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Abstract
The techniques, based on formal series and combinatorics, used nowadays to analyze

numerical integrators may be applied to perform high-order averaging in oscillatory peri-
odic or quasi-periodic dynamical systems. When this approach is employed, the averaged
system may be written in terms of (i) scalar coefficients that are universal, i.e. independent
of the system under consideration and (ii) basis functions that may be written in an explicit,
systematic way in terms of the derivatives of the Fourier coefficients of the vector field be-
ing averaged. The coefficients may be recursively computed in a simple fashion. We show
that this approach may be used to obtain exponentially small error estimates, as those first
derived by Neishtadt. All the constants that feature in the estimates have a simple explicit
expression.

1 Introduction
This paper continues the work in [7] and [8] on the relations between the method of averaging
(see e.g. [13], [18], [1, Chapt. 4], [2, Chapt. 10]) and the formal series expansions that are
nowadays used to analyze numerical integrators [12], [19], [14], [11]. We show here how the
approach introduced in [7] and [8] may be readily applied to derive exponentially small error
estimates similar to those first proved by Neishtadt [16].

Let us assume that the problem to be averaged has been rewritten [4], [5] to take the
familiar format:

d

dt
y = ε f(y, tω), (1)

y(0) = y0 ∈ RD, (2)

where ε is a small parameter, f = f(y, θ) is sufficiently smooth and 2π-periodic in each of
the components θj , j = 1, . . . , d, of θ, i.e. θ ∈ Td, and ω ∈ Rd is a constant vector of angular
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frequencies. We assume throughout that ω is non-resonant, i.e. that, for each multi-index
k ∈ Zd, k · ω 6= 0 (resonant problems of this form may be recast as non-resonant by lowering
the number d of frequencies). The problem (1)–(2) is to be studied in an interval 0 ≤ t ≤ L/ε
so that y undergoes variations of orderO(1). When d = 1 the right-hand side of (1) is periodic
in the variable t; for d > 1 the time-dependence is quasi-periodic.

The method of averaging considers a change of variables

y = Y + ε Ǔ(Y, tω, ε )

with Ǔ(Y, θ, ε ) 2π-periodic in θj , j = 1, . . . , d, that transforms (1)–(2) into

d

dt
Y = ε

(
F (Y, ε ) + R(Y, tω, ε )

)
, Y (0) = Y0, (3)

where Y0 is defined implicitly by y0 = Y0 + ε Ǔ(Y0,0, ε ) and R is a small reminder, so that in
the transformed system the explicit time-dependence of the right-hand side has been ‘almost’
eliminated.

In the simplest version, F is the average f0 of f(·, θ) over the torus Td and R = O(ε );
accordingly the truncated autonomous problem (d/dt)Y = ε F (Y ), Y (0) = Y0, describes,
with an O(ε ) error, the O(1) changes in the solution on 0 ≤ t ≤ L/ε . In higher-order
versions, R = O(ε N ), N = 2, 3, . . . , so that, if Y (t) is the solution of the truncated problem,
then Y (t) + ε Ǔ(Y (t), tω, ε ) provides an approximation to the solution y(t) of (1)–(2) with
an error of size O(ε N ).

Although there are many possible variants, it is often the case that the transformed system
in (3) is of the form

d

dt
Y = ε

(
F1(Y ) + · · ·+ ε N−1FN (Y ) + R(N)(Y, tω, ε )

)
, R(N) = O(ε N ), (4)

where the Fn do not change with N . Typically, the Fn, n = 1, 2, . . . , are found recursively
starting from F1(Y ) = f0(Y ); once F1,. . . , FN have been found, one changes variables in (4)
so as to reduce the explicit time-dependence in the right-hand side to size εO(ε N+1) and in
this way one obtains FN+1 and a new averaged system with a higher-order reminder R(N+1).
By letting N ↑ ∞ in such a procedure, one writes a series

∞∑
n=1

ε n−1Fn(Y ) (5)

that, if convergent with sum F (Y, ε ), leads to an averaged system (d/dt)Y = ε F (Y, ε ) where
the time-dependence of the right-hand side has been completely eliminated. However the se-
ries (4) typically diverges and the complete suppression of the time-dependence is impossible.

Neishtadt [16] proved that in the periodic (d = 1) case, if f depends analytically on y
and continuously on θ, it is possible to obtain an averaged problem (3) where the reminder
R is exponentially small with respect to ε . Such an averaged system is found by perform-
ing successively O(1/ε ) intermediate changes of variables; each of these changes halves the
magnitude of the remainder. Neishtadt’s exponential bounds have a number of very important
consequences. In particular they imply [16, Prop. 3] that, under suitable hypotheses, symplec-
tic integrators preserve energy with a small error over periods of time that are exponentially
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long in the step-length; this is one of the main results in symplectic integration [19], [12]
and plays a crucial role in e.g. molecular dynamics simulations. The article [17] by Ramis
and Schäfke derives exponential error bounds for the periodic case using a technique different
from that in [16]. Simó [20] has extended Neishtadt analysis to the quasi-periodic (d > 1)
scenario; in that case f is demanded to depend analytically on y and θ and furthermore the
vector ω of angular frequencies has to satisfy a diophantine condition.

Described in [8] is a method that allows the construction of a series of the form (5) such
that, for each N = 1, 2, . . . , the system (1) may be transformed into (4) by a suitable change of
variables. When this technique is used, each Fn is expressed as a combination of two elements
of two sorts:

1. Scalar constant coefficients that are universal, i.e. independent of the function f in (1),
and can be computed once and for all by means of simple recursions.

2. Basis functions constructed in an explicit, systematic way in terms of the derivatives of
the Fourier coefficients of f .

With this methodology the coefficients Fn may be found independently of the required change
of variables Y 7→ y. In the present paper we show how the techniques in [8] may be applied
to derive Neishtadt’s exponential bounds. Here we bound, via Cauchy estimates, the size of
the Fn in (4) and then, for a given value of ε , we determine how to choose N = N(ε ) to
minimize the magnitude of R(N(ε )).1 This procedure leads to an exponentially small error
bound (see Theorem 3.4) where all required constants have a simple, explicit expression. In a
forthcoming publication we shall extend the present work to cover the quasi-periodic case as
in [20].

