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Abstract

In this paper, we are concerned with an averaging procedure, –namely Stroboscopic averaging
[SVM07, CMSS10]–, for highly-oscillatory evolution equations posed in a (possibly infinite dimen-
sional) Banach space, typically partial differential equations (PDEs) in a high-frequency regime where
only one frequency is present. We construct a high-order averaged system whose solution remains
exponentially close to the exact one over long time intervals, possesses the same geometric properties
(structure, invariants, . . . ) as compared to the original system, and is non-oscillatory. We then ap-
ply our results to the nonlinear Schrödinger equation on the d-dimensional torus Td, or in Rd with a
harmonic oscillator, for which we obtain a hierarchy of Hamiltonian averaged models. This analysis
paves the way for the use of the so-called “SAM” method, a purely numerical method which captures
the solution of high-order averaged models derived here, with a computational cost essentially inde-
pendent of the stiffness parameter. Our results are then illustrated numerically on several examples
borrowed from the recent literature.

Keywords: highly-oscillatory evolution equation, stroboscopic averaging, Hamiltonian PDEs, invari-
ants, nonlinear Schrödinger, SAM.

MSC numbers: 34K33, 37L05, 35Q55.

1 Introduction

In this article we are concerned with highly-oscillatory evolution equations posed in a Banach space X

d

dt
uε(t) = εgt(u

ε(t)), uε(0) = u0 ∈ X, t ∈ [0, T/ε], (Qε)

where (θ, u) 7→ gθ(u) is P -periodic in θ, smooth in θ ∈ T (T denotes the torus R/(PZ)), smooth in
u ∈ X , and where it is assumed that the above problem is well-posed on a ε-dependent time interval
[0, T/ε]. This is a high-frequency system, with one frequency, posed in an infinite-dimensional setting.
The highly-oscillatory character of the equation stems from the length of the interval (scaled by 1/ε),
which makes the dynamics non-trivial: over such intervals, the change in the solution is loosely speaking
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of size O(1). Under more stringent hypotheses on the problem, the error bounds derived in this paper
hold on even longer intervals of size O(1/ε1+α) with 0 ≤ α < 1.

The question we address is that of high-order averaging. In other words, we look for an approximation
vε(t) of uε(t) such that vε(t) is close to uε(t) over [0, T/ε] to within a small remainder term, and such
that vε(t) satisfies an autonomous non-oscillatory evolution equation. The typical example we have in
mind is that of nonlinear PDEs in a high-frequency regime, where only one frequency is present. We
fully treat at the end of this text the case of the nonlinear Schrödinger equation on the torus Td, or on Rd
with a harmonic potential.

Ideally, the purpose of high-order averaging is to find a periodic, near-identity and smooth change of
variable Φε

θ, together with the flow map Ψε
t of an autonomous differential equation on X , such that the

solution of the original equation (Qε) takes the composed form

uε(t) = Φε
t ◦Ψε

t (u0).

Such a form completely1 separates the dependence of uε(t) upon the fast, periodic variable θ and the
dependence of uε(t) upon the slow variable t . In the framework of stroboscopic averaging, we further
impose that Φε

θ satisfies Φε
θ=0 = Id. One interest of this choice is that Φε

θ coincides with the identity
map at multiples of the period, so that uε(t) = Ψε

t (u0) at times t = nP , n ∈ Z. A more fundamental
property of stroboscopic averaging is that it allows to preserve the structure of the original problem, as
already pointed out in Chartier et al. [CMSS10, CMSS13]. This is a second aspect we investigate here.
Finally, stroboscopic averaging entails another advantage: it is amenable to numerical approximations,
as considered in [CCMSS11], where the proposed method (SAM) relies in a crucial way on the strobo-
scopic property. We will also present the main ingredients of this method and demonstrate its interest on
numerical experiments: a fundamental feature of SAM is that its computational cost is independent of ε.
This aspect is investigated from a purely experimental perspective in the companion paper [CMMZ13].

The factorized form uε(t) = Φε
t ◦ Ψε

t (u0) is somehow analogous to the two-scale expansions (or
WKB expansions as well – see [Wen26, Kra26, Bri26] on that point), where uε(t) is sought in the two-
scale form uε(t) = U ε(θ, t)

∣∣
θ=t

as is more usual in the context of high-frequency PDEs. Averaging as
developed in this paper also constitutes in our view an alternative to other modern techniques, amongst
which stand most prominently Birkhoff’s forms (see e.g. Bambusi [Bam03, Bam05, BG06, Bam08],
Bourgain [Bou96, Bou07], Colliander [CKS+10] and Grébert [GVB11, GT12], to mention just a few
authors) and more recently Modulated Fourier Expansions (see Hairer and Lubich [HL00] for ODEs and
[CHL08, GL10] for Hamiltonian PDEs).

Note that unlike the situation we consider, most of the papers quoted above deal with the case of
non-resonant frequencies and that traditionally, the flow Ψε

t and the change of variables Φε
θ are sought by

performing power expansions in ε (see e.g. Meunier [LM88] or Sanders-Verhulst [SVM07]). In the one-
frequency context, this procedure goes back to the work of Perko in the finite-dimensional case [Per69].
In contrast, we identify here a new equation (here called transport equation) on the change of variables
Φε
t , which can be solved using a fixed point procedure in an analytic framework2. This transport equation

plays a role that is somehow similar to the so-called singular equation of geometric optics, in the context
of high-frequency hyperbolic PDEs (see [JMR95]).

Our main theorem (Theorem 2.7) is stated in Subsection 2.2, once preliminary assumptions have
been settled, and ideas sustaining stroboscopic averaging outlined in Subsection 2.1. The remaining of
Section 2 is devoted to technical proofs and intermediate theorems, with the exception of Subsection 2.4

1The result we establish in that direction is that such a decomposition may be achieved with error terms of size O(e−c/ε)
for some c > 0.

2Once the change of variables Φεt is obtained, we show that the flow Ψε
t is easily reconstructed.
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which is concerned with the linear case, where expansions are shown to converge (in contrast with the
general nonlinear case). Geometric aspects are dealt with in Section 3: invariants in Subsection 3.2 (see
Theorem 3.7) and the more involved situation of Hamiltonian equations in the context of Hilbert spaces
in Subsection 3.1 (see Theorem 3.5). Section 4 considers the instanciation for NLS of Theorems 2.7, 3.5
and 3.7. In the NLS context, Theorem 4.2 can be considered as the main theoretical output of this article.
Finally, Section 5 is devoted to the (purely) numerical counterpart of stroboscopic averaging: SAM is
first presented and then experimented on three NLS equations both in dimensions 1 and 2.

2 High-order averaging in a Banach space

Let X a real Banach space, equipped with the norm ‖ · ‖X . We consider the following highly-oscillatory
evolution equation, posed in X , namely

d

dt
uε(t) = ε gt (uε(t)) , u(t) ∈ X, (2.1)

uε(0) = u0, u0 ∈ X,

where the initial datum u0 is given and where the function (θ, u) ∈ T×X 7→ gθ(u) ∈ X is smooth with
respect to u ∈ X and smooth and periodic3 in θ ∈ T. We actually require u 7→ gθ(u) to be real analytic in
a sense we define later (see Assumption 2.3). Our aim is to compute high-order (in ε) approximations of
the solution uε(t) to (2.1), on time intervals of sizeO(1/ε). We therefore readily introduce the following
basic assumption.

Assumption 2.1 The Cauchy problem (2.1) is uniformly well-posed in the following sense. There exist
T > 0, ε∗ > 0, and a bounded open subset K ⊂ X , such that, for all ε ∈]0, ε∗], the problem (2.1) admits
a unique solution uε ∈ C1([0, T/ε], X), uε(t) remaining in K for all t ≤ T/ε.

Given the real Banach space X , we introduce the complexification of X , defined as

XC = {U := u+ iũ, (u, ũ) ∈ X2}.

We denote u = <(U) ∈ X and ũ = =(U) ∈ X the real and imaginary parts of U . The space XC is a
Banach space when endowed with the norm4

‖U‖XC := sup
λ∈C∗

‖<(λU)‖X
|λ|

.

Note that for u ∈ X , we have ‖u‖XC = ‖u‖X . Now, given any ρ > 0, we consider the open enlargement
of K in XC given by

Kρ = {u+ ũ : (u, ũ) ∈ K ×XC, ‖ũ‖XC < ρ},

and define analytic functions on Kρ as follows:

3Here and below, ”periodic” refers to “P -periodic”, and the normalisation that we retain is such that T is the torus R/(PZ)
4IfX is a Hilbert space, it is more convenient to equipXC with the Hermitian norm associated to the complex scalar product

(u+ iũ, v + iṽ)XC
= (u, v)X + (ũ, ṽ)X + i ((ũ, v)X − (u, ṽ)X) .
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Definition 2.2 (Analytic functions on a Banach space – see [PT87] ) Consider a continuous function
(θ, u) ∈ T × Kρ 7→ fθ(u) ∈ XC. The map fθ is said to be analytic on Kρ ⊂ XC whenever it is
continuously differentiable on Kρ , i.e. there exists a continuous map

T×Kρ → L(XC)

(θ, u) 7→ (∂ufθ)(u)

where L(XC) is the set of bounded linear maps from XC to XC, which satisfies

∀u ∈ Kρ, ∃δ > 0, ∀h ∈ XC, ‖h‖XC ≤ δ, sup
θ∈T
‖fθ(u+ h)− fθ(u)− (∂ufθ)(u)h‖XC = o(‖h‖).

When (θ, u) 7→ fθ(u) is a bounded analytic function on T×Kρ, we denote

‖f‖ρ = sup
(θ,u)∈T×Kρ

‖fθ(u)‖XC .

We are now ready to state the assumptions on gθ in (2.1) required by our analysis.

Assumption 2.3 The function (θ, u) 7→ gθ(u) is C0 and periodic in θ. Besides, (θ, u) 7→ gθ(u) is real-
analytic in u, in the following sense. There exist R > 0, CK > 0, such that for all θ ∈ T, u 7→ gθ(u) is
analytic on K2R in the sense of Definition 2.2, while (θ, u) 7→ gθ(u) is bounded by CK on T×K2R.

The above assumption defines once for all the quantities R and CK .

2.1 The formal equations of stroboscopic averaging

Ideally, the purpose of averaging is to find a periodic, near-identity change of variable

(θ, u) ∈ T×K 7→ Φε
θ(u) ∈ X

together with the flow map Ψε
t of an autonomous differential equation with vector field Gε on X

d

dt
Ψε
t (u0) = εGε (Ψε

t (u0)) , (2.2)

such that the solution of the original equation (2.1) takes the composed form5

uε(t) = Φε
t ◦Ψε

t (u0). (2.3)

In the framework of stroboscopic averaging, we further impose that the mapping Φθ satisfies Φε
θ=0 = Id.

Let us now derive equations for Φε
θ and Ψε

t . By differentiating both sides of (2.3) w.r.t. t and using
(2.2) we readily get

∂Φε
t

∂t
(Ψε

t (u0)) + ε
∂Φε

t

∂u
(Ψε

t (u0))Gε (Ψε
t (u0)) = ε gt (Φε

t ◦Ψε
t (u0)) , (2.4)

so that, upon replacing u0 = Ψ−t(u) and then t by θ ∈ T, we obtain

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)Gε(u) = ε gθ (Φε

θ(u)) . (2.5)

5Stricto sensu, we have frozen the initial datum u0 up to now, and relation (2.3) only holds for this value of u0. Needless to
say, averaging aims at establishing such a factorization whenever u0 belongs to some open set.
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Firstly, averaging in θ both sides of (2.5) eliminates the term ∂θΦ
ε
θ owing to periodicity, so that

∂〈Φε〉
∂u

(u) Gε(u) = 〈g ◦ Φε〉 (u) ,

where we have used the standard notation

〈f〉 (u) :=
1

P

∫
T
fθ(u) dθ

for the average w.r.t. θ of a function (θ, u) ∈ T×X 7→ fθ(u) ∈ X . Assuming for the time being that the

linear operator v 7→ ∂〈Φε〉
∂u

(u) v is invertible for any u, we get

Gε(u) :=

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u). (2.6)

In other terms, we have here derived the value of the vector field Gε (hence that of Ψε
t ).

