(x2 − x1)2 + (y2 − y1)2 − `22 = 0,

x1u1 + y1v1 = 0,

(x2 − x1)(u2 − u1) + (y2 − y1)(v2 − v1) = 0.

Here `1 and `2 are the lengths of the rods, m1, m2 the masses, g the acceleration of
gravity and a(t) the imposed vertical vibratory acceleration.

In the numerical experiments, as in [11], we take m1 = 0.01kg, m2 = 0.005kg,
`1 = 0.2m, `2 = 0.1m and g = 9.8ms−2. The integration time is T = 1s and
a(t) = vmaxε−1 cos (ε−1t) with vmax = 4ms−1, ε = 10−4, 10−6, 10−8. The initial
velocities are taken to be zero and the initial positions are x1(0) = `1 sin(0.5), y1(0) =
`1 cos(0.5), x2(0) = x1(0), y2(0) = y1(0) + `2, so that initially the rods are at angles
q1 = 0.5 and q2 = 0 with respect to the upward vertical axis. Due to the vertical
vibration the pendula (as it is the case for Kaptisa’s pendulum (13)) will not fall down
in spite of gravity.

As in Section 5, we apply second-order differencing. As macro- and micro-integra-
tor, we use the unique half-explicit RK method of order 3 and 3 stages (HERK3), whose
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.

Figure 6 is an efficiency diagram that shows error in the angle q1 as a function of
the total number of micro-steps (errors in q2 are somewhat larger and exhibit a simi-
lar behaviour). Errors are measured against a reference solution found by integrating
accurately the problem in Lagrangian coordinates (something that would not be fea-
sible in more complicated mechanical systems). On the top panel of the figure, SAM
has been used with macro-step-size H = π/2500 (N = 796 macro-steps are needed
to cover the interval 0 ≤ t ≤ T ) and with micro-step-sizes h = 2πε/n, n = 2j ,
j = 2, 3, 4, 5. Each macro-step requires three function evaluations and each evalua-
tion takes 2n micro-steps; therefore, the total number of micro-steps is 6Nn = 4776n
and thus does not depend on ε. Two different values, ε = 10−4, 10−6 are depicted,
but the corresponding results almost coincide in the graphic. This means that, for a
given macro-step-size, the error of SAM is independent of ε.7 For comparison we have
also included the results for a standard integration of the problem with HERK3 with
h = 2πε/n, n = 2j , j = 2, 3, 4, 5. We observe that when going from ε = 10−4 to
ε = 10−6 the errors do not vary but the computational cost is multiplied by 100 since
the step-size is proportional to ε. For ε = 10−4 the conventional integration is more ef-
ficient than SAM and for ε = 10−6 the conclusion is reversed. When ε = 10−8, SAM
was found to work as expected but the conventional integration requires an unfeasible
amount of computer time.

The bottom panel of Figure 6 corresponds to a fixed value ε = 10−6. The line with
the circles shows the errors for the standard HERK3 integration, while the lines joining
the stars correspond to SAM with different macro-step-sizes H = π/625, π/1250,
π/2500, π/5000. As in the top panel, the micro-step-sizes are h = 2πε/n, n = 2j ,
j = 2, 3, 4, 5. For H = π/625 and H = π/1250, decreasing the micro-step-size not
always improves the accuracy, since the error due to the macro-integrator dominates.

7 Conclusions
We have studied in detail SAM, a technique for the numerical integration of oscillatory
problems with a single high frequency. While SAM is related to known methods such
as the LISP code and multirevolution RK schemes, the present paper has considered a
number of issues that had not been studied in the literature, including the use of variable
step-sizes and of micro-integrations based on splitting algorithms and the application
to DAEs.

The following conclusions have emerged:

• SAM as the LISP code and multirevolution methods, when applicable, greatly
improve on conventional integrators.

7This corresponds to an error bound with ν = 1, see the analysis in [10].
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Figure 6: Efficiency diagrams for SAM applied to the GGL formulation of double
pendulum equations. The circles correspond to standard integration with HERK3. The
stars to SAM with HERK3 as macro- and micro-integrator. On the top panel, different
lines correspond to different values of ε and a fixed macro-step-size H = π/2500. On
the bottom panel ε = 10−6 and different lines correspond to different macro-step-sizes
H = π/625, π/1250, π/2500, π/5000. fig:daes
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• The efficiency of SAM, the LISP code and multirevolution methods depends
crucially on the choice of the micro-integrator. Whenever possible, the micro-
integrator should be chosen in such a way that the integration becomes exact
in the limit where the fast period 2πε approaches 0 while the micro-step size h
remains constant. Splitting schemes are very useful in this connection and may
be applied whenever the problem is amenable to analytic averaging.

• The performance of the LISP code is very similar to that of SAM when both use
the same macro- micro-integrators. Therefore SAM achieves the same aims as
the LISP code while using straightforward numerical differences.

• In constant step-size implementations, multirevolution RK methods are more
efficient than SAM due to the shorter micro-integration windows. The multi-
revolution approach requires special ad hoc formulae and is not applicable in
conjunction with variable time-steps; SAM may use any off-the-shelf macro-
and micro-integrators, in constant or variable step-size implementation.

• SAM may be successfully applied to DAEs.
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