The paper contains four sections. Section 2 reviews the approach to averaging described in
[8]. The presentation is different from that in [8] because here we focus on the representation
of the Fn in terms of so-called word-basis functions, while [8] emphasizes a more general
but less compact representation in terms of elementary differentials. Section 3 presents the
exponentially small error bounds and Section 4 contains a number of auxiliary results.

2 Formal series expansions

2.1 The expansion of y

While, as outlined in the introduction, standard approaches to high-order averaging envisage
successive changes of variables to weaken the time-dependence of the vector field f in (1), the
starting point of the technique in [7], [8] is the analysis of the expansion in powers of ε of the
solution of (1)–(2). In this subsection we derive that expansion with the help of Lie operators.

For the time being we assume that f in (1) is given by a Fourier expansion

f(y, θ) =
∑

k∈Zd

eik·θfk(y), (6)

where the coefficients fk are indefinitely continuously differentiable and, except for a finite
number of values of k ∈ Zd, vanish identically. We initially place stringent hypotheses on f

1It is also possible to work as in [17] in order to avoid truncation of the formal series at the smallest term.
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so as not to clutter the presentation with unwelcome details; as we show later (end of Section
2.4) it is also possible to work under much weaker alternative assumptions.

With each coefficient fk, k ∈ Zd, we associate a linear differential operator

Ek :=
D∑

i=j

f j
k

∂

∂yj

(superscripts correspond to components). The operator Ek acting on a smooth function g :
RD → R yields a new smooth function Ek[g] defined by

∀y ∈ RD, Ek[g](y) =
D∑

j=1

f j
k(y)

∂

∂yj
g(y),

or in a more compact form, Ek[g](y) = ∂yg(y)fk(y). Let us also consider the one-parameter
family of linear operators Φt acting on smooth functions g such that Φt[g](y(0)) = g(y(t))
for each solution y(t) of (1) and each smooth function g : RD → R. Obviously, Φ0 is the
identity operator that we denote by I . We may write

d

dt
g(y(t)) = ε ∂yg(y(t))f(y(t), tω) = ε

∑

k∈Zd

eik·ωtEk[g](y(t)),

or equivalently
d

dt
Φt[g](y(0)) = ε

∑

k∈Zd

eik·ωtEk[g](y(0)).

This shows that Φt can be seen as the solution of the initial value problem

d

dt
Φt = ε

∑

k∈Zd

eik·ωtΦtEk, Φ0 = I,

that when solved by Picard iteration leads to the expansion

Φt = I +
∞∑

n=1

ε n
∑

k1,...,kn∈Zd

αk1···kn(t)Ek1 · · ·Ekn ,

where

αk1···kn(t) :=
∫ t

0

eikn·ωtndtn

∫ tn

0

eikn−1·ωtn−1dtn−1 · · ·
∫ t2

0

eik1·ωt1dt1. (7)

By definition of Φt, for each smooth g and each solution y(t) of (1)

g(y(t)) = g(y(0)) +
∞∑

n=1

ε n
∑

k1,...,kn∈Zd

αk1···kn(t)Ek1 · · ·Ekn [g](y(0)),

an expansion that, with the complex exponentials replaced by arbitrary scalar functions uk(t)
(the controls), is known in non-linear control theory as the Chen-Fliess series [9], [10], [21].
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The values y(t) can be recovered by considering this series for each of the coordinate functions
gi(y) = yi, i = 1, . . . , D. In this way we conclude that the solution y(t) of (1)–(2) can be
formally expanded as

y(t) = y0 +
∞∑

n=1

ε n
∑

k1,...,kn∈Zd

αk1···kn(t) fk1···kn(y0), (8)

with
fk1···kn

(y) := ∂yfk2···kn
(y)fk1(y). (9)

The coefficient ∑

k1,...,kn∈Zd

αk1···kn
(t) fk1···kn

(y0) (10)

of ε n in (8) is made up of two ingredients: the word-basis functions2 fk1···kn(y) defined in (9)
and the scalar coefficients αk1···kn

in (7). Of importance is the fact that the coefficients depend
on the frequencies ω but are completely independent of the function f(·, ·) in (6). On the other
hand, the word-basis functions only depend on the Fourier coefficients fk; more precisely they
are combinations of partial derivatives of these coefficients, e.g.

flk(y) = ∂yfk(y) fl(y), (11)
fmlk(y) = ∂yflk(y) fm(y)

= ∂yyfk(y) [fl(y), fm(y)] + ∂yfk(y) ∂yfl(y) fm(y). (12)

Here ∂yfk(y) is the first-order Fréchet derivative (Jacobian matrix) of fk evaluated at y and
∂yfk(y) fl(y) is a matrix/vector product. Similarly ∂yyfk(y) is the second-order Fréchet
derivative of fk at y and ∂yyfk(y) [fl(y), fm(y)] denotes its action on the D-vectors fl(y),
fm(y); thus the j-th component of ∂yyfk(y) [fm(y), fl(y)] is

∑

k,`

(
∂2

∂yk∂y`
f j
k(y)

)
fk
l (y)f `

m(y).

The functions ∂yfk(y) fl(y) in (11) and ∂yyfk(y) [fl(y), fm(y)], ∂yfk(y) ∂yfl(y) fm(y)
in (12) are instances of so-called elementary differentials (relative to the function f in (1)), see
[8, Sec. 2.2]. The elementary differential ∂yfk fl is of order 2 (it contains two factors) and
∂yyfk [fl, fm], ∂yfk ∂yflfm have both order 3. In general, as illustrated by (11)–(12), each
word-basis function fk1···kn is a linear combination of elementary differentials of order n. In
this way elementary differentials may be conceived of as building blocks to construct word-
basis functions. A given elementary differential may enter in different word-basis function:
thus ∂yyfk [fl, fm], l 6= m enters in both fmlk and flmk. The elementary differentials of
order n may be indexed by graphs called (mode-colored rooted) trees with n vertices (see [8,
Table 1], ). Since the work of J. Butcher in the 1960’s [11], [19], [11], indexing the terms of
a formal expansion by means of trees and other graphs has been standard in the analysis of
numerical integrators.