Secondly, inserting previous relation in equation (2.5), we are led to the relation

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u) = ε gθ ◦ Φε
θ(u), (2.7)

i.e., in integral form,

Φε
θ(u) = u+ ε

∫ θ

0

(
gξ ◦ Φε

ξ(u)−
∂Φε

ξ

∂u
(u)

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u)

)
dξ. (2.8)

This is a closed equation on Φε
θ, though nonlinear and nonlocal. In our perspective, once equation (2.8)

is solved for Φε
θ, the vector field Gε and the associated flow Ψε

t are immediately deduced along formula
(2.6). It thus remains to turn the above formal computations into a rigorous analytic procedure. However,
it is known [Nei84, CMSS12] that in general, equation (2.7) can only be solved up to an error of size
O(exp(−c/ε)) for some c > 0.

2.2 Main result: averaging to within exponentially small remainder terms

It will be useful to introduce the following two nonlinear operators. Given any periodic and smooth
mapping (θ, u) ∈ T×Kρ 7→ ϕθ(u) with invertible partial derivative ∂u〈ϕθ〉, we associate the mappings
(θ, u) ∈ T×Kρ 7→ Λ(ϕ)θ(u) and (θ, u) ∈ T×Kρ 7→ Γε(ϕ)θ(u) defined as

Λ(ϕ)θ(u) = gθ ◦ ϕθ(u)− ∂ϕθ
∂u

(u)

(
∂〈ϕ〉
∂u

(u)

)−1

〈g ◦ ϕ〉 (u), (2.9)

Γε(ϕ)θ(u) = u+ ε

∫ θ

0
Λ(ϕ)ξ(u) dξ. (2.10)

Remark 2.4 Note that if ϕθ is periodic, then 〈Λ(ϕ)〉 ≡ 0 so that Γε(ϕ)θ is also periodic.

The basic equation of averaging (2.8) in its integral form,

Φε
θ(u) = Γε(Φε)θ(u), (2.11)
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or equivalently, in its differential form,

∂θΦ
ε
θ(u) = εΛ(Φε)θ(u), Φε

θ=0(u) = u, (2.12)

can be considered as a fixed point equation. We thus consider the sequence of functions

Φ
[0]
θ = Id, Φ

[k+1]
θ = Γε(Φ[k])θ, k = 0, 1, 2, . . . , n, (2.13)

together with the sequence of vector fields

G[k](u) :=

(
∂〈Φ[k]〉
∂u

(u)

)−1

〈g ◦ Φ[k]〉(u), k = 0, 1, 2, . . . , n. (2.14)

In addition, we introduce the following terms occuring in the expansion of G[k], for k ≥ 0, namely

Gk+1(u) =
1

k!

dkG[k]

dεk

∣∣∣∣∣
ε=0

(u), (2.15)

and define G̃[n](u) =
∑n

k=0 ε
kGk+1(u) for n ≥ 0.

Remark 2.5 By construction (see Theorem 2.12), for all n, k ≥ 0, one has

1

k!

dkG[n+k]

dεk

∣∣∣∣∣
ε=0

(u) = Gk+1(u).

We now set ε0 := R
8CKP

, ε2 = min
(
ε0
80 ,

ε20P
2T

)
, rn := R

n+1 and Rk = 2R− krn for k = 0, . . . , n+ 1.

Lemma 2.6 Given n ∈ N, the maps Φ
[k]
θ (u) and Gk+1(u) for 0 ≤ k ≤ n + 1 are well-defined for any

ε ∈ C with |ε| ≤ ε0/(n + 1), they are C1 in θ ∈ T, analytic in u for u ∈ KRk , and analytic in ε for
|ε| < ε0/(n+ 1). Moreover, the following estimate holds true:

∀ε ∈ C, |ε| < ε0/(n+ 1), ‖Φ[k] − Id‖Rk ≤
rn
2
. (2.16)

Theorem 2.7 For 0 < |ε| < min(ε∗, ε2), consider Φ̃ε
θ = Φ

[nε]
θ and G̃ε = G̃[nε] for (nε + 1) =

bε0/(4|ε|)c. Then the following assertions hold for the solution uε(t) of (2.1):
(i) There exists a function (θ, u) 7→ Rεθ(u) periodic and smooth in θ, analytic on KR, and bounded

‖Rε‖R ≤ 24CK exp

(
− ε0

8 |ε|

)
, (2.17)

such that

∀t ∈ [0, T/ε], uε(t) = Φ̃ε
t (U(t)), (2.18)

where U(t) is the solution of the (quasi-autonomous) equation

dU

dt
= ε G̃ε(U) + εRεt (U). (2.19)
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(ii) If Ψ̃ε
t denotes the t-flow of the autonomous differential equation

dU

dt
= εG̃ε(U), (2.20)

then uε(t) is exponentially close to Φ̃ε
t ◦ Ψ̃ε

t (u0)

∀t ∈ [0, T/ε],
∥∥∥uε(t)− Φ̃ε

t ◦ Ψ̃ε
t (u0)

∥∥∥
XC
≤ 36R exp

(
− ε0

16 |ε|

)
. (2.21)

(iii) If furthermore T = +∞ in Assumption 2.1, then (2.18) holds for all t > 0, and (2.21) holds on
any interval of the form [0, T̃ /ε1+α] with T̃ > 0 and 0 < α < 1, provided

0 < ε < min
(
ε∗,

ε0

80
,

(
ε2

0P

2T̃

) 1
1−α )

.

Remark 2.8 Easy though tedious computations using (2.13) and (2.14) lead to the following expressions
of the first three terms of the averaged equation:

G1(u) =
1

P

∫ P

0
gτ (u)dτ, G2(u) =

−1

2P

∫ P

0

∫ τ

0
[gs(u), gτ (u)]dsdτ and

G3(u) =
1

4P

∫ P

0

∫ τ

0

∫ s

0
[[gr(u), gs(u)], gτ (u)]drdsdτ +

1

12P

∫ P

0

∫ τ

0

∫ τ

0
[gr(u), [gs(u), gτ (u)]]drdsdτ,

where [f1, f2] = (∂uf
1)f2− (∂uf

2)f1 denotes the usual Lie-bracket of smooth functions. Further terms
can be obtained –to a certain extent more easily– by using a formal Magnus expansion.

2.3 Technical proofs and intermediate Theorems

In this Subsection, we give the proof of Theorem 2.7 while stating a few intermediate results (fixed-order
truncation, non-expanded version of the vector field).

2.3.1 Two basic lemmas

Next lemma gives sufficient conditions for the quantities Λ(ϕ) and Γε(ϕ) to be well-defined.

Lemma 2.9 Let 0 < δ < ρ ≤ 2R. Assume that the function (θ, u) ∈ T×Kρ 7→ ϕθ(u) ∈ XC is analytic
in the sense of Definition 2.2, and that ϕθ is a near-identity mapping, in that

‖ϕ− Id‖ρ ≤
δ

2
.

Then, the following holds.
(i) The mapping ∂u〈ϕ〉−1 is well-defined and analytic on Kρ−δ, and it satisfies

‖∂u〈ϕ〉−1‖ρ−δ ≤ 2.

(ii) The mappings (θ, u) ∈ T × Kρ−δ 7→ Λ(ϕ)θ(u) and (θ, u) ∈ T × Kρ−δ 7→ Γε(ϕ)θ(u) are
well-defined and analytic, and they satisfy, for any |ε| ≥ 0,

‖Λ(ϕ)‖ρ−δ ≤ 4CK and ‖Γε(ϕ)− Id‖ρ−δ ≤ 4CK P |ε|.
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Proof. From the assumption ‖ϕ− Id‖ρ ≤ δ/2 and a Cauchy estimate applied to ϕθ(u)− u, we get

‖∂uϕ− Id‖ρ−δ ≤
1

δ
‖ϕ− Id‖ρ ≤

1

2
.

Consequently, using Neumann series, we obtain

‖∂uϕ‖ρ−δ ≤
3

2
and ‖(∂u〈ϕ〉)−1‖ρ−δ ≤

∞∑
k=0

‖∂u〈ϕ〉 − Id‖kρ−δ ≤ 2.

Now, for θ ∈ T, u ∈ K, ũ ∈ XC with ‖ũ‖XC < ρ− δ, one has

‖ϕθ(u+ ũ)− u‖XC ≤ ‖ϕ− Id‖ρ−δ + ‖ũ‖XC <
δ

2
+ ρ− δ < ρ ≤ 2R.

Hence ϕθ(Kρ−δ) ⊂ K2R and, by Assumption 2.3, we recover ‖g ◦ ϕ‖ρ−δ ≤ CK together with ‖〈g ◦
ϕ〉‖ρ−δ ≤ CK . Eventually, we obtain

‖Λ(ϕ)‖ρ−δ ≤ 4CK .

Integration in θ next provides ‖Γε(ϕ) − Id‖ρ−δ ≤ 4CK P |ε|. Besides, by composition theorems, the
functions Λ(ϕ)θ and Γε(ϕ)θ are analytic on Kρ−δ in the sense of Definition 2.2. �

Lemma 2.9 shows that, starting from a function (θ, u) ∈ T×K2R 7→ ϕθ(u) ∈ XC, we can consider
iterates (Γε)k (ϕ)θ at the cost of a gradual thinning of their domains of analyticity. We now establish the
following contraction property.

Lemma 2.10 Let 0 < δ < ρ ≤ 2R and consider two periodic, near-identity mappings (θ, u) ∈ T ×
Kρ 7→ ϕθ(u) and (θ, u) ∈ T×Kρ 7→ ϕ̂θ(u), analytic on Kρ and satisfying

‖ϕ− Id‖ρ ≤
δ

2
and ‖ϕ̂− Id‖ρ ≤

δ

2
.

Then the following estimates hold true whenever |ε| ≥ 0, namely

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤
16CK
δ
‖ϕ− ϕ̂‖ρ and ‖Γε(ϕ)− Γε(ϕ̂)‖ρ−δ ≤

16CK P |ε|
δ

‖ϕ− ϕ̂‖ρ.

Proof. For the sake of brevity, let us denote Aθ(u) = ∂uϕθ(u) and Âθ(u) = ∂uϕ̂θ(u). We have

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤ ‖g ◦ ϕ− g ◦ ϕ̂‖ρ−δ + ‖A‖ρ−δ ‖〈A〉−1‖ρ−δ ‖〈g ◦ ϕ− g ◦ ϕ̂〉‖ρ−δ
+ ‖A‖ρ−δ ‖〈A〉−1 − 〈Â〉−1‖ρ−δ ‖〈g ◦ ϕ̂〉‖ρ−δ + ‖A− Â‖ρ−δ ‖〈Â〉−1‖ρ−δ ‖〈g ◦ ϕ̂〉‖ρ−δ.

Proceeding as in Lemma 2.9, we get ‖A‖ρ−δ ≤ 3
2 , together with ‖〈A〉−1‖ρ−δ ≤ 2, and similarly for Â.

Besides, using the relation 〈A〉−1 − 〈Â〉−1 = 〈A〉−1〈Â−A〉〈Â〉−1, a Cauchy estimate provides

‖〈A〉−1 − 〈Â〉−1‖ρ−δ ≤ ‖〈A〉−1‖ρ−δ‖〈Â〉−1‖ρ−δ‖A− Â‖ρ−δ ≤
4

δ
‖ϕ− ϕ̂‖ρ.

Finally, whenever u ∈ Kρ−δ, since ‖ϕ − Id‖ρ ≤ δ/2 and similarly for ϕ̂, we recover in particular
ϕθ(u) ∈ Kρ−δ/2 and ϕ̂θ(u) ∈ Kρ−δ/2. We deduce ‖〈g ◦ ϕ̂〉‖ρ−δ ≤ CK and

‖g ◦ ϕ− g ◦ ϕ̂‖ρ−δ ≤ ‖∂ug‖ρ−δ/2 ‖ϕ− ϕ̂‖ρ−δ ≤
2CK
δ
‖ϕ− ϕ̂‖ρ−δ .

