HIGHLY-OSCILLATORY PROBLEMS WITH TIME-DEPENDENT
VANISHING FREQUENCY
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Abstract. In the analysis of highly-oscillatory evolution problems, it is commonly assumed
that a single frequency is present and that it is either constant or, at least, bounded from below
by a strictly positive constant uniformly in time. Allowing for the possibility that the frequency
actually depends on time and vanishes at some instants introduces additional difficulties from both
the asymptotic analysis and numerical simulation points of view. This work is a first step towards
the resolution of these difficulties. In particular, we show that it is still possible in this situation to
infer the asymptotic behaviour of the solution at the price of more intricate computations and we
derive a second order uniformly accurate numerical method.
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1. Introduction.

1.1. Context. Highly-oscillatory evolution equations of the form
d

Us(t) = o

US(t) = éAUa(t) (), U =0y, 0<i<T,

where T is a strictly positive fixed time, independent of e, and where the operator
A is supposed to be diagonalizable and to have all its eigenvalues in iZ (equivalently
exp(2mA) = I), have received considerable attention in the literature, from both
the point of view of asymptotic analysis [Per69, SV85, HLW06, CMSS12, CMSS15,
CLM17] and the point of view of numerical methods [CCMSS11, CMMV14, CCMM15].}
However, allowing the parameter € to take values in a whole interval of the form 0, 1],
prevents the use of numerical methods constructed for specific regimes. As a matter
of fact, standard methods' from the litterature [HNrW93, HW10] typically have error
bounds expressed as powers of the step-size h of the form?

hP
error < Cg—q, p>0, ¢g>0,

where p is the order of the method and ¢ is equal to p or p — 1: while suitable for the
regime € close to 1, they require formidable computational power for small values of
€. At the other end of the spectrum, methods based on averaging and designed for
small values of € (see for instance [CMSS10]) typically admit error bounds of the form

error < C(hP +¢€7), p>0, ¢>0,

where p is the order of the method and g is the order of averaging: they thus encompass
an incompressible error for larger values of . In contrast, uniformly accurate methods
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1Such as, for instance, the Runge-Kutta method used in the Matlab routine ODE45 (see the
“Numerical experiments” Section 3.4).

2The constant C here is independent of ¢ and h.
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[CLM13, CCLM15, CLMV18] are robust schemes that are able to deliver numerical
approximations with an error (and at a cost) independent of the value of ¢ €]0, 1],

error < ChP.

In this paper, our objective is to construct uniformly accurate methods for equa-
tions whose frequency of oscillation depends on time. More precisely, we consider
systems of differential equations of the form

(1.1) Us(t) = @AUE@) + f(Uf(t)) eRY, US(0)=UpeR: 0<t<T,
where A € R%¥? and where the function f is assumed to be sufficiently smooth. The
parameter € again lies in the whole interval (0,1] and the real-valued function - is
assumed to be continuous on [0, +00).

Many semi-classical models for quantum dynamics also assume the form of highly
oscillatory PDEs with a varying frequency (which, once discretized in space, obey
equation (1.1)), e.g. quantum models for surface hopping [CJLM15], graphene models
[MS11], or quantum dynamics in periodic lattice [Mor09]. In such applications, the
frequency v may depend on time (and sometimes also on U¢ and measures the gap
between different energy bands, while the parameter ¢ is nothing but the Planck
constant. We emphasize that the case of a varying frequency with a positive lower
bound has been studied in [CL17] for surface hopping, in [CJLM] for graphene, and
also in [HL16] where the long-term preservation of adiabatic quantities is established
in a situation where the right-hand-side of equation (1.1) is Hamiltonian. However,
the case where the frequency may become small (e.g. of the order of €) or even vanish
is more delicate and requires special attention from both analysis and numerical points
of view. This is the reason why the main novel assumption in this article is that the
function « vanishes at some instant to, or more precisely, that there exists (a unique)
to € [0,7] such that v(ty) = 0.

Our goal is to investigate problem (1.1) under these new circumstances, from both
the asymptotic analysis (when ¢ — 0) and the numerical approximation viewpoints.
For the sake of simplicity in this introductory paper, we assume that (¢) is of the
form 3

JpeN, Vt>0, ~(t)=((p+1)(t—1t)".

We emphasize that this situation is not covered by the standard theory of averaging
as considered e.g. in [Per69, SV85, HLW06, CMSS10, CMSS15, CLM17], and that
recent numerical approaches [CCMSS11, CLM13, CCLM15, CLMV18] are ineffective.
All techniques therein indeed rely fundamentally on the assumption that +(t) > o
uniformly in time, for some constant 7y > 0, and cannot be transposed to the context
under consideration here?.

3Note that applying an analytic time-transformation to (1.1) allows to consider more general
analytic functions v(¢) and our analysis is not restricted to the polynomial case.

4As a related recent work, we also mention the study [AD18] for the uniformly accurate approx-
imation of the stationary Schrédinger equation in the presence of turning points which are spatial
points used in quantum tunnelling models and where the spatial oscillatory frequency vanishes (anal-
ogously to our assumption ~(tg) = 0 with to = 0). However, the equation under consideration is
linear and assumed to have an explicit solution on [to, t1] for some ¢; > 0 independent of . Beyond
t1, the problem can be handled with a Wentzel-Kramers-Brillouin expansion, since the frequency is
then lower bounded by positive constant.
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1.2. Formulation as a periodic non-autonomous problem and main re-
1
sults. Upon defining u®(t) = exp (—%A) U¢(t), the original equation (1.1)

may be rewritten

(1.2) @ (t) = F (w,us(w) . uf(0) = uf = exp (-HTHA) Us,

where F(0,u) = e~ 4 f(e?4u) is 27-periodic w.r.t. 6 and smooth in (6, u). We make
the following assumption:

ASSUMPTION 1.1. The function f is twice continuously differentiable on R% and
there exists M > 0 such that for all 0 < ¢ < 1, equation (1.2) with to € [0,7] has a
unique solution on [0,T], bounded by M, uniformly w.r.t. e.