2The terminology ‘word-basis’ will be motivated below.
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2.2 Word-series
The notation in (10) and in expressions that appear later may be simplified by considering
words k1 · · ·kn, made of letters kr, r = 1, . . . , n, taken from the alphabet Zd. If Wn, n =
1, 2, . . . , denotes the set of words with n letters, then (10) may be rewritten as:

∑

w∈Wn

αw(t) fw(y0). (13)

If k ∈ Zd and n = 1, 2, . . . , the notation kn means k · · ·k ∈ Wn. Two words w =
k1 · · ·kn and w′ = k′1 · · ·k′m may be concatenated to give rise to a new word ww′ =
k1 · · ·knk′1 · · ·k′m ∈ Wn+m. It is also convenient to introduce an empty word ∅ such that
∅w = w∅ = w for each w. The set of all words (including the empty word) will be denoted
by W .

With this notation, the expansion of y in (8) is, for each fixed t, an instance of the general
format

W (δ, y) = δ∅y +
∞∑

n=1

ε n
∑

w∈Wn

δw fw(y), (14)

where δ is a map that associates with each w ∈ W a complex number δw. Series of the form
(14) will be referred to as word-series (relative to equation (1)). In the particular case where
the map δ is such that δ∅ = 1 and δw = 0 for each w 6= ∅, the word-series is the identity
W (δ, y) ≡ y.

The sums (10) or (13) are not the only way of writing the coefficient of ε n in the expansion
of y. In [8, Sec. 2.2], y is expanded by reformulating the initial value problem (1)–(2) as an
integral equation and then using Picard iteration. With that alternative approach, which does
not use the Lie operators Ek, in lieu of (13), one obtains a sum of the form

∑

u∈Tn

1
σu

αu(t)Fu(y0), (15)

where the set of indices Tn comprises the trees with n vertices mentioned above, and for each
u ∈ Tn, the integer σu is a normalizing factor, Fu the corresponding elementary differential
and αu(t) a suitable complex coefficient, independent of f . The expressions (13) and (15) for
the coefficient of ε n in the expansion of y share of course a common value. Given (13), one
obtains (15) by writing each word-basis function fw as a linear combination of elementary
differentials Fu as in (11)–(12). Conversely, it is proved in [8, Sec. 3] (cf. [15]) that, given
(15), one may reach (13) by grouping together different elementary differentials to form word-
basis functions fw.

Formal series in powers of ε

B(η, y) = η∅y +
∞∑

n=1

ε n
∑

u∈Tn

1
σu

ηu Fu(y),

are called B-series and were first introduced in the analysis of Runge-Kutta numerical in-
tegration methods [12], [19], [11]. As we have just explained in the particular case of the
word-series expansion of y(t), each word-series may be rearranged to yield a B-series after
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writing each word-basis function in terms of elementary differentials. However it is not true
that each B-series may be rearranged to yield a word-series because elementary differentials
cannot in general be expressed as linear combinations of word-basis functions;3 in particular
there are B-series that are useful for averaging purposes and cannot be reformulated as word-
series (see an instance in [8, Remark 3.3]). In this paper we shall emphasize the more compact
word-series format that facilitates the derivation of error bounds. The results in the remainder
of this section are all taken from [8], where they are formulated in the (more general) language
of B-series.

2.3 The transport equation
By computing the iterated integrals in (7), we find, in particular,

αk(t) =
i

k · ω (1− eik·ωt), k ∈ Z\{0},
α0n(t) = tn/n!,

αlk(t) =
it

l · ω +
1− eil·ωt

(l · ω)2
, k = −l 6= 0,

. . . . . . = . . . . . . . . . . . . . . . . . .

where we note that the left-hand sides are complex polynomials in the 2d + 1 variables t,
eiω1t, . . . , eiωdt, e−iω1t, . . . , e−iωdt. In general, it is easily proved by induction, that for each
nonempty word w, there exists a unique complex function γ(t, θ), t ∈ R, θ ∈ Td, that is a
polynomial in the variables t, eiθ1 , . . . , eiθd , e−iθ1 , . . . , e−iθd and for which

αw(t) = γw(t, tω). (16)

This relation is extended to the empty word by defining α∅(t) ≡ 1 and γ∅(t, θ) ≡ 1.
Furthermore we have the following characterization [8, Sec. 2.4]:

Proposition 2.1 For each w ∈ W and k ∈ Zd, γwk is the only function that simultaneously
satisfies the following requirements:

• It is a polynomial in the variables t, eiθ1 , . . . , eiθd , e−iθ1 , . . . , e−iθd .

• It is a solution of the problem

(∂t + ω · ∇θ)γwk(t, θ) = γw(t, θ)eik·θ, γwk(0,0) = 0. (17)

The transport partial differential equation (17) plays in the formal series approach to aver-
aging the role played by the homological equation in approaches via changes of variables. By
using Proposition 2.1, one may derive the following recursions [8, Prop. 4.1] that allow the
effective computation of the γw.

3It is possible to characterize the set of B-series that may be rearranged as word-series, see [8, Sec. 3], and [15]
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Proposition 2.2 If n = 1, 2, . . . , k ∈ Zd\{0} and l1, . . . , ls ∈ Zd, then:

γk(t, θ) =
i

k · ω (1− eik·θ),

γ0n(t, θ) = tn/n!,

γ0nk(t, θ) =
i

k · ω
(
γ0n−1k(t, θ)− γ0n(t, θ)eik·θ),

γkl1···ls(t, θ) =
i

k · ω
(
γl1···ls(t, θ)− γ(k+l1)l2···ls(t, θ)

)
,

γ0nkl1···ls(t, θ) =
i

k · ω
(
γ0n−1kl1···ls(t, θ)− γ0n(k+l1)l2···ls(t, θ)

)
.