Collecting all terms, we finally have

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤
(

2CK
δ

+
6CK
δ

+
6CK
δ

+
2CK
δ

)
‖ϕ− ϕ̂‖ρ

and the corresponding bound for Γε is obtained by integration in θ. �
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2.3.2 Existence and uniqueness of quasi-solutions to (2.7) with polynomial remainder

In this section we exhibit (quasi-) solutions to the equations of averaging, i.e. (2.8) for the mapping Φε
θ

and (2.6) for the autonomous vector field Gε. These are quasi-solutions in the sense that equation (2.8) is
solved to within an error term of size O(εn+1) for any n ≥ 0. We begin with the proof of Lemma 2.6.

Proof of Lemma 2.6. Obviously, function Φ
[0]
θ = Id is analytic in the sense of Definition 2.2 on KR0 ,

analytic for all ε, smooth in θ, and satisfies (2.16). Assume now that, for an integer k ≤ n, the function
Φ

[k]
θ obeys the conditions of Lemma 2.6. Lemma 2.9 with ρ = Rk and δ = R

n+1 = rn then shows that the

function Φ
[k+1]
θ defined by (2.13) is analytic on KRk+1

and satisfies

∀0 ≤ |ε| < ε0/(n+ 1), ‖Φ[k+1] − Id‖Rk+1
≤ 4CK P |ε| <

4CK P ε0

n+ 1
=

R

2(n+ 1)
=
rn
2
.

It is again analytic in ε as composition of analytic functions, and clearly smooth in θ. This finishes the
induction for Φ[k]. From definitions (2.14) and (2.15), G[k] and Gk+1 are then also analytic in KRk . �

We are now in position to establish the existence of quasi-solutions to (2.7).

Theorem 2.11 [Existence of quasi-solutions to (2.7)] For n ∈ N, consider the sequence of functions

Φ
[0]
θ = Id, Φ

[k+1]
θ = Γε(Φ[k])θ, k = 0, . . . , n,

and the associated sequence of defects (δ
[k]
θ )k=0,...,n, defined as

εδ
[k]
θ (u) :=

∂Φ
[k]
θ

∂θ
(u)− εΛ(Φ[k])θ(u), k = 0, . . . , n. (2.22)

Then, the following holds true:
(i) The mappings Φ

[n]
θ and δ[n]

θ are C1 in θ, analytic on respectively KR+rn and KR, and analytic in
ε ∈ C whenever |ε| < ε0/(n+ 1).

(ii) The mappings Φ
[n]
θ and δ[n]

θ satisfy the following estimates for all |ε| < ε0/(n+ 1)

‖Φ[n] − Id‖R+rn ≤
rn
2
, ‖δ[n]‖R ≤ 2CK

(
(n+ 1)

2|ε|
ε0

)n
. (2.23)

(iii) For all θ ∈ T, the mapping u 7→ Φ
[n]
θ (u) has an inverse defined on KR with values in KR+rn .

This inverse (Φ[n])−1 is analytic. Moreover, we have ‖(Φ[n])−1‖R−rn ≤ R.

Proof of Theorem 2.11. Statement (i) and first estimate of (2.23) are obvious consequences of Lemma
2.6, up to a possible singularity at ε = 0 which is ruled out by second estimate (2.23), which we now
prove. On the one hand, by differentiation of Φ

[n]
θ = Γε(Φ[n−1])θ, we recover for n ≥ 1

εδ
[n]
θ = ε

(
Λ(Φ[n−1])θ − Λ(Φ[n])θ

)
.

Hence, Lemma 2.10 with δ = rn, ρ = R+ δ = Rn yields (denoting an = 16CKP |ε|
rn

)

|ε|‖δ[n]‖R ≤
16CK |ε|

rn
‖Φ[n] − Φ[n−1]‖Rn =

an
P

∥∥∥Γε
(

Φ[n−1]
)
− Γε

(
Φ[n−2]

)∥∥∥
Rn

≤ a2
n

P

∥∥∥Γε
(

Φ[n−2]
)
− Γε

(
Φ[n−3]

)∥∥∥
Rn−1

≤ . . . ≤ ann
P
‖Φ[1] − Φ[0]‖R1 .

9



On the other hand, by definition of Φ
[1]
θ , we have ‖Φ[1] − Φ[0]‖R1 ≤ 2|ε|P CK . This proves the second

part of (2.23).
As for Statement (iii), it is clear that if we take u1, u2 ∈ KR such that Φ

[n]
θ (u1) = Φ

[n]
θ (u2), we have

‖u1 − u2‖XC ≤ ‖∂uΦ[n] − Id‖R ‖u1 − u2‖XC ≤
1

rn
‖Φ[n] − Id‖R+rn ‖u1 − u2‖XC ≤

1

2
‖u1 − u2‖XC

so that u1 = u2. As for the existence part, given (u, ũ) ∈ K ×XC with ρ := ‖ũ‖XC < R, it is easy to
show that the sequence vk defined by

v0 = u+ ũ ∈ KR , vk+1 = vk − Φ
[n]
θ (vk) + u+ ũ,

converges towards some v ∈ K(R+ρ+rn)/2 ⊂ KR+rn . If ρ < R − rn, we have furthermore ‖v‖ < R.

The analyticity of (Φ
[n]
θ )−1 is a consequence of the Inverse Function Theorem. �

Next theorem establishes that the first n terms in the expansions of Φ
[n]
θ and G[n] in powers of ε, are

independent of the construction used. This shows that equations (2.7) and (2.6) are “canonical”.

Theorem 2.12 [Uniqueness of quasi-solutions to (2.7)] Fix n ∈ N and consider a function (θ, u) 7→
Φ̂θ(u), which is C1 in θ ∈ T, analytic on KR+rn , analytic in ε for |ε| < ε0/(n+ 1), and satisfies

Φ̂0 = Id, ‖Φ̂− Id‖R+rn ≤
rn
2
. (2.24)

Assume that the defect associated with Φ̂θ, defined as

εδ̂θ :=
∂Φ̂θ

∂θ
− εΛ

(
Φ̂
)
θ

satisfies, for all |ε| < ε0/(n+ 1), the estimate ‖δ̂‖R ≤ Ĉ |ε|n for some constant Ĉ > 0 independent of ε.
Then we necessarily have, whenever |ε| < ε0/(4(n+ 1)), the estimate

‖Φ̂− Φ[n]‖rn ≤ C3(n)|ε|n+1,

where Φ
[n]
θ is the function defined in Theorem 2.11 and C3(n) is a positive constant depending on n.

Proof of Theorem 2.12. The result stems from successive applications of the contraction Lemma 2.10.
First, by Lemma 2.9 and starting from (2.24) and (2.16), we have for any k ≤ n,

‖ (Γε)k (Φ̂)− Id‖R+rn−krn ≤
rn
2
, ‖ (Γε)k (Φ[n])− Id‖R+rn−krn ≤

rn
2
, (2.25)

where we used the fact that 4CK P |ε| ≤ rn
2 . These estimates allow for the application of Lemma 2.10

(still denoting an = 16CKP |ε|
rn

) and we get, for all for k ≤ n,

‖ (Γε)k+1 (Φ̂)− (Γε)k (Φ̂)‖R−krn ≤ akn‖Γε(Φ̂)− Φ̂‖R ≤
1

2k
‖Γε(Φ̂)− Φ̂‖R

and similarly for Φ[n], where we have used an ≤ 1/2. Summation provides

‖ (Γε)n+1 (Φ̂)− Φ̂‖rn ≤
n∑
k=0

‖ (Γε)k+1 (Φ̂)− (Γε)k (Φ̂)‖rn ≤ 2 ‖Γε(Φ̂)− Φ̂‖R, (2.26)
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and similarly for Φ[n]. On the other hand, using (2.25) and applying again n + 1 times the contraction
Lemma 2.10, we obtain

‖ (Γε)n+1 (Φ̂)− (Γε)n+1 (Φ[n])‖rn ≤ an+1
n ‖Φ̂− Φ[n]‖R+rn ≤ an+1

n rn, (2.27)

where the last inequality uses (2.24) and the similar estimate for Φ[n]. Finally, from estimate (2.26) on Φ̂
and the similar bound on Φ[n], and from (2.27), we deduce

‖Φ̂− Φ[n]‖rn
≤ ‖Φ̂− (Γε)n+1 (Φ̂)‖rn + ‖Φ[n] − (Γε)n+1 (Φ[n])‖rn + ‖ (Γε)n+1 (Φ̂)− (Γε)n+1 (Φ[n])‖rn

≤ 2‖Φ̂− Γε(Φ̂)‖R + 2‖Φ[n] − Γε(Φ[n])‖R + 16CKP

(
16CK P

R
(n+ 1)

)n
|ε|n+1 (2.28)

≤ 2Ĉ P |ε|n+1 + 4CKP
(

2(n+ 1)|ε/ε0|
)n
|ε|+ 16CKP

(
16CK P

R
(n+ 1)

)n
|ε|n+1,

where we have used

Φ
[n]
θ − Γε(Φ[n])θ = ε

∫ θ

0
δ

[n]
ξ dξ, and Φ̂θ − Γε(Φ̂)θ = ε

∫ θ

0
δ̂ξ dξ,

together with estimate (2.23) on δ[n] and the assumption on δ̂. Gathering the various constants gives the
result. �

2.3.3 Proof of Theorem 2.7

By optimizing the choice of the parameter n in (n + 1)n |ε|n+1, we now produce a mapping Φ[nε] asso-
ciated with a defect of order O(exp(−c/ε)) for some c > 0.

Proof. Part (i). Since (nε + 1)|ε| ≤ ε0
4 < ε0, Theorem 2.11 applies with n = nε and we have that

∂θΦ̃
ε
θ(u) = ε gθ ◦ Φ̃ε

θ(u)− ε ∂uΦ̃ε
θ(u)G[nε](u) + ε δ

[nε]
θ (u),

whenever u ∈ KR ⊂ KR+rnε . Therefore, introducing the exact solution U(t) of the equation

dU(t)

dt
= ε

(
G̃ε(U(t)) +Rεt (U(t))

)
, U(0) = u0,

withRεt (u) = G[nε](u)−G̃ε(u)−
(
∂uΦ̃ε

t (u)
)−1

δ
[nε]
t (u), the function uε(t) := Φ̃ε

t (U(t)) clearly satisfies
uε(0) = u0 together with

duε

dt
(t) = ε (gt ◦ Φ̃ε

t )(U(t))− ε ∂uΦ̃ε
t (U(t)) ·G[nε](U(t)) + ε δ

[nε]
t (U(t))

+ ε ∂uΦ̃ε
t (U(t)) ·

(
G[nε](U(t))−

(
∂uΦ̃ε

t (U(t))
)−1

δ
[nε]
t (U(t))

)
= ε (gt ◦ Φ̃ε

t )(U(t)) = ε gt(u
ε(t)),
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as desired. Hence uε(t) coincides for any time t ∈ [0, T/ε] with the solution of (2.1). Now, on the one
hand, Theorem 2.11 and the choice of nε ensure that the defect δ[nε]

θ satisfies

‖δ[nε]‖R ≤ 2CK

(
2(nε + 1)

|ε|
ε0

)nε
≤ 2CK

(
1

2

)nε
,

and on the other hand, the analyticity ofG[nε] w.r.t. ε and Cauchy’s formula allow to write for all u ∈ KR

and δ := ε0
2(nε+1) , the estimate

‖G[nε](u)− G̃ε(u)‖XC =

∥∥∥∥∥∥
∑

k≥nε+1

εk

k!

dkG[nε]

dεk

∣∣∣∣∣
ε=0

(u)

∥∥∥∥∥∥
XC

≤
∑

k≥nε+1

εk

k!

k!

δk
sup
|ε|<δ
‖G[nε](u)‖XC ≤

(ε/δ)nε+1

1− (ε/δ)
sup
|ε|<δ
‖G[nε]‖R ≤ 4CK

(
1

2

)nε+1

,

where we have used
∥∥∥(∂u〈Φ[nε]〉

)−1
∥∥∥
R
≤ 2 to bound6 G[nε] onKR by 2CK and |ε|/δ ≤ 1

2 . To conclude,

it remains to write, using nε ≥ (ε0/(4|ε|))− 2, that

‖Rε‖R ≤ ‖G[nε] − G̃ε‖R +

∥∥∥∥(∂uΦ[nε]
)−1

∥∥∥∥
R

∥∥∥δ[nε]
∥∥∥
R
≤ 24CK exp

(
− ε0

8|ε|

)
.