It is also the transport equation that leads to the following result [8, Prop. 2.9], which is
the key to later developments:

Proposition 2.3 For each t, t′ ∈ R and y ∈ RD

W
(
γ(t′,0),W (γ(t,0), y)

)
= W (γ(t + t′,0), y) (18)

and for each t ∈ R , θ ∈ Td and y ∈ RD

W
(
γ(0, θ),W (γ(t,0), y)

)
= W (γ(t, θ), y) (19)

2.4 Quasi-stroboscopic averaging
For w ∈ W , let us define coefficient

ᾱw(t) := γw(t, 0) (20)

and consider the family of transformations, parameterized by t,

y ∈ RD 7→ W (ᾱ(t), y) ∈ RD.

For t = 0, by (20) and (16), W (ᾱ(0), y) = W (γ(0,0), y) = W (α(0), y) = y, and the
corresponding transformation is the identity. Then (18) shows that the family is a group and,
by implication, the solution flow of an autonomous differential system (the averaged system).
In order to write down such an averaged system, we differentiate W (ᾱ(t), y) with respect to t
at t = 0 and obtain

d

dt
Y = W (β̄, Y )

where the coefficients are given by

β̄w =
d

dt
ᾱw(t)

∣∣∣∣
t=0

, w ∈ W. (21)

After recalling the definition of word-series in (14), we have, more explicitly,

d

dt
Y = ε F (Y, ε ), F (Y ) = F1(Y ) + ε F2(Y ) + · · ·+ ε n−1Fn(Y ) + · · · , (22)
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with
Fn(y) :=

∑

w∈Wn

β̄w fw(Y ) n = 1, 2, . . . (23)

In particular, from Proposition 2.2, ᾱk(t) = 0 for k 6= 0 and ᾱ0 = t, so that, from (21),
β̄k(t) = 0 for k 6= 0 and β̄0 = 1 and therefore

F1(Y ) = f0(Y ); (24)

thus F1 is the average of f(·, θ) over θ ∈ Td.
We now exploit the identity (19). If we define coefficients

κw(θ) := γw(0, θ), w ∈ W, θ ∈ Td, (25)

then (19) and (20) imply

W
(
κ(θ),W (ᾱ(t), y)

)
= W (γ(t, θ), y),

and in particular, for θ = tω,

W
(
κ(tω),W (ᾱ(t), y)

)
= W (γ(t, tω), y) = W (α(t), y).

Since W (α(t), y) and W (ᾱ(t), y) are respectively the solution operator of the given oscilla-
tory initial value problem (1)–(2) and the solution flow of the autonomous (22), we conclude
that the change of variables y(t) = W (κ(tω), Y (t)) maps solutions of (22) onto solutions
of (1). Note that y(0) = Y (0) since, from (25), κw(0) = γw(0,0) = 0 for w 6= ∅ and
κ∅(0) = γ∅(0,0) = 1. In this way we have proved the following result.

Theorem 2.4 The solution of (1)–(2) may be written as

y(t) = U(Y (t), tω, ε ),

where U is the change of variables parameterized by θ ∈ Td

y = Y + ε Ǔ(Y, θ, ε ); Ǔ(Y, θ, ε ) := u1(Y, θ) + · · ·+ ε n−1un(Y, θ) + · · · (26)

with
un(Y, θ) =

∑

w∈Wn

κw(θ) fw(Y ), n = 1, 2, . . . (27)

and Y (t) is the solution of the autonomous (averaged) system (22) with initial condition
Y (0) = y0.

We emphasize that the averaged system (22)–(23) is made up of two components: the
coefficients β̄w that are independent of f and the word-basis functions fw. In fact the values of
β̄w can easily be found recursively, as shown in our next result, that is proved by differentiating
with respect to t the formulae in Proposition 2.2 (see (20)–(21)).
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Proposition 2.5 Given n = 1, 2, . . . , k ∈ Zd\{0}, and l1, . . . , ls ∈ Zd,

β̄k = 0,

β̄0 = 1,

β̄0n+1 = 0,

β̄0nk =
i

k · ω (β̄0n−1k − β̄0n),

β̄kl1···ls =
i

k · ω (β̄l1···ls − β̄(k+l1)l2···ls),

β̄0nkl1···ls =
i

k · ω (β̄0n−1kl1···ls − β̄0n(k+l1)l2···ls).

The values of the coefficients κw in (25) that are required to write down the change of
variables (26)–(27) may be recursively computed from Proposition 2.2. In fact in the present
approach, the averaged system and the change of variables may be computed independently of
each other, something that does not happen in standard approaches that use successive changes
of variables.

In the periodic case (d = 1) the oscillatory and averaged solutions coincide at times t =
2πj/ω, j integer, because they coincide at t = 0 and the change of variables y = U(Y, θ, ε ) is
2π periodic in θ. Therefore (22)–(23) provides the so-called stroboscopic averaged system for
(1). Alternative averaged systems are discussed in detail in [8, Sec. 2.6]. In the quasi-periodic
d > 1 case, the stroboscopic effect is not present: y(t) and Y (t) only coincide at time t = 0,
because, due to non-resonance, the mapping t 7→ tω ∈ Td only visits 0 ∈ Td for t = 0. In
this situation we say that (22)–(23) is quasi-stroboscopic averaged system for (1).

To conclude this subsection let us discuss the assumptions on f . The hypothesis that the
Fourier expansion consists of a finite number of (nontrivial) terms has been used to ensure
that for each n = 1, 2, . . . the series (10), (23), (27) converge and that, accordingly, (8), (22),
(26) are bona fide formal series in powers of the parameter ε. Then the expansion (8) and
Theorem 2.4 have to be understood in the sense of formal series. By truncating the formal
series one of course obtains the corresponding Taylor polynomials. If those polynomials are
only required up to a target maximum degree, then the differentiability requirements on f may
be decreased correspondingly. It is also possible to work with f defined in K × Td, with K a
domain of RD, rather than with f defined on the whole of RD × Td.

On the other hand the convergence of the series in (10), (23), (27) may be guaranteed with
hypotheses on f other than the requirement that f has finitely-many non-vanishing Fourier
coefficients, see e.g. Theorems 3.1 and 3.2 below.

2.5 An example
The system (D = 2, d = 1, ω = 1)

d

dt
y1 = ε ,

d

dt
y2 = ε cos t g(y1), (28)

has three nontrivial Fourier coefficients

f0 =
[

1
0

]
, f+1 = f−1 =

1
2

[
0

g(y1)

]
.
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From (9), it follows that, for words w ∈ Wn+1, n = 1, 2, . . . , the basis function fw van-
ishes identically except in cases where w = 0nk, k = ±1. For these words f0nk =
(1/2)[0, g(n)(y1)]T . Furthermore, from Proposition 2.5, β̄0nk = −(i/k)n, k = ±1, and
then the coefficients Fn in (23) are given by

F1 =
[

1
0

]
, F2j =

[
0
0

]
, F2j+1 = (−1)j+1

[
0

g(2j)(y1)

]
, j = 1, 2, . . .

These lead to the following expression for the averaged system (22):

d

dt
Y 1 = ε ,

d

dt
Y 2 = ε 3g(2)(Y 1)− ε 5g(4)(Y 1) + ε 7g(6)(Y 1)− · · · (29)

The change of variables may be computed in a similar way.

2.6 Geometric properties
As proved in [8, Th. 3.2], for n = 2, 3, . . . , the terms in the series (23) for Fn(y) can be
rearranged to yield

Fn =
∑

k1···kn∈Wn

1
j

βk1···kn [[· · · [[fk1 , fk2 ], fk3 ] · · · ], fkn ](y),

where, for each pair of vector fields, f , g,

[f, g](y) =
(

∂

∂y
g(y)

)
f(y)−

(
∂

∂y
f(y)

)
g(y)

denotes the corresponding commutator (Lie bracket). This fact, in tandem with (24), implies
that if the Fourier coefficients fk, k ∈ Zd, belong to a specific Lie subalgebra of the Lie
algebra of vector fields (e.g. each fk is Hamiltonian) then the quasi-stroboscopic averaged
(22) system will also belong to the same Lie subalgebra (e.g. averaging a Hamiltonian system
will lead to a Hamiltonian system). Similarly the change of variables (26) will belong to the
corresponding Lie group (in the example, the change of variables will be canonical).

Remark 2.6 Similarly the fact that the Fn can be written in terms of Lie brackets shows that
if we work with a differential equation defined on a manifold (rather than inRD or in a domain
K ⊂ RD) the averaged equation will also be (globally) defined on that manifold.

By computing explicitly the coefficients by means of Proposition 2.5 and writing the Fn

in terms of commutators, we find the following expression for the lower-order terms of the
quasi-stroboscopically averaged system

d

dt
Y = ε F1(Y ) + ε 2F2(Y ) + ε 3[F+

3 (Y ) + F−3 (Y )] +O(ε 4),

11



where F1 = f0, and

F2 =
∑

k>0

i

k · ω ([f−k, fk] + [fk − f−k, f0])

F+
3 =

∑

k>0

1
(k · ω)2

(
[f0, [f0, fk]] + [fk, [fk, f−k]] +

1
2
[fk, [f0, fk]] + 2[f−k, [fk, f0]]

)

+
∑

k>l>0

1
(k · ω)(l · ω)

(
[f−l, [fk, fl−k]]− [fl, [fk, f−k−l]]

)
,

and F−3 is obtained from F+
3 by replacing (k, l) by (−k,−l). In these formulae, < is a total

ordering in the set of multi-indices Zd with the following property: the relations k > 0 and
l > 0 imply k + l > 0.

3 Estimates
Our purpose is now to show how the present approach to averaging may be used to derive
error bounds for the averaged system.

3.1 Preliminaries
In this section we assume that we are interested in studying the differential system (1) in a
domain K ⊂ RD. The symbol ‖ · ‖ will refer to a norm in CD or to the associated norm for
D ×D complex matrices. For ρ ≥ 0 we denote

Kρ = {y + z ∈ CD : y ∈ K̄, ||z|| ≤ ρ}
(K̄ is the closure of K) and for vector or matrix-valued bounded functions φ defined in Kρ we
set

‖φ‖ρ = sup
y∈Kρ

‖φ(y)‖.

Our hypotheses on f are now as follows:

Assumption 1 There exist R > 0 and an open set U ⊃ KR, such that, for each θ ∈ Td, f(·, θ)
may be extended to a map U → CD that is analytic at each point y ∈ KR. Furthermore the
Fourier coefficients fk of f have bounds

∀k ∈ Zd, ‖fk‖R ≤ ak, ak ≥ 0,

with
M :=

∑

k∈Zd

ak < ∞.

Under this assumption, the Fourier series (6) converges absolutely and uniformly in KR×
Td and therefore f is (jointly) continuous in KR × Td. Furthermore

∀θ ∈ Td, ‖f(·, θ)‖R ≤ M.

On the other hand the assumption is not strong enough to guarantee the differentiability of f
with respect to θ.

12



3.2 Convergence of the expansion of y

Our first result, while not being necessary to prove the estimates in Theorem 3.4, provides an
example of the techniques employed in this section:

Theorem 3.1 Suppose that f satisfies the requirements in Assumption 1.

1. For 0 ≤ ρ < R, n = 1, 2, . . . , y0 ∈ Kρ and t ∈ R, the series (10) converges absolutely.
The convergence is uniform in y0.

2. For 0 ≤ ρ < R, y0 ∈ Kρ and |ε t| < (R − ρ)/(eM), the expansion of y(t) in powers
of ε in (8) is absolutely convergent. The convergence is uniform for y0 ∈ Kρ and |ε t|
ranging in any compact subinterval of the interval [0, (R− ρ)/(eM)).

Proof: Propositions 4.1 and 4.5 show that for, n ≥ 2,

∑

w∈Wn

||εnαw(t) fw(y0)|| ≤ |ε t|n
n!

(n− 1)n−1

(R− ρ)n−1

∑

k1,...,kn∈Zd

ak1 · · · akn

=
|ε t|n
n!

(n− 1)n−1

(R− ρ)n−1
Mn.