Parts (ii) and (iii). Let Ψ̃ε
t be the flow of the autonomous equation

dU

dt
= ε G̃ε(U).

There exists T1 > 0 such that Ψ̃ε
t (u0) is well-defined for all 0 ≤ t ≤ T1/ε, given that G̃ε is analytic on

KR, hence Lipschitz continuous on any Kρ with ρ < R. Now, we have, on the one hand,

duε(t)

dt
= εgt(u

ε(t))

and, on the other hand with ũε(t) = Φ̃ε
t ◦ Ψ̃ε

t (u0)

dũε(t)

dt
= εgt(ũ

ε(t))− ε
(
∂uΦ̃ε

t ◦ (Φ̃ε
t )
−1
)

(ũε(t)) ·
(
Rεt ◦ (Φ̃ε

t )
−1
)

(ũε(t))

as long as ũε and (Φ̃ε
t )
−1(ũε(t)) remain in KR. If L = CK

R denotes a Lipschitz constant for g on KR, a
variant of Gronwall Lemma then gives

‖uε(t)− ũε(t)‖XC ≤
3

2
‖Rε‖R

e|ε|Lt − 1

L
≤ 36R e

|ε|Lt− ε0
8|ε| := M(t, ε)

where we have used the bound ‖∂uΦ̃ε
t − Id‖R ≤ 1/2.

Now we recall that, by assumption of the Theorem, uε(t) exists and belongs to K for 0 < |ε| < ε∗

and 0 ≤ t ≤ T/|ε|1+α (for Part (ii), we have α = 0 and, for Part (iii), we have 0 < α < 1). In

6This stems from Lemma 2.9-(i) together with the known estimate ‖Φ[nε]−Id‖R+rnε
≤ rnε/2 (where rnε = R/(nε+1)),

as established in Theorem 2.11.
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particular, choosing |ε| < ε2 with ε2 small enough so that M(T/|ε|1+α, ε) ≤ R − rnε , ensures that ũε

and (Φ̃ε
t )
−1(ũε(t)) remain in KR (see Theorem 2.11 (iii)) whenever t ≤ T/|ε|1+α (hence T1 ≥ T/|ε|α).

Now we claim that, with the choice

0 < ε < min
(
ε∗,

(
ε2

0P

2T

) 1
1−α

,
ε0

80

)
, (2.29)

(which means 0 < ε < min(ε∗, ε2) in the case α = 0), we obtain estimate (2.21).

Proof of the claim. For |ε|1−α ≤ ε2
0
P
2T , we have e|ε|Lt−

ε0
8|ε| ≤ e

− ε0
16|ε| on [0, T/ε1+α], so that for all

0 ≤ t ≤ T/|ε|1+α

M(t, ε) ≤ 36Re
− ε0

16|ε| .

The quantity M(T/|ε|1+α, ε) is then bounded by R/2 ≤ R − rnε (note that, by definition of nε and ε2,
we have nε ≥ 1) if furthermore

|ε| < ε0

16

1

log 72
.

A combined bound on ε is given by (2.29), a condition under which

∀t ∈ [0, T/ε1+α], ‖uε(t)− ũε(t)‖XC ≤ 36Re
− ε0

16 |ε| .

This proves the claim and the proof of Theorem 2.7 is complete. �

2.4 The linear case

In this section, we consider the case gθ(u) ≡ Aθu, where Aθ is a bounded linear operator on X . The
initial value problem then reads

d

dt
uε(t) = εAt u

ε(t), uε(t) ∈ X, (2.30)

uε(0) = u0, u0 ∈ X.

In this situation, it turns out the change of variable solution of (2.7) can be exactly constructed, due to the
fact that our iterative procedure actually converges. Naturally, Assumption 2.3 has to be replaced here by
the following:

Assumption 2.13 The map θ 7→ Aθ ∈ L(X) is continuous and P -periodic.

We denote by ‖ · ‖L(X) the operator norm on X and the space C(T,L(X)) is equipped with the norm

‖Φ‖ = sup
θ∈T
‖Φθ‖L(X) = sup

(θ,u)∈T×X, ‖u‖X=1
‖Φθ‖X .

In the present linear setting, Theorem 2.7 takes the following form.

Theorem 2.14 [Exact averaging in the linear case] Consider uε(t) the solution of (2.30) and denote
εl = 1

α(3
2−
√

2), with α =
∫
T ‖Aθ‖L(X)dθ. Then for all 0 ≤ ε < εl, there exists a map θ 7→ Φε

θ ∈ L(X),
such that

(i) The function Φε
θ is P -periodic and C1 in θ, and satisfies Φθ=0 = Id.

(ii) For all θ ∈ T, the operator Φε
θ is invertible in L(X).
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(iii) For all u0 ∈ X , the solution of (2.30) admits the factorized form

∀t ∈ R+ uε(t) = Φε
t e

εtGε u0,

where Gε ∈ L(X) is defined by
Gε = 〈Φε〉−1〈AΦε〉. (2.31)

Sketch of Proof. In the linear framework, equation (2.7) becomes

dΦε
θ

dθ
+ εΦε

θ〈Φε〉−1〈AΦε〉 = εAΦε
θ,

where the nonlinear map Γε acts on the set of functions in C(T,L(X)) which are invertible for all θ

Γε(Φ)θ = Id + ε

∫ θ

0

(
AξΦξ − Φξ〈Φ〉−1〈AΦ〉

)
dξ. (2.32)

We now prove by induction that the sequence Φ
[0]
θ = Id, with Φ

[n+1]
θ = Γε(Φ[n])θ, n ∈ N, satisfies the

estimate7

dn := ‖Φ[n] − Id‖ < d∗ :=
1

2
− εα−

√
ε2α2 − 3εα+

1

4
. (2.33)

Assume that (2.33) holds for some n. From 0 < ε < εl and the induction assumption, we first deduce
dn < d∗ < 1, so that Φ

[n]
θ is invertible for all θ and (Φ

[n]
θ )−1 ∈ C(T,L(X)). In particular, Φ

[n+1]
θ =

Γε(Φ[n])θ is well-defined. Moreover, from (2.32), we estimate

‖Γε(Φ[n])− Id‖ ≤ ε ‖Φ[n]‖

(
1 +

‖Φ[n]‖
1− ‖Φ[n] − I‖

)∫
T
‖Aθ‖L(X)dθ,

and as a consequence, dn+1 ≤ 2εα
1 + dn
1− dn

. Studying f(d) = 2εα1+d
1−d , it is easy to prove that dn+1 ≤

f(dn) < d∗ and (2.33) follows. It remains to to prove that the Lipschitz constant of Γε is less than
one on the domain {Φ s.t. ‖Φ − Id‖ ≤ d∗}. Considering Φ ∈ C(T,L(X)) and Φ̂ ∈ C(T,L(X)) with
‖Φ− Id‖ < d∗ and ‖Φ̂− Id‖ < d∗, both Φθ and Φ̂θ are invertible on X , with ‖Φ−1‖ ≤ 1/(1− d∗) and
‖Φ̂−1‖ ≤ 1/(1− d∗). Hence, as in Lemma 2.10, we write

‖Γε(Φ)− Γε(Φ̂)‖ ≤ εP 〈‖A(Φ− Φ̂)‖L(X)〉+ εP‖Φ‖ ‖Φ−1‖ 〈‖A(Φ− Φ̂)‖L(X)〉

+ εP‖Φ‖ ‖Φ−1 − Φ̂−1‖ 〈‖AΦ̂‖L(X)〉+ εP‖Φ− Φ̂‖ ‖Φ̂−1‖ 〈‖AΦ̂‖L(X)〉

≤ 4εα

(1− d∗)2
‖Φ− Φ̂‖.

Denoting d∗ the largest root of d(1− d)− 2εα(1 + d), we have d∗d∗ = 2εα and d∗ + d∗ = 1− 2εα, so
that 4εα

(1−d∗)2 <
4εα

(1−d∗)(1−d∗) = 1 and the convergence of Φ[n] in C(T,L(X)) follows. �

3 Geometric aspects

One of the advantages of stroboscopic averaging is that it preserves the geometric properties of the initial
equation: both the Hamiltonian structure and the invariants of the original equation (if any) are inherited.

7Note that the term ε2α2 − 3εα+ 1
4

is positive due to the assumption ε < εl.

14



3.1 Preservation of the Hamiltonian structure

We assume here that X is a Hilbert space, i.e. the norm ‖ · ‖X stems from a real scalar product (·, ·)X .
Moreover, for further application to the case of the nonlinear Schrödinger equation, we assume that X
is a dense subspace continuously embedded in some ambient Hilbert space Z, with real scalar product
(·, ·)Z . The dual space X ′ is then identified through the duality given by the scalar product (·, ·)Z . In
practice, the workspace X will be a Sobolev space Hs(Rd) (for some ”large” s > 0) and the ambient
space Z will be L2(Rd), so that the dual space X ′ is H−s(Rd).

In this context, we introduce the following notions.

Definition 3.1 The vector field (θ, u) 7→ gθ(u) in Assumption 2.3 is said to be Hamiltonian if there exists
a bounded invertible linear map J : X → X , skew-symmetric with respect to 〈·, ·〉Z , and a function
(θ, u) 7→ Hθ(u) analytic in the sense of Definition 2.2, such that

∀(θ, u, v) ∈ T×K ×X, (∂uHθ)(u) v = (Jgθ(u), v)Z . (3.1)

A smooth map (θ, u) 7→ Φθ(u) is said to be symplectic if

∀(θ, u, v, w) ∈ T×K ×X2, (J∂uΦθ(u)v , ∂uΦθ(u)w)Z = (Jv,w)Z .

Remark 3.2 Recall that this definition can be also written gθ(u) = J−1∇uHθ(u), where the gradient is
taken with respect to the scalar product (·, ·)Z and is defined by

∀(θ, u, v) ∈ T×K ×X2, (∇uHθ(u), v)Z = ∂uHθ(u) v.

Moreover, the two following classical properties hold true. First, if (θ, u) 7→ gθ(u) is Hamiltonian, then

∀(u, v, w) ∈ K ×X2 (J∂ugθ(u)v, w)Z = (v, J∂ugθ(u)w)Z .

Second, if f1 and f2 are Hamiltonian, with Hamiltonian respectively given by F1 and F2, then the Lie-
Jacobi bracket

f(u) = [f1(u), f2(u)] = ∂uf1(u)f2(u)− ∂uf2(u)f1(u)

is also Hamiltonian, with Hamiltonian given by the Poisson bracket

F (u) = {F1, F2} (u) = (Jf1(u), f2(u))Z .

Definition 3.3 An analytic vector field f (depending on ε) is said to be Hamiltonian up to an εk+1

perturbation if there exists an analytic function F such that

∀(u, v) ∈ K ×X, (∂uF )(u) v = (Jf(u), v)Z +O
(
εk+1‖v‖X

)
.

A smooth map (θ, u) 7→ Φθ(u) (depending on ε) is said to be symplectic up to an εk+1 perturbation if

∀(θ, u, v, w) ∈ T×K ×X2, (J∂uΦθ(u)v , ∂uΦθ(u)w)Z = (Jv,w)Z +O(εk+1‖v‖X ‖w‖X).