The series whose n-th term is the last expression converges for |ε t| < (R− ρ)/(eM). ¤
It may be pointed out that, since ‖f‖ ≤ M in KR × Td, the solution of (1)–(2) with

y0 ∈ Kρ exists at least in an interval of length (R− ρ)/(Mε ). This length is of course larger
than the time-span (R− ρ)/(eMε ) that features in the theorem.

3.3 Exponentially small estimates
We now address the derivation of error estimates. Only periodic case d = 1 will be considered
in the estimates of the present article. Note that in the periodic situation we may always rescale
t so as to have ω = 1. The next result refers to the coefficients Fn and un in (23) and (27).

Theorem 3.2 Suppose that f satisfies the requirements in Assumption 1, d = 1, ω = 1. For
n = 1, 2, . . . , 0 ≤ ρ < R, y ∈ Kρ, θ ∈ T, the series in (23) and (27) are absolutely
and uniformly convergent. Furthermore, the functions Fn(y), un(y, θ) defined by those series
satisfy4

||Fn||ρ ≤ 1
2

(2M)n(n− 1)n−1

(R− ρ)n−1
, (30)

||un(·, θ)||ρ ≤ (2M)n(n− 1)n−1

(R− ρ)n−1
, (31)

||∂θun(·, θ)||ρ ≤ 1
2

(2M)n(n− 1)n−1

(R− ρ)n−1
, (32)

||∂yun(·, θ)||ρ ≤ (2M)nnn

(R− ρ)n
. (33)

4Throughout the paper it is understood that for n = 1 the expression (n− 1)n−1 takes the value 1.
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Proof: It is based on Propositions 4.1 and 4.5 and very similar to that of Theorem 3.1; de-
tails will not be given. Note that ∂θun and ∂yun are represented by the series obtained by
differentiating term by term the series for un. ¤

Since the series with n-th term

ε n (2M)n(n− 1)n−1

(R− ρ)n−1

diverges for ε 6= 0, the bounds (30) and (31) do not allow us to prove the convergence of
the series for the averaged system and change of variables in (22) and (26). In fact it is well
known that these series are in general divergent5 and the time dependence of (1) cannot be
completely eliminated by means of a change of variables. In our set-up it is easy to construct
an explicit example of divergence. Consider the system (28) with

g(y1) =
1

1− y1
;

Assumption 1 holds on any domain K ⊂ R2 whose closure K̄ does not intersect the line
{y1 = 1} ⊂ R2. The series in (29) has g(n)(y1) = n!/(1 − y1)n+1 and it is therefore
divergent for each ε 6= 0, y ∈ K; the series for the change of variables is found to diverge
similarly.

The divergence of the series (22) and (26) entails that they have to be truncated in order to
describe approximately the dynamics of (1). Our next result presents some properties of trun-
cated changes of variables. Item 1. implies that the change of variables is anO(ε ) perturbation
of the identity. Item 3. guarantees the local invertibility of the change. Item 4. shows global
invertibility under the assumption of convexity. This assumption is not necessary, as global
invertibility could be shown after finding the corresponding inverse transformation, something
that may be achieved by solving for Y equation (34) with the help of fixed-point iteration.

Theorem 3.3 Suppose that f satisfies the requirements in Assumption 1, d = 1, ω = 1. For
N = 1, 2, . . . consider the change of variables

y = Y + ε Ǔ (N)(Y, t, ε) (34)

with
Ǔ (N)(y, θ, ε) := u1(y, θ) + ε u2(y, θ) + · · ·+ εN−1uN (y, θ)

(the functions un are as in the preceding theorem). Assume that ε ∈ C satisfies:

|ε | ≤ ε 0, ε 0 = ε 0(N) :=
R

8M

1
N

, (35)

then:

1. For each θ ∈ T, ‖Ǔ (N)(·, θ, ε )‖R/2 ≤ 3M and ‖∂θǓ
(N)(·, θ, ε )‖R/2 ≤ 3M/2.

2. For each θ ∈ T, the mapping Y ∈ KR/2 7→ Y + ε Ǔ (N)(Y, θ, ε) is analytic and takes
values in KR.

5See however Section 3.4 below.
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3. For each θ ∈ T and Y ∈ KR/2, the Jacobian matrix I + ε ∂Y Ǔ (N)(Y, θ, ε ) is invertible
and

‖(I + ε ∂Y Ǔ (N))−1‖ ≤ 2.

4. If KR/2 is convex then, for each θ ∈ T, the mapping Y ∈ KR/2 7→ Y + ε Ǔ (N)(Y, θ, ε)
is one-to-one.

Proof: From (31) with ρ = R/2, (35) and Lemma 4.7:

‖Ǔ (N)(·, t, ε )‖R/2 ≤ 2M

N∑
n=1

|ε |n−1 (4M)n−1(n− 1)n−1

Rn−1

≤ 2M

N∑
n=1

(n− 1)n−1

(2N)n−1
≤ 3M.

Then, for Y ∈ KR/2, ‖ε Ǔ (N)(Y, t, ε )‖ ≤ 3RM/(8MN) < R/2 and, accordingly, y ∈ KR.
The derivation of the bound for ∂θǓ

(N), based on (32), is similar to the derivation above
of the estimate for Ǔ (N).

From (33) with ρ = R/2, (35) and Lemma 4.7, for Y ∈ KR/2,

‖ε ∂Y Ǔ (N)(Y, t, ε )‖ ≤
N∑

n=1

|ε |n (4M)nnn

Rn
≤

N∑
n=1

nn

(2N)n
≤ 1

2
.

Standard results show that I + ε ∂Y Ǔ (N)(Y, t, ε ) is then invertible and the norm of its inverse
is ≤ 1/(1− 1/2) = 2.