We now establish that whenever (θ, u) 7→ gθ(u) is Hamiltonian, the associated averaged vector field
G[n] obtained in Theorem 2.11 is Hamiltonian as well, up to an εn+1 perturbation. Prior to that, we state
the following lemma.
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Lemma 3.4 Under the assumptions of Theorem 2.11 and provided (θ, u) 7→ gθ(u) is Hamiltonian,
suppose that Φ

[n]
θ is symplectic up to an εk+1 perturbation term, with 0 ≤ k ≤ n, i.e. that for all

(θ, u) ∈ T×K and v, w ∈ X(
J∂uΦ

[n]
θ (u)v, ∂uΦ

[n]
θ (u)w

)
Z

= (Jv,w)Z +O(εk+1‖v‖X ‖w‖X). (Sk)

Then G[n] is Hamiltonian up to an εk+1 perturbation term. More precisely, we have, for all u ∈ K,

G[n](u) = J−1∇uH [n](u) +O(εk+1), (Hk)
with Hamiltonian

H [n](u) =
〈
H ◦ Φ[n+1](u)

〉
− 1

2ε

〈(
J∂θΦ

[n+1](u) , Φ[n+1](u)
)
Z

〉
. (3.2)

Proof of Lemma 3.4. We first compute ∂uH [n](u) when u ∈ K. We define for convenience

H [n]
a (u) :=

〈
H ◦ Φ[n+1](u)

〉
and H

[n]
b (u) := − 1

2ε

〈(
J∂θΦ

[n+1](u) , Φ[n+1](u)
)
Z

〉
,

so that H [n](u) = H
[n]
a (u) + H

[n]
b (u). On the one hand, using that gθ is Hamiltonian (according to

Definition 3.1). For any u ∈ K and v ∈ X , we recover

∂uH
[n]
a (u) v

=
〈
∂uHθ

(
Φ[n+1](u)

) (
∂uΦ[n+1](u)

)
v
〉

= −
〈(

g
(

Φ[n+1](u)
)
, J∂uΦ[n+1](u) v

)
Z

〉
.

On the other hand, computing ∂uH
[n]
b and next using an integration by parts in θ, we have

∂uH
[n]
b (u) v

= − 1

2εP

∫
T

((
J∂u∂θΦ

[n+1]
θ (u) v , Φ

[n+1]
θ (u)

)
Z

+
(
J∂θΦ

[n+1]
θ (u) , ∂uΦ

[n+1]
θ (u) v

)
Z

)
dθ

=
1

2εP

∫
T

((
J∂uΦ

[n+1]
θ (u) v , ∂θΦ

[n+1]
θ (u)

)
Z
−
(
J∂θΦ

[n+1]
θ (u) , ∂uΦ

[n+1]
θ (u) v

)
Z

)
dθ

=
1

εP

∫
T

(
∂θΦ

[n+1]
θ (u) , J∂uΦ

[n+1]
θ (u) v

)
Z
dθ.

These results eventually provide the relation

∂uH
[n](u) v = −

〈(
g ◦ Φ[n+1](u)− 1

ε
∂θΦ

[n+1](u) , J∂uΦ[n+1](u)v

)
Z

〉
. (3.3)

The right-hand-side of (3.3) may now be simplified. From the very construction of G[n+1] and Φ[n+1] we
have

∂θΦ
[n+1]
θ (u) + ε∂uΦ

[n+1]
θ (u)

(
∂u〈Φ[n+1]〉(u)

)−1
〈g ◦ Φ[n+1]〉(u)− εgθ ◦ Φ

[n+1]
θ (u) = O(εn+2)

and G[n+1](u) :=
(
∂u〈Φ[n+1]〉(u)

)−1 〈g ◦ Φ[n+1]〉(u), for any (θ, u) ∈ T ×K. Here the term O(εn+2)
is meant in the sense of functions that are analytic in u, with value in X (or XC), see Theorem 2.11. This
provides, by picking up v ∈ X and taking the scalar product with J∂uΦθ(u) v, the relation(

gθ ◦ Φ
[n+1]
θ (u)− 1

ε
∂θΦ

[n+1]
θ (u) , J∂uΦ

[n+1]
θ (u)v

)
Z

=
(
∂uΦ

[n+1]
θ (u)G[n+1](u) , J∂uΦ

[n+1]
θ (u) v

)
Z

+O(εn+1‖v‖X).
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Hence, taking the average in θ, and using (3.3) yields in any circumstance

∂uH
[n](u) v = −

〈(
∂uΦ[n+1](u)G[n+1](u) , J∂uΦ[n+1](u) v

)
Z

〉
+O(εn+1‖v‖X). (3.4)

This is where assumption (Sk) is used. It provides, using k + 1 ≤ n+ 1,(
∂uΦ

[n]
θ (u)G[n](u) , J∂uΦ

[n]
θ (u) v

)
Z

=
(
G[n](u) , Jv

)
Z

+O(εk+1‖v‖X).

Inserting this identity in (3.4) and using the fact that Φ[n+1] = Φ[n] + O(εn+1) and G[n+1] = G[n] +
O(εn+1) (see Theorem 2.12) gives

∂uH
[n](u) v =

(
JG[n](u) , v

)
Z

+O(εk+1‖v‖X).

The proof of the lemma is complete. �

Lemma 3.4 allows to establish the

Theorem 3.5 [Stroboscopic averaging preserves the Hamiltonian structure]
Under the assumptions of Theorem 2.11 and assuming that gθ is Hamiltonian, for all n ∈ N, the functions
Φ

[n]
θ and G[n] are respectively symplectic and Hamiltonian up to εn+1-perturbation terms, namely for all

(θ, u) ∈ T×K, v, w ∈ X , we have (here H [n] is defined by (3.2)),(
J∂uΦ

[n]
θ (u)v , ∂uΦ

[n]
θ (u)w

)
Z

= (Jv , w)Z +O(εn+1‖v‖X ‖w‖X), (3.5)

G[n](u) = J−1∇uH [n](u) +O(εn+1). (3.6)

Remark 3.6 Consider the truncated Hamiltonian

H̃ [n](u) =
n∑
k=0

εk

k!

dkH [n]

dεk

∣∣∣∣∣
ε=0

(u). (3.7)

A direct consequence of Theorem 3.5, and of the smoothness of H [n] and G[n] in ε, is that the truncated
averaged vector field is exactly Hamiltonian, namely

G̃[n](u) = J−1∇uH̃ [n](u).

(both functions are n-th order polynomials in ε and coincide to within O(εn+1)). This equality holds in
the strong sense of X-valued functions.

Proof of Theorem 3.5. By construction, Φ
[n]
θ (u) = u+O(ε), so that (S0) and (H0) (as denoted in Lemma

3.4) hold. Now, assume that (Sk) holds for some 0 ≤ k ≤ n − 1. By Lemma 3.4, we know that (Hk)
holds. Consider the flow Ψ

[n]
t associated to the vector field εG[n], which is defined for all t ∈ [−P, P ], at

least for small ε:

∀u ∈ K, ∂tΨ
[n]
t (u) = εG[n] ◦Ψ

[n]
t (u), Ψ

[n]
0 (u) = u.

We claim that

∀v, w ∈ X,
(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= (Jv,w)Z +O(εk+2‖v‖X ‖w‖X). (3.8)
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In order to prove (3.8), let us differentiate the left-hand side of this equation. By using the antisymmetry
of J , we get

d

dt

(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= −ε
(

(∂uG
[n] ◦Ψ

[n]
t (u)) ∂uΨ

[n]
t (u)v, J∂uΨ

[n]
t (u)w

)
Z

+ ε
(
J∂uΨ

[n]
t (u)v, (∂uG

[n] ◦Ψ
[n]
t (u)) ∂uΨ

[n]
t (u)w

)
Z

Besides, by differentiatingHk, we obtain, for all v, w ∈ X ,(
∂uG

[n](u)w, v
)
Z

= −∂2
uH

[n](u) (J−1v, w) +O(εk+1‖v‖X‖w‖X),

thus, by symmetry of ∂2
uH

[n],

d

dt

(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= ε∂2
uH

[n] ◦Ψ
[n]
t (u)

(
∂uΨ

[n]
t w, ∂uΨ

[n]
t v
)

− ε∂2
uH

[n] ◦Ψ
[n]
t (u)

(
∂uΨ

[n]
t w, ∂uΨ

[n]
t v
)

+O(εk+2‖v‖X‖w‖X)

= O(εk+2‖v‖X‖w‖X).

Integrating this equation yields (3.8). Now, for all (θ, u) ∈ T ×K, denote χt(u) = Φ
[n]
t ◦ Ψ

[n]
t (u). By

Theorem 2.11 and (3.1), we have

∂tχt(u) = (∂tΦ
[n]
t ) ◦Ψ

[n]
t (u) + ε(∂uΦ

[n]
t ) ◦Ψ

[n]
t (u) G[n] ◦Ψ

[n]
t (u)

= εJ−1∇Ht(χt(u)) +O(εn+1),

so that the map χt is quasi-symplectic, i.e., proceeding as for Ψ
[n]
t , we have

∀v, w ∈ X, (J∂uχt(u)v, ∂uχt(u)w)Z = (Jv,w)Z +O(εn+1‖v‖X ‖w‖X). (3.9)

Finally, since Ψ
[n]
t is the flow of an autonomous equation, one has Φ

[n]
t = χt ◦ Ψ

[n]
−t so, from (3.8) and

(3.9), one gets (Sk+1). An induction argument finishes the proof. �

3.2 Preservation of the invariants

Assume that the solution of (2.1), associated with the field (θ, u) 7→ εgθ(u), admits an invariant. More
precisely, assume that the smooth function Q : T×X → R, which possibly depends on ε, satisfies

Qt(u
ε(t)) ≡ Q0(u0).

For instance, in the framework of Hilbert spaces X ⊂ Z presented in Section 3.1 and considering the
nonlinear Schrödinger equation, the quantity Q(u) = ‖u‖2Z is an invariant provided (gθ(u), u)Z = 0
whenever u ∈ Z. The question is whether the averaged field G[n] possesses Qθ as an (almost) invariant
as well. It turns out that the answer is positive, and the proof is strikingly simple. The crucial fact is that
Qθ ◦ Φθ is (almost) independent of θ, while Q0 is an (almost) invariant of the averaged system, up to
small perturbation terms.

Before going on, let us make the invariance assumption more precise. Differentiating the relation
Qt(u

ε(t)) ≡ Q0(u0) provides

∂θQθ(u) + ε ∂uQθ(u)gθ(u) = 0, (3.10)

whenever (θ, u) = (t, uε(t)). In the sequel, we shall require that this relation actually holds true for any
θ ∈ T and any u ∈ K.
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Theorem 3.7 [Stroboscopic averaging preserves the invariants]
Under the assumptions of Theorem 2.11, assume that the function (θ, u) ∈ T ×X 7→ Qθ(u) ∈ R is an
invariant of the field εgθ, in that (3.10) holds for any (θ, u) ∈ T × K. Assume that (θ, u) 7→ Qθ(u) is
analytic on Kρ for some 0 < ρ ≤ R.
Then, for all n ∈ N, the change of variable Φ

[n]
θ and the averaged vector field G[n] satisfy, whenever

u ∈ K, θ ∈ T,

Qθ(Φ
[n]
θ (u)) = Q0(u) +O(εn+1), and (∂uQ0)(u) G[n](u) = O(εn). (3.11)

In particular, we have (d/dt)Q0(Ψ
[n]
t (u0)) = O(εn+1), whenever t ∈ [0, T/ε].

Remark 3.8 If the invariant Qθ does not depend on ε, then, from G[n+1]− G̃[n] = O(εn+1) and remark-
ing that G̃[n] is a polynomial of degree n in ε, one deduces from (3.11) that we have

(∂uQ0)(u) G̃[n](u) = 0,

so that Q0 is exactly preserved by the autonomous equation (2.20).

Proof of Theorem 3.7. Relation (2.22), written in the form

∂θΦ
[n]
θ (u) + ε∂uΦ

[n]
θ (u)G[n](u) = εgθ ◦ Φ

[n]
θ (u) +O(εn+1),

provides after premultiplying by (∂uQθ)◦Φ
[n]
θ and using the fact thatQ is an invariant of εgθ, the relation

(∂uQθ) ◦ Φ
[n]
θ (u) ∂θΦ

[n]
θ (u) + ε∂u(Qθ ◦ Φ

[n]
θ )(u) G[n](u)

= ε
(
∂uQθ ◦ Φ

[n]
θ

)
(u)

(
gθ ◦ Φ

[n]
θ

)
(u) +O(εn+1)

= − (∂θQθ) ◦ Φ
[n]
θ (u) +O(εn+1),

whenever u ∈ K. Note that the term O(εn+1) is meant in he sense of analytic functions, which means in
the ‖.‖ρ′ norm, whenever 0 < ρ′ < ρ, say. Therefore, we arrive at

∂θ

(
Qθ ◦ Φ

[n]
θ

)
(u) + ε∂u

(
Qθ ◦ Φ

[n]
θ

)
(u) G[n](u) = O(εn+1). (3.12)

In particular, taking averages on both sides yields

∂u

〈
Q ◦ Φ[n]

〉
(u) G[n](u) = O(εn). (3.13)

The Theorem now comes from an induction argument. Assume that, for some k < n, and for all
θ ∈ T, we have Qθ ◦ Φ

[n]
θ (u) = Q0(u) + O(εk+1). Note that this property is clearly true when k = 0

since Φ[n] = Id + O(ε) and since Qθ(u) = Q0(u) + O(ε) by integrating (3.10). It comes Qθ ◦ Φ
[n]
θ =

Q0+O(εk+1) = 〈Q◦Φ[n]〉+O(εk+1), hence after differentiation ∂u(Qθ◦Φ
[n]
θ ) = ∂u〈Q◦Φ[n]〉+O(εk+1),

and eventually we recover in (3.13)

∂u(Qθ ◦ Φ
[n]
θ )(u) G[n](u) = O(εn + εk+1).

This provides in (3.12)
∂θ(Qθ ◦ Φ

[n]
θ )(u) = O(εn+1 + εk+2),

which, by integration in θ, providesQθ ◦Φ
[n]
θ = Q0 ◦Φ

[n]
0 +O(εk+2) = Q0 +O(εk+2), whenever k < n.

The recursion is complete. �
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4 Application to the nonlinear Schrödinger equation

In this section, we apply the results of Sections 2 and 3 to the nonlinear Schrödinger (NLS) equation,
written as

i∂tψ
ε(t, x) = (Aψε)(t, x) + εf

(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, ψε(t, ·) ∈ X, (4.1)

ψε(0, x) = ψ0(x) ∈ X.

Here f is a real-analytic function. We set Z = L2(Ω) where Ω ⊂ Rd is open, and A : D(A) ⊂ Z → Z
is a linear unbounded self-adjoint operator with dense domain D(A) ⊂ Z. We assume A is of the form
A = −∆x + V (x), for some potential V (x). We also assume A is non-negative, which allows to take
fractional powers of A thanks to the functional calculus for self-adjoint operators. Lastly, we set

X = {u ∈ Z s.t. (1 +A)s/2u ∈ Z},

for some s ≥ 1 (to have a bounded energy, see (4.12) below), i.e. X is chosen in the Sobolev scale
induced by A (with the obvious norm). We assume that X ⊂ L∞(Ω) continuously, and we also assume
thatX is an algebra (i.e. ‖uv‖X . ‖u‖X ‖v‖X whenever u and v belong toX), to deal with the nonlinear
term f(|ψ|2)ψ.

The first key assumption is, we assume A has compact resolvent. This imposes both mild regularity
assumptions on the potential V (x), and (more importantly) compactness in the variable x (typically Ω is
bounded, or Ω = Rd with V (x) → +∞ as |x| → ∞ to cut-off large values of x). Compactness of the
resolvent of A ensures that the spectrum of A is discrete.

The second key assumption on A, and actually the most restrictive one, is

the spectrum of A is a subset of λN for some λ > 0. (4.2)

In other words, while the Stone theorem ensures that the propagator exp(iθA) is well-defined as a strong
group of unitary operators on Z whenever θ ∈ R (this is due to the fact that A is self-adjoint), we are here
assuming that θ 7→ exp(iθA) is periodic (with period 2π/λ). In general, when A has compact resolvent,
the function θ 7→ exp(iθA) is almost-periodic only, in that it entails an infinite, countable, number of
independent frequencies.

A last, more technical, functional analytic assumption is in order, to deal with the nonlinear term
f(|ψ|2)ψ in (4.1). Namely, we need a tame estimate, in that for any smooth and nonlinear function
G : C → C satisfying G(0) = 0, there exists a nondecreasing C1 function CG : R+ → R+ such that,
for all u ∈ X , we have

‖G(u)‖X ≤ CG (‖u‖L∞) ‖u‖X . (4.3)

This statement completes and refines the assumed fact that X is an algebra.
Under all these assumptions, the local in time existence of strong solutions to (4.1), for any fixed

value ε > 0, is standard, see for instance [Car08, CH98, Caz03], and it becomes feasible to deal with
averaging issues in this equation.

Note that two paradigms are covered by our analysis.

Case 1: NLS on the d-dimensional torus. Let Tda = [0, a]d, with a > 0. We consider the equation

i∂tψ
ε(t, x) = −∆xψ

ε(t, x) + εf
(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, (4.4)

ψε(0, x) = ψ0(x), x ∈ Tda,
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with periodic boundary conditions. In this case we set A = −∆x with domain

D(A) =
{
u ∈ H2(Tda) s.t. u|xj=0 = u|xj=a for j = 1, . . . , d

}
,

where H2 is the usual Sobolev space {u(x) ∈ L2 s.t. ∆xu(x) ∈ L2}. The operator A : D(A) → Z =
L2(Tda;C) is self-adjoint non-negative with compact resolvent, the embedding D(A) ⊂ Z is dense, and
the spectrum of A is

σ(A) =
{

(2π/a)2|k|2 = (2π/a)2 (k2
1 + · · ·+ k2

d) ; k ∈ Zd
}
⊂ (2π/a)2N.

We take ψ0 ∈ X , where we set X = Hs(Tda;C), for some s > d/2, and Hs is the Sobolev space of
periodic functions associated with the norm ‖ · ‖Hs defined by

‖u‖2Hs = ‖(1−∆)s/2u‖2L2 = ad
∑
k∈Zd

(
1 + (2π/a)2|k|2

)s |uk|2, (4.5)

where we write u(x) =
∑
k∈Zd

uk e
i(2π/a)k·x whenever u ∈ L2.

In that context, the tame estimate (4.3) is clear, since the assumption s > d/2 immediately ensures, for
any smooth G : C→ C with G(0) = 0, the estimate

‖G(u)‖Hs ≤ CG (‖u‖L∞) ‖u‖Hs , (4.6)

for some nondecreasing function CG : R+ → R+. The constraint s > d/2 also ensures that X is an
algebra. �

Case 2: the Gross-Pitaevskii equation. Take ω > 0. We consider the equation

i∂tψ
ε(t, x) =

(
−∆x + ω2|x|2 − dω

)
ψε(t, x) + εf

(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, (4.7)

ψε(0, x) = ψ0(x). x ∈ Rd.

In this case we set A = −∆ + ω2|x|2 − dω, with domain

D(A) =
{
u ∈ L2(Rd) s.t. Au ∈ L2(Rd)

}
=
{
u ∈ H2(Rd) : |x|2u ∈ L2(Rd)

}
.

The operator A : D(A) → Z = L2(Rd;C) is self-adjoint non-negative with compact resolvent, the
embedding D(A) ⊂ Z is dense, and the spectrum of A is

σ(A) = {2kω ; k ∈ N} = 2ωN.

We take ψ0 ∈ X where we set X = Σs(Rd;C), for some s > d/2, and Σs is the space {u ∈
Hs(Rd) s.t. |x|su ∈ L2(Rd)}, associated with the norm

‖u‖Σs = ‖(1−∆ + ω2|x|2 − dω)s/2u‖L2 . (4.8)

The following crucial equivalence of norms holds (see e.g. [BACM08])

‖u‖Σs ∼ ‖u‖Hs + ‖|x|su‖L2 . (4.9)
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This ingredient immediately provide the desired tame estimate (4.3) in the present context. Indeed, taking
G as in (4.3) we have

‖G(u)‖X ≤ C (‖G(u)‖Hs + ‖|x|sG(u)‖L2) (for some constant C > 0)

≤ C
(
CG (‖u‖L∞) ‖u‖Hs +

(
max

|u|≤‖u‖L∞
|G′(u)|

)
‖|x|su‖L2

)
(we use (4.6))

≤ C
(
CG (‖u‖L∞) + max

|u|≤‖u‖L∞
|G′(u)|

)
‖u‖X .

The same argument shows that X is an algebra. �

The well-posedness of the Cauchy problem for (4.1) can be formulated as follows.

Proposition 4.1 Let ψ0 ∈ X . Then, for all ε > 0, there exists T εmax ∈]0,+∞] and a unique maximal
solution ψε ∈ C([0, T εmax[, X) to (4.1). This solution is maximal in the sense that

if T εmax < +∞, then lim sup
t→T εmax

‖ψε(t)‖L∞ = +∞.

Moreover, for all κ > 1, there exists Tκ > 0 such that for any ε > 0 we have T εmax > Tκ/ε, and

∀t ∈ [0, Tκ/ε] , ‖ψε(t)‖X ≤ κ‖ψ0‖X . (4.10)

Furthermore, one has the following conservation laws, valid whenever t < T εmax,

‖ψε(t)‖2L2 = ‖ψ0‖2L2 (conservation of mass), (4.11)
1

2
(Aψε(t), ψε(t))L2 +

ε

2

∫
F
(
|ψε|2

)
(t, x)dx (4.12)

=
1

2
(Aψ0, ψ0)L2 +

ε

2

∫
F
(
|ψ0|2

)
dx, (conservation of energy),

where F (u) =

∫ u

0
f(v)dv.

Proof of Proposition 4.1. We refer to [Car08] for the proof of the existence and uniqueness result for fixed
ε > 0, as well as the proof of the standard relations (4.11) and (4.12). We only prove here the a priori
estimate (4.10). Without loss of generality, we assume ψ0 6= 0. Let κ > 1 and define

T εκ = εmax (T < T εmax s.t. ∀t ∈ [0, T ], ‖ψε(t)‖X ≤ κ‖ψ0‖X) .

Let us prove the existence of Tκ independent of ε such that T εκ ≥ Tκ. The Duhamel formulation of (4.1)
provides

ψε(t) = e−itAψ0 − iε
∫ t

0
e−i(t−τ)Af

(
|ψε(τ)|2

)
ψε(τ)dτ.

Hence, using the fact that exp(−itA) is unitary on X , which comes from the definition of the space X
and its associated norm, and from the unitarity of exp(−itA) on Z, we have

‖ψε(t)‖X ≤ ‖ψ0‖X + ε

∫ t

0

∥∥f (|ψε(τ)|2
)
ψε(τ)

∥∥
X
dτ

≤ ‖ψ0‖X + ε

∫ t

0
Cf̃ (‖ψε(τ)‖L∞) ‖ψε(τ)‖X dτ

≤ ‖ψ0‖X + ε

∫ t

0
Cf̃ (c0‖ψε(τ)‖X) ‖ψε(τ)‖X dτ,
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where Cf̃ is the nondecreasing function in (4.3) associated to f̃(u) = f(|u|2)u and c0 is the norm of the
continuous embedding X ⊂ L∞. As a consequence, whenever t ≤ T εκ/ε we recover

‖ψε(t)‖X ≤ ‖ψ0‖X + εCf̃ (c0κ‖ψ0‖X)

∫ t

0
‖ψε(τ)‖X dτ,

and the Gronwall lemma asserts, whenever 0 ≤ t ≤ T εκ/ε, the estimate

‖ψε(t)‖X ≤ ‖ψ0‖X eT
ε
κ Cf̃ (c0κ‖ψ0‖X).

This in turn ensures
T εκ ≥ Tκ :=

log κ

Cf̃ (c0κ‖ψ0‖X)
. (4.13)

�

Let us now put the NLS equation (4.1) under the form (2.1). To this aim, we first pass to canonical

coordinates setting qε = <(ψε), pε = =(ψε). The unknown yε(t) =

(
pε(t)
qε(t)

)
∈ Z × Z satisfies

∂ty
ε(t) = J−1Ayε(t) + εf(yε(t)2)J−1yε(t), yε(0) = u0 :=

(
=(ψ0)
<(ψ0)

)
, (4.14)

where we have denoted yε(t)2 := pε(t)2 + qε(t)2 and J =

(
0 1
−1 0

)
. We also make a slight abuse of

notation, in that we denote Ayε ≡
(
Apε

Aqε

)
, which makes the operator A self-adjoint on Z = L2 × L2.