If KR/2 is convex and Y1 + ε Ǔ (N)(Y1, θ, ε ) = Y2 + ε Ǔ (N)(Y2, θ, ε ), then by the mean-
value theorem

‖Y1 − Y2‖ = ‖ε Ǔ (N)(Y1, θ, ε )− ε Ǔ (N)(Y2, θ, ε )‖ ≤ 1
2
‖Y1 − Y2‖

and Y1 = Y2. ¤
We are now in a position to establish our main result:

Theorem 3.4 Suppose that f satisfies the requirements in Assumption 1, d = 1, ω = 1.
The application of the change of variables in Theorem 3.3 subject to (35) to the initial value
problem (1)–(2) results in a problem

d

dt
Y = ε

(
F (N)(Y, ε) + R(N)(Y, t, ε )

)
, Y (0) = y0, (36)

where
F (N)(y, ε) = F1(y) + ε F2(y) + · · ·+ εN−1FN (y)

(the functions Fj are as defined in Theorem 3.2). The averaged vector field F (N) and the
remainder R(N) possess the bounds

‖F (N)(·, ε )− f0(·)‖R/2 ≤
M

2
ε
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and

‖R(N)(·, t, ε)‖R/2 ≤
5(ε/ε0)N

1− (ε/ε0)
M. (37)

In particular, assume that for given ε , with |ε | ≤ R/(8eM), N is chosen as the integer
part of the real number R/(8eMε ) ≥ 1. Then

‖R(N)(Y, θ, ε )‖R/2 ≤
5e2

e− 1
M exp

(
− R

8eM

1
ε

)
.

Proof: The change of variables leads to the differential equation

d

dt
Y = ε g(N)(Y, t, ε ),

where

g(N)(Y, θ, ε ) = (I + ε ∂Y Ǔ (N)(Y, θ, ε))−1
(
f(Y + ε Ǔ (N)(Y, θ, ε), θ)− ∂θǓ

(N)(Y, θ, ε)
)
.

We then define R(N)(Y, θ, ε ) = g(N)(Y, θ, ε ) − F (N)(Y, ε ) with F (N) as in the statement
of the theorem. Clearly, from the results on formal series in the preceding section, F (N) is
the Taylor polynomial of degree N − 1 of g(N) seen as a function of ε . By standard Cauchy
estimates in the complex disk of center 0 ∈ C and radius ε 0, we may write

‖R(N)(Y, θ, ε )‖R/2 ≤
∞∑

n=N

(ε/ε0)n||g(N)(·, θ, ε 0)||R/2 =
(ε/ε0)N

1− (ε/ε0)
||g(N)(·, θ, ε 0)||R/2.

For Y ∈ KR/2, item 2. in Theorem 3.3 implies that Y + ε Ǔ (N)(Y, t, ε ) ∈ KR and therefore

‖f(Y + ε Ǔ (N)(Y, t, ε ), t)‖ ≤ M.

Items 1. and 3. in the same Theorem then show that ||g(N)(·, θ, ε 0)||R/2 ≤ 2(M + 3M/2).
This establishes the bound for R(N) in (37). The bound for F (N) is derived as the bound for
Ǔ (N) in Theorem 3.3.

With the choice of N given in the theorem, ε /ε 0 ≤ 1/e and therefore, from (37):

‖R(N)(Y, θ, ε )‖R/2 ≤
5

1− (1/e)
M exp(−N).

Since N > R/(8eMε )− 1, the proof is complete. ¤

Remark 3.5 Since f only enters the error bounds through the values of R and M , Theo-
rem 3.4 also applies to the case where f = f(y, θ; ε ) depends on the parameter ε , provided
that it satisfies Assumption 1 with R, M independent of ε .

Remark 3.6 In the geometric scenario, where f belongs to a specific Lie subalgebra of vector
fields, the truncated transformed vector field ε F (N) belongs to the same Lie subalgebra be-
cause, as we know, the Fn do. This is important in many applications, for instance in proving
Proposition 2 in [16] on the preservation of the value of the Hamiltonian function (energy)
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over exponentially long time intervals. On the other hand, since the change of variables in
Theorem 3.3 has been chosen to be a polynomial in ε , it does not possess the favorable geo-
metric properties of the formal, not truncated change discussed in the preceding section. For
instance the truncated change will not be a canonical transformation if the given oscillatory
system is Hamiltonian; by implication the vector field ε (F (N) + R(N)) in (36) will not be
Hamiltonian, as distinct from the situation with the truncated ε F (N).6

3.4 The linear case
As discussed above, under Assumption 1, the series for the averaged system and change of
variables in (22) and (26) are in general divergent. However, in particular cases, (22) and (26)
converge; in those case the time-dependence of (1) may be eliminated completely by changing
variables. As an example we treat the linear situation. We need the following hypothesis:

Assumption 2 Assume that for each k ∈ Zd, fk(y) = Aky, where the (constant) matrices
Ak are such that, if ak = ‖Ak‖, then

M :=
∑

k∈Zd

ak < ∞.

This requirement implies that the Fourier series (6) converges absolutely and uniformly
for y in an arbitrary ball in RD and θ ∈ Td. Furthermore ‖f(y, θ)‖ ≤ M‖y‖ for y ∈ RD and
θ ∈ Td.

Under Assumption 2 we may invoke the bounds for the word-basis functions in Proposi-
tion 4.6 instead of the weaker bounds in Proposition 4.5. Accordingly Theorem 3.2 may be
strengthened to obtain:

Theorem 3.7 Suppose that f satisfies the requirements in Assumption 2, d = 1, ω = 1.
For n = 1, 2, . . . , y ∈ RD, θ ∈ T, the series in (23) and (27) are absolutely convergent.
The convergence is uniform for y in an arbitrary ball ⊂ RD and θ ∈ T. Furthermore, the
functions Fn(y), un(y, θ) defined by those series satisfy

||Fn(y)|| ≤ 1
2
(2M)n‖y‖,

||un(y, θ)||ρ ≤ (2M)n‖y‖.

The series in powers of ε for the averaged system and change of variables in (22) and (26)
converge provided that |ε | < 1/(2M). The convergence is uniform for y in an arbitrary ball
⊂ RD and θ ∈ T .

The convergence of (22) and (26) in the linear case has been proved in [6] (see also [3])
using the Floquet-Magnus expansion. It is remarkable that if one tries to bound the radius of
convergence of (22) and (26) in terms of M by applying known results from the convergence
of Magnus expansions [3] then one arrives at the condition |ε | < 1/(2M) that features in the
preceding theorem.