In the same spirit, we denote in the sequel ‖yε(t)‖2Z ≡ ‖pε(t)‖2Z + ‖qε(t)‖2Z , and similarly for the X-
norm. An obvious computation shows

eθJ
−1A =

(
cos(θA) − sin(θA)
sin(θA) cos(θA)

)
,

hence eθJ
−1A is a group of isometries on Z × Z and on X × X . Moreover, assumption (4.2) shows

θ → eθJ
−1A is periodic (with period 2π/λ). Consider now the function

uε(t) = e−tJ
−1Ayε(t). (4.15)

Inserting (4.15) in (4.14) immediately yields

∂tu
ε(t) = εgt (uε(t)) , uε(0) = u0, (4.16)

provided we define, whenever u ∈ X ×X ,

gθ(u) := J−1e−θJ
−1Af

(
(eθJ

−1Au)2
)
eθJ

−1Au. (4.17)

As desired, equation (4.16) is of the form (2.1) considered in the previous paragraphs. In order to
apply the results we obtained in the previous sections, there remains to check that the nonlinear function
gθ acting on the Banach space X × X satisfies Assumptions 2.1 (well-posedness of the problem on a
fixed times interval of size O(1/ε)) and 2.3 (analyticity of gθ). We also prove that gθ is Hamiltonian, in
the sense of Definition 3.1.
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Assumption 2.1 holds true. Take any κ > 1 and any ψ0 ∈ X , ψ0 6= 0. The precise constraints on these
two choices are made precise later. Proposition 4.1 and the fact that ‖uε(t)‖X = ‖yε(t)‖X imply in any
circumstance that ‖uε(t)‖X ≤ κ‖ψ0‖X whenever t ≤ Tκ/ε, hence Assumption 2.1 holds true, where
ε∗ > 0 can be chosen arbitrarily and we may take T = Tκ as well as (recall that κ− 1 > 0)

K = {u ∈ X ×X : ‖u‖X < (2κ− 1)M} (where ‖ψ0‖X = M). (4.18)

�

Assumption 2.3 holds true. Periodicity of gθ in θ is obvious, thanks to assumption (4.2). Now, take
R0 < Ra, where Ra is the radius of analyticity of the function f and denote f̃(z) = f(z2)z. The
function f̃ is clearly analytic and bounded for |z| <

√
R0. On the other hand, take c0 as the norm of the

(assumed) continuous embedding X ⊂ L∞. We clearly have

∀u ∈ XC, ‖u‖L∞C ≤ c0‖u‖XC .

With these observations in mind, we choose the parameters M = ‖ψ0‖X > 0, R > 0, and κ > 1, such
that

M <

√
R0

c0
, and (2κ− 1)M + 2R ≤

√
R0

c0
. (4.19)

For all u ∈ K2R, where K is given by (4.18), one has clearly ‖u‖L∞C ≤ c0‖u‖XC <
√
R0, so that for

all x ∈ Ω, the quantity u(x) belongs to the domain of analyticity of f̃ . Hence one may write, for any
function h ∈ X such that ‖h‖XC (hence ‖h‖L∞C ) is small enough, the relation

f̃(u(x) + h(x))− f̃(u(x))− ∂uf̃(u(x))h(x) =

∫ 1

0
(1− t)∂2

uf̃(u(x) + th(x))h(x)2 dt,

and the assumed fact that X is an algebra, together with the fact that f̃ is here computed in a fixed
subset of its domain of analyticity, allows to upper bound the right-hand-side as an o(‖h‖XC). Hence the
function u 7→ f̃(u) is analytic on K2R in the sense of Definition 2.2. Moreover, we remark that for all
θ ∈ T and u ∈ K2R, ∥∥∥eθJ−1A u

∥∥∥
L∞C

≤ c0

∥∥∥eθJ−1A u
∥∥∥
XC

= c0 ‖u‖XC
<
√
R0.

Hence, by standard composition theorems, the function gθ defined by (4.17) is analytic on K2R (we use
that eθJ

−1A and J−1 are bounded and linear on XC). Finally, we have, for all θ ∈ T, u ∈ K2R,

‖gθ(u)‖XC = ‖J−1 ◦ e−θJ−1A ◦ f̃ ◦ eθJ−1A(u)‖XC

= ‖f̃ ◦ eθJ−1A(u)‖XC ≤ CK := max
|z|≤
√
R0

|f̃(z)|.

We have proved that gθ satisfies Assumption 2.3. �

The vector field gθ is Hamiltonian. If J is the above defined matrix and if F is defined as F (u) =∫ u

0
f(v)dv, it is clear that J is skew-symmetric with respect to the scalar product on Z ×Z, and one can

check the identity

gθ(u) = J−1∇uHθ(u), where Hθ(u) :=
1

2

∫
F
(

(eθJ
−1Au)2

)
(x)dx. (4.20)

In other words, gθ is Hamiltonian in the sense of Definition 3.1. �
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As a consequence of all these considerations, the results of Sections 2 and 3 can be applied in this
context. We summarize these results in the following Theorem. For simplicity, we identify the initial
complex-valued function ψε(t) and the function yε(t). Similarly, we also identify uε(t) = etJ

−1Ayε(t)
and e−itAψε(t).

Theorem 4.2 Let M , κ, R and T := Tκ be chosen as above. There exists ε0 > 0, a function Gε(u),
analytic in u ∈ X , and a function Φε

θ(u), analytic in u ∈ X , continuously differentiable and periodic in
θ ∈ T with Φε

0 = id, such that the following holds.
For all ψ0 ∈ X such that ‖ψ0‖X ≤ M , the unique maximal solution to (4.1) given by Proposition

4.1 satisfies

sup
0≤t≤T

ε

∥∥∥ψε(t)− e−itAΦε
t

(
ψ̃ε(t)

)∥∥∥
X
≤ C exp

(
−C

−1

ε

)
, (4.21)

for some C > 0 independent of ε and of ψ0, while ψ̃ε ∈ C1([0, T/ε], X) solves the autonomous equation

∂ψ̃ε

∂t
= εGε(ψ̃ε), ψ̃ε(0) = ψ0. (4.22)

Moreover, the autonomous equation (4.22) is Hamiltonian, i.e. there exists a real-analytic function
Hε(u) such that Gε(u) = J−1∇Hε(u).

Lastly, the following two conservation laws are satisfied. For all t ≤ T/ε, we have the exact conser-
vation of mass

‖ψ̃(t)‖2L2 = ‖ψ0‖2L2 (4.23)

and the almost conservation of energy

1

2

(
Aψ̃ε(t), ψ̃ε(t)

)
L2

+
ε

2

∫
F
(
|ψ̃ε|2

)
(t, x)dx

=
1

2
(Aψ0, ψ0)L2 +

ε

2

∫
F
(
|ψ0|2

)
dx+O

(
e−C/ε

)
. (4.24)

Proof of Theorem 4.2. Due to the fact that the original Schrödinger equation may be put under the form
∂tu

ε(t) = ε gt(u
ε(t)) as in (4.16), this Theorem is a direct consequence of Theorem 2.7, of Theorem 3.5

and of Theorem 3.7, provided we set Gε = G̃[nε] and Φε
θ = Φ

[nε]
θ (and nε is as in Theorem 2.7). In that

context, the Hamiltonian Hε is the function H̃ [nε] given according to Remark 3.6. Lastly, the original
equation (4.16) preserves the mass ‖u‖2L2 as well as the filtered energy

Qθ(u) :=
1

2
(Au, u)L2 +

ε

2

∫
F
(

(eθJ
−1Au)2

)
(x)dx

=
1

2
(Au, u)L2 + εHθ(u). (4.25)

Hence the exact mass conservation (4.23) is a consequence of Theorem 3.7 and of Remark 3.8, since the
mass invariant does not depend on ε. Besides, the almost conservation of energy (4.24) is a consequence
of Theorem 3.7, recalling that the O(εn) in this Theorem naturally becomes an O(e−C/ε) given the
optimal choice n = nε of the integer n. �
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Remark 4.3 Surprisingly enough, one also deduces from this result a new almost invariant for the initial
problem (4.1). Indeed, the invariance ofQθ under the autonomous evolution equation (4.22), when writen
in the form ∂uQ0(u)Gε(u) = O(e−C/ε) (see (3.11)), provides ∂uQ0(u)J−1∇uHε(u) = O(e−C/ε). The
point is, Q0 coincides with the Hamiltonian of the original Schrödinger equation (4.1). Hence, read-
ing the above almost invariance in the reverse order ∂uHε(u)J−1∇uQε0(u) = O(e−C/ε) immediately
provides

∀t ≤ T/ε, Hε(ψε(t)) = Hε(ψ0) +O
(
e−C/ε

)
.

Remark 4.4 In dimension d = 1, we consider the Schrödinger equation (4.1) with initial datum ψ0 ∈
X = {u ∈ Z s.t. (1 + A)1/2u ∈ Z}. In other words, we choose s = 1 in the above notation. In that
case, it is known that for ε small enough, the solution of (4.1) is global in time and uniformly bounded in
X . Therefore Theorem 2.7-part (iii) applies and the estimates of Theorem 4.2 hold true on longer time
intervals [0, T

ε1+α
], for any α ∈]0, 1[.

Note in passing that the global existence of ψε(t) in that case comes from the following simple argu-
ment. Consider a pair M > 0, κ > 1. We claim that there exists ε(M,κ) such that, if ‖ψ0‖X ≤ M and
ε ≤ ε(M,κ), then the solution is global, with ‖ψε(t)‖X ≤ κM for all t ≥ 0. To prove the claim, denote

Cκ,M = max
‖u‖X≤2κM

∫
|F (|u|2)|dx <∞ and ε(M,κ) =

(κ2 − 1)M2

2Cκ,M
.

Here we used the embedding X ⊂ L∞ to have Cκ,M < +∞. Recalling that ‖ψε‖2X = (ψε, ψε)L2 +
(Aψε, ψε)L2 in the present case (s = 1), the conservation laws (4.11) and (4.12) give, as long as
‖ψε(t)‖X ≤ 2κM and provided ε ≤ ε(M,κ), the estimate

‖ψε(t)‖2X ≤ ‖ψ0‖2X + 2εCκ,M ≤M2 + 2εCκ,M ≤ κ2M2.

This immediately implies that the solution ψε(t) ∈ X exists for all times.

5 Numerical experiments

In this section, we present numerical simulations based on the so-called “SAM” method –whose main
ideas are first recalled– of some specific solutions to NLS found in the literature. SAM gives access to
high-order averaged models carrying interesting physical information, as illustrated on these examples.

5.1 SAM, a numerical counterpart of stroboscopic averaging

The differential equation (2.2) being non stiff, it is rather tempting to approximate it rather than solving
the original stiff problem (2.1). However, a numerical method can not rely on the analytical computation
of such terms as those involved in Gε and this rules out the direct approximation of (2.2). Hence, we
rather solve it by approaching Gε “on the fly” –the idea at the core of SAM. In order to approach Gε(u)
at a given point u ∈ X , we first use the group property of Ψε

t to assert that

εGε(u) =
d

dt
Ψε
t (u)

∣∣∣∣
t=0

and then interpolate the derivative of Ψε(t, u) (say at order 2 for ease of presentation)

Gε(u) ≈ 1

2Pε

(
Ψε
P (u)−Ψε

−P (u)
)

= G1(u) + εG2(u) +O(ε2). (5.1)
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To complete the procedure, it remains to use the fact that

Φε
P (Ψε

P (u)) = Ψε
P (u) and Φε

−P (Ψε
−P (u)) = Ψε

−P (u),

a consequence of the stroboscopic property

∀k ∈ Z, Φε
kP (·) = Id.

It is worth insisting at this point that the computation of Gε(u) necessitates the computation of Ψε
P (u)

and Ψε
−P (u) irrespectively of the time t at which we compute the approximation of uε(t). We finally

obtain a numerical method by approximating Φε
P (Ψε

P (u)) and Φε
−P (Ψε

−P (u)) by solving the equations

U̇ ε = εgt(U
ε), t ∈ [0, P ], U ε(0) = u and U̇ ε = εgt(U

ε), t ∈ [−P, 0], U ε(0) = u, (5.2)

by a standard one-step method Sεh (Strang splitting here) where the step size h used is small enough to
resolve one oscillation, i.e. h = P/n with n ∈ N. The outcome of this procedure is the following micro-
macro algorithm:

SAM Algorithm

1. Choose a micro-step h = P/n and a macro-step H > 0 and set N = 0.

2. Advance the solution through a standard explicit Runge-Kutta method (macro-integrator) with
coefficients (aij , bj):

ui = uN + (Hε)
i−1∑
j=1

aijG
ε
h(uj), i = 1 · · · s, uN+1 = uN + (Hε)

s∑
j=1

bjG
ε
h(uj), (5.3)

where

Gεh(uj) =
1

2Pε

(
(Sεh)n(uj)− (Sε−h)n(uj)

)
. (5.4)

3. Set N := N + 1 and go to step 2. until NH ≥ T/ε.

Note that the algorithm computes a sequence of approximations to the averaged solution of (2.2). It
is also possible to obtain the solution of (2.1) through a kind of post-processing (see [CMMZ13]).

Formal error analysis In this short description of SAM, we content ourselves with a descriptive analysis.
A more mathematically rigorous derivation of error estimates would indeed bring no surprise: standard
arguments for non-stiff equations indeed hold, given that SAM requires to numerically solve the averaged
equation (which is by construction non-stiff) and the original highly-oscillatory equation with step size
h much smaller than a period (thus getting the equation back into a non-stiff regime). As explained in
[CCMSS11], there are three sources of errors:

1. The approximation of εGε by a finite-difference formula (5.1): the corresponding error is expressed
in terms of ε.

2. The substitution of Ψε
±`P (u), ` = 1, 2, . . . in Gε by (Sε±h)`·n(u) in Gεh (Formula (5.4) or similar

for higher-order): the corresponding error is expressed in terms of the micro-step h and ε.
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3. The discretization error due to the macro-integrator (5.3): the corresponding error is expressed in
terms of the macro-step H .

Combined together, these three sources of error lead to an error of size

O(εδ + εν−1hp + (εH)P ).

Geometric behavior When applied to a Hamiltonian equation such as the Schrödinger equation, the
averaged vector field is also Hamiltonian and it may seem desirable for the numerical counterpart to
be so. Unfortunately, even if (Sh)n is a symplectic map, the finite-difference approximation is not a
geometric transformation and our implementation of SAM is not symplectic. However, time-reversibility
is preserved provided the micro-integrator is itself a symmetric method (this is the case of Strang splitting
used in our experiments). Since in addition, Gεh is computed through symmetric formulas, then it is
also the vector field of a time-reversible equation. This property ensures a favorable numerical behavior,
as documented for ordinary-differential equations (see for instance [HLW06]). It is thus in principle
not difficult to design a symmetric SAM by choosing a symmetric macro-integrator. More numerical
experiments in this direction are performed in [CMMZ13].

5.2 A problem of Grébert and Villegas-Blas [GVB11]

In what follows, we briefly derive the first averaged model and simulate a problem considered by B.
Grébert and C. Villegas-Blas in [GVB11], which involves a cubic nonlinearity |ψ|2ψ multiplied by an
inciting term of the form 2 cos(2x) . More precisely we consider the following Cauchy problem (Example
1)

i∂tψ
ε = −∆ψε + 2ε cos(2x)|ψε|2ψε, t ≥ 0, ψε(t, ·) ∈ Hs(T2π)

ψ(0, x) = cosx+ sinx.

Classical arguments based on the conservation of the energy imply that this problem has a unique global
solution in all Sobolev spaces Hs(T2π) for s ≥ 0 (see [GVB11] for details and references therein).
Writing the solution in Fourier ψε(t, x) =

∑
k∈Z ξk(t)e

ikx, Grébert and Villegas-Blas prove the following
result.

Theorem 5.1 For ε small enough, one has for all |t| ≤ ε−9/8 the following estimates:

|ξ1(t)|2 =
1 + sin(2εt)

2
+O(ε1/8),

|ξ−1(t)|2 =
1− sin(2εt)

2
+O(ε1/8).

The estimate for |ξ1(t)|2 + |ξ−1(t)|2 implies that all the energy remains essentially on the two Fourier
modes +1 and −1, while estimates for |ξ1(t)|2 and |ξ−1(t)|2 account for the energy exchange between
these two modes (named “beating effect” in [GVB11]). The first-order averaged8 Hamiltonian H1 can be
computed as

H1(u, v) =
1

2

∑
(k, l,m, n) ∈ Z4,

k − l +m− n = ±2,

k2 − l2 +m2 − n2 = 0

ukvlumvn.

The proof of Theorem 5.1 in [GVB11] relies on a careful analysis of interactions between modes in the
system corresponding to H1 and we do not reproduce it here. Instead, we illustrate it by simulating:

8Other terms can be obtained by a formal Magnus expansion (see for instance the preprint version of this paper).
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Figure 1: Example 1 with the Strang splitting method and the Stroboscopic Averaging Method.

– The original system integrated by Strang splitting with tiny stepsizes (see left of Fig. 1).

– The original system integrated by SAM (see right of Fig. 1).

– The first order averaged system corresponding to εH1 (see left of Fig. 2).

– The second order averaged system corresponding to εH1 + ε2H2, (see right of Fig. 2).

In all figures, we represent (in logarithmic scale) so-called actions |ξk|, for modes k = ±1, ±3, ±5,
±7. Modes ±1 are of order O(1) and one can observe on all pictures the beating effect between these
two modes: all four pictures corroborate estimates of Theorem 5.1, which are based on the first order
averaged system. The nonlinear energy is also represented and is well conserved by the four numerical
methods. Meanwhile, higher-order averaged systems exhibit other interesting “beating” effects not yet
investigated, which can be observed thanks to the Stroboscopic Averaging Method (SAM) or through
their direct simulation.

Indeed, one can observe of the left of Fig. 1 that modes ±3,±5 are of order O(ε), modes ±7 of
order O(ε2), and that all these modes are highly oscillating, thus difficult to analyse. In contrast, high
oscillations have been filtered out by the SAM (Fig. 1 right): the simulated equation on the right is the
non-stiff equation (2.20)

dU

dt
= εG̃ε(U) = εG1(U) + ε2G2(U) + ε3G3(U) + · · · ,

amenable to much more efficient numerical method (see [CCMSS11]). Note that both solutions (left and
right) on Figure 1 coincide at stroboscopic times 2πn, n ∈ N.

The equations simulated on Figure 2, left and right, are truncated versions of this averaged equation,
respectively

dU

dt
= εG1(U) and

dU

dt
= εG1(U) + ε2G2(U).

We observe that Fig. 2 left and Fig. 2 right coincide up to remainder terms of orderO(ε) (i.e. only modes
±1 are correctly simulated by the first order averaged model), while Fig. 2 right and Fig. 1 right coincide
up to remainder terms of order O(ε2) (i.e. only modes ±1,±3,±5 are correctly simulated by the second
order averaged model).
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Figure 2: Example 1, first and second order averaged models.

5.3 A problem of Grébert and Thomann with quintic nonlinearity [GT12].

Our second example (Example 2) is the following problem considered by Grébert and Thomann in
[GT12], involving a quintic nonlinearity |ψ|4ψ:

i∂tψ
ε = −∆ψε + ε|ψε|4ψε, t ≥ 0, ψε(t, ·) ∈ H1(T2π) (5.5)

ψ(0, x) =
√
κ0 e

ix +

√
κ0

2
e−ix +

√
κ0 e

5ix +

√
1− κ0

2
e7ix (5.6)

with κ0 = 0.24. Thanks to energy conservation, they show that there exists a global solution ψε(t, ·) ∈
H1(T2π) provided the initial value lies itself in H1(T2π). Moreover, if this initial value is chosen in such
a way that its non-zero Fourier modes belong to a specific resonant set, then the solution exhibits periodic
exchanges of energy. We state this result below in the specific case of a resonant set made of modes −1,
1, 5, and 7:

Theorem 5.2 There exist P̃ > 0, ε̃0 > 0 and a 2P̃ -periodic function κ : R→]0; 1[ such that if 0 < ε <
ε0, the solution to (5.5) satisfies for all 0 ≤ t ≤ ε−3/2

ψε(t, x) =
∑

k=−1,1,5,7

ξj(t)e
ikx + ε1/4q1(t, x) + ε3/2tq2(t, x)

with

|ξ5(t)|2 = 2|ξ−1(t)|2 = κ(εt), |ξ1(t)|2 = 2|ξ7(t)|2 = 1− κ(εt),

and where for all s ∈ R, ‖q1(t, ·)‖Hs(T2π) ≤ Cs for all t ≥ 0, and ‖q2(t, ·)‖Hs(T2π) ≤ Cs for all
0 ≤ t ≤ ε−3/2.

Figure 3 presents (in linear scale) the evolution of the square of the actions |ξ1|2, |ξ−1|2, |ξ5|2, |ξ7|2
obtained by the Strang splitting method: the predicted energy exchange between modes 1, −1, 5 and 7 is
clearly observed, in full agreement with Theorem 5.2.

On Figure 4, we represent (in logarithmic scale) the evolution of actions |ξk| for k ∈ {±1,±3,±5,±7}
obtained by Strang’s method (left) and by the SAM (right). The same observations as for Example 1 can
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Figure 3: Example 2, beating effect between modes 1, 5 ,7 and -1.
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Figure 4: Example 2 with the Strang splitting method and the Stroboscopic Averaging Method.

by formulated. As a matter of facts, modes 3, −3, −5 and −7 are of order O(ε) and entail high oscil-
lations. Those are filtered (see the right picture) by the high-order averaging process developed in this
paper (actually, the SAM used here is exact up to O(ε6) only, a sufficient accuracy here) and this sheds
new light on an interesting smooth macroscopic behavior at order O(ε).

5.4 A problem of Carles and Faou in two dimensions [CF12].

The problem considered by Carles and Faou in [CF12] (Example 3) involves a cubic nonlinearity |ψ|2ψ
and is posed in the two-dimensional torus T2

2π = [0, 2π]× [0, 2π]:

i∂tψ
ε = −∆ψε ± ε|ψε|2ψε, t ≥ 0, ψε(t, ·) ∈ H1(T2

2π) (5.7)

ψε(0, x) = 1 + 2 cos(x1) + 2 cos(x2). (5.8)

Carles and Faou describe energy exchanges between the actions, as a cascade: high modes become signif-
icantly large at a time that depends on the mode and which is increasing with the size of the mode. Their
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analysis relies again on the careful study of the first order averaged system. Note that a related result is
stated by Colliander et al. in [CKS+10].

In [CF12] Figure 1, this energy cascade is numerically illustrated by a direct simulation of the system
using Strang splitting. We reproduce this experiment on Figure 5 left. As observed above, higher-order
modes {|ξk|, k ≥ 2} are highly oscillatory and it is not obvious to distinguish on this graph first-order
effects from higher order (in ε) effects. To complete the picture, we show, on the right of Figure 5, the
results obtained by the SAM: a smooth macroscopic behavior appears distinctly, though more complex
than what the first averaged model suggests on Figure 6.
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Figure 5: Example 3 with the Strang splitting method and the Stroboscopic Averaging Method.
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Figure 6: Example 3, first order averaged model.
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[PT87] J. Pöschel and E. Trubowitz. Inverse spectral theory. Pure and Applied Mathematics, Vol.
130. Boston etc.: Academic Press, Inc., Harcourt Brace Jovanovich, Publishers. X, 192 p.;
$ 29.95 , 1987.

[SVM07] J.A. Sanders, F. Verhulst, and J. Murdock. Averaging methods in nonlinear dynamical
systems. 2nd ed. Applied Mathematical Sciences 59. New York, NY: Springer. xxi, 431 p. ,
2007.

[Wen26] G. Wentzel. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellen-
mechanik. Z. f. Physik, 38:518–529, 1926.

34