6It is well known that it is possible to perturb the change in Theorem 3.3 with O(ε N+1) terms in order to
guarantee that the transformation Y 7→ y belongs to the relevant Lie subgroup.

17



Remark 3.8 The material in this subsection illustrates the way in which information on f may
be used to derive information on the word-basis functions fw that, in turn, can be incorporated
directly into the analysis in view of the universal f -independent character of the coefficients
β̄ and κ.

4 Auxiliary results
This section gathers a number of technical details. Since the averaged vector field and the
change of variables are built up in terms of the coefficients γw and the word-basis functions
fw, we need to estimate these two ingredients, something we do in Propositions 4.1 and 4.5
respectively.

Proposition 4.1 The coefficients αw defined in (7) satisfy |αk1···kn
(t)| ≤ tn/n! for each n =

1, 2, . . . , t ∈ R.
Additionally, if d = 1 and ω = 1, then:

1. The coefficients κw in (25) satisfy |κw(θ)| ≤ 2n for n = 1, 2, . . . , w ∈ Wn, θ ∈ T.

2. For n = 1, 2, . . . , w ∈ Wn and θ ∈ T, |∂θκ(θ)| ≤ 2n−1.

3. The coefficients β̄w in (21) satisfy |β̄w| ≤ 2n−1, for n = 1, 2, . . . , w ∈ Wn.

Proof: The bound for the coefficients α is trivial from the definition in (7). To bound κw(θ) =
γw(0, θ) and β̄w use induction in the formulae in Proposition 2.2 and 2.5 respectively. For item
2, differentiate first with respect to θ the recursions in Proposition 2.2 to obtain recursions for
the values ∂θκ(θ) = ∂θγw(0, θ); then use induction. ¤

Remark 4.2 Note that, in the quasi-periodic case, the recursions in Proposition 2.2 contain
the small divisors; accordingly the task of bounding the coefficients is more delicate in that
case than in the periodic scenario addressed here. In our approach, this is the only point where
the treatments of the periodic and quasi-periodic cases differ from each other.

The proof of Proposition 4.5 will use the following two lemmas (cf. [11, Chap. IX, Lemma
7.4]).

Lemma 4.3 For ρ ≥ 0, δ > 0, let g1 (resp. g2) be a CD-valued function analytic at each
point in Kρ+δ (resp. Kρ). Then

||(∂yg1)g2||ρ ≤ ||g1||ρ+δ||g2||ρ
δ

.

Proof: The chain rule implies that

∂yg1(y)g2(y) =
d

dτ
g1(y + τg2(y))

∣∣∣∣
τ=0

.

Then the result is a direct consequence of the Cauchy bound for the derivative of the mapping
τ 7→ g1(y + τg2(y)) that is analytic in the disk |τ | ≤ δ/‖g2‖ρ. ¤
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Lemma 4.4 Let A be a function defined onKρ, ρ ≥ 0 with values in the set of D×D complex
matrices. If ‖A(·)v‖ρ := supy∈Kρ

‖A(y)v‖ ≤ C for each vector v ∈ CD with ‖v‖ = 1, then
‖A‖ρ := supy∈Kρ

‖A(y)‖ ≤ C.

Proof: To each y ∈ Kρ there corresponds v = vy ∈ CD with ‖A(y)‖ = ‖A(y)vy‖, therefore,
by hypothesis, ‖A(y)‖ ≤ C. ¤

Proposition 4.5 If f satisfies Assumption 1 then, for 0 ≤ ρ < R, n = 1, 2, . . . and k1, . . . ,
kn ∈ Zd

‖fk1···kn‖ρ ≤ (n− 1)n−1

(R− ρ)n−1
ak1 · · · akn

(38)

and
‖∂yfk1···kn‖ρ ≤ nn

(R− ρ)n
ak1 · · · akn . (39)

Proof: From Lemma 4.3 with δ = (R−ρ)/n and the definition fk1,...,kn in (9) we may write,
for n = 1, 2, . . . and an arbitrary analytic map g : Kρ → CD:

‖∂yfk1···kng‖ρ ≤ n

R− ρ
‖fk1···kn‖ρ+(R−ρ)/n ‖g‖ρ

=
n

R− ρ
‖∂yfk2···knfk1‖ρ+(R−ρ)/n ‖g‖ρ

≤ n2

(R− ρ)2
‖fk2···kn‖ρ+2(R−ρ)/nak1 ‖g‖ρ

≤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ nn

(R− ρ)n
‖fkn‖ρ+n(R−ρ)/nak1 · · · akn−1 ‖g‖ρ

≤ nn

(R− ρ)n
ak1 · · · akn ‖g‖ρ.

By choosing g to be a constant function and invoking Lemma 4.4 we obtain (39). Furthermore
the choice g = fkn+1 proves (38) with n + 1 in lieu of n. This leaves us with the case n = 1
of (38) which is trivial from Assumption 1. ¤

In the linear case the bounds may be improved. The proof of the following result is trivial:

Proposition 4.6 If f satisfies Assumption 2 then, for n = 1, 2, . . . and k1, . . . , kn ∈ Zd, the
constant matrix ∂yfk1···kn = Akn · · ·Ak1 satisfies:

‖∂yfk1···kn‖ ≤ ak1 · · · akn

and therefore, for y ∈ RD,

‖fk1···kn(y)‖ ≤ ak1 · · · akn‖y‖.

Finally, the following result was used in the proof of Theorem 3.3.
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Lemma 4.7 For each N = 1, 2, . . .

bN :=
N∑

n=1

nn

(2N)n
≤ 1

2
, b∗N :=

N∑
n=1

(n− 1)n−1

(2N)n−1
≤ 3

2
.

Proof: The value cn,N = nn/(2N)n decreases as N increases. For N ≥ 5 the decrease
c1,N − c1,N+1 = 1/(2N(N + 1)) is larger than cN+1,N+1 and therefore bN+1 < bN . Since
b1 = 1/2, b2 = 1/2, b3 = 29/72, b4 = 155/512, b5 = 4477/2000, the sequence bN is
monotonically decreasing and bounded above by 1/2. On the other hand b∗N ≤ 1 + bN . ¤
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