In the sequel, C' will denote a generic constant that only depends on ty and on the
bounds of 0¢F, a = 0,1,2,3, on the set {(0,u),8 € T, |u| < 2M}, where T = [0, 27].

The aim of this work is now twofold. On the one hand, we show that, under mild
and standard assumptions, an averaged equation (for (1.2) of the form

(1.3) vte[0,T], @ (t)=(F)w®), u(0)=u

persists (in (F), function F is averaged w.r.t. the time variable).” More precisely, we
have the following theorem (see the proof in Section 2.2), which can be refined with
the next-order asymptotic term (see Section 2.3).

THEOREM 1.2. Suppose that Assumption 1.1 is satisfied and consider the solu-
tions u®(t),us(t) of problems (1.2), (1.3), respectively, on the time interval [0,T)].

Then, there exists eg > 0 such that for all € €]0,g¢[, and all t € [0,T],
(1.4) luf (t) — uf (t)| < Cewit.

Note that the bound |u®(t) — u(¢)| < Ce obtained in the classical case [SV85] of a
constant frequency (that is to say in the case where (t) = 1 in equation (1.1)), is
degraded to (1.4) for p > 1. For p = 0, both estimates coincide.

On the other hand, we construct in the case p = 1 a second-order uniformly
accurate scheme for the approximation of u®, that is to say a method for which the
error and the computational cost remain independent of the value of ¢ (for more
details on uniformly accurate methods, refer for instance to [CCLM15, CLMV18]).

2. Averaging results. We introduce the following function T : [0,7] — [0, S]
with S = (T — to)Pt! + %!

t
I(t) ::/ IV ()|dE = 5 + puy (t — to)PT, iy = sign(t — to)? = %1,
0

and notice right away that I is invertible with inverse I'"! : [0, S] — [0, T] given by

1

1 . 1
I Y(s) = sg*" +sign(s — so) |s — so| 71, so =4t
5Note that here as in the sequel, we denote the average of a function w : T — R? by
1

27
(w) = 5/0 w(0)db.
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Fic. 1. The functions T (in blue) and T~ (in red) with to =1 and T =2 for p =1,2,5.

Let us now consider for s = I'(¢) the function v®(s) = u®(t), which, for s # so,
satisfies

ivss:;ue “1(s)) = 1 5% vE(s
<) ]_—"o]_"*l(s) (F ()) (p+1)|s—80|pi1F”S( e ())

(21) —

with initial condition v°(0) = vf := ug,

1 if (s—s09)? >0
Lhs = { 1 otl(lerwise) and  Fi1(0,u) := F(£0,u).
As an immediate consequence of Assumption 1.1, equation (2.1) has a unique solution
on [0, S], bounded by M uniformly in 0 <& < 1.

In this section, our aim is to show that there exists an averaged model for (2.1)
of the form

1
0°(s) = — (F) (v°(s)), v°(0) = vg,
v°(s) (p+1)|s_80|m<>( (s)) (0) =5

(2.2) Vs € [0,.5],

and then construct the first term of the asymptotic expansion of v¢ (see Section 2.3).
Note that, despite the singularity at s = s¢ of the right-hand side of (2.2), its integral
formulation clearly indicates the existence of a continuous solution on [0, S].

2.1. Preliminaries. Let us introduce the following 27w-periodic zero-average
functions

Gurlo.0) = [ (P (02) — (F) (u))d < / (Far(oyu) - <F><u>>da> ,

and .
Hyiq(0,u) z/ Gi1(o,u)do — </ G11(o, u)da>.
0 0
Note that
1 27 1 27 1 27
), Fi(o,u)do = %/0 F_y(o,u)do = ), F(o,u)do = (F)(u)

which is the reason why (F') appears in lieu of (Fx1) in the definition of G11. It
is clear that these functions and their derivatives in u are uniformly bounded: for
|u| < 2M, v € R? and s € R, we have

(23)  |Gaa(s,u)| + [Hea(s,u)| <O [02Gxa(s, wv] + |0 Haa (s, u)v| < Clof,
4
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91 (24) |05G +1(s,u)(v,v)| + |03 Hi (s, u) (v,0)] < CJof?,

92 where we have denoted 0y the partial derivative with respect to the variable u. We
93 eventually define the function

too 1
94 (2.5) Vu € RL Vs € Ry, Qui(s,u) = / — (Fy1(o,u) — (F)(u))do.

o pr+1

95  The following two technical lemmas will be useful all along this article.

96 LEMMA 2.1. The function Q41 is well-defined for all s € R, and u € R?. More-
97 over, for all u satisfying |u| < 2M, all s > 0 and all v € R%, we have the estimates
98

99 (2.6) 1Qx1(s,u)| < C, 02941 (s,u)v] < Clo|,  [03Q41(s,u)(v,v)|] < Clv]>.
100 Restricting to strictly positive values of s, i.e. s > 0, we have furthermore

o1 (2.7) Qe (s,0) <~ (a0 (s, 0] < S,

sp+l Sp+1

102 and

(2.8)
103 Qi1(s,u) + Gil(ps’ v)

Sp+1

C
<

= P
51+p+1

02G41(s, u)v < Clv|

D — D *
spt+l 51+p+1

31 (s,u)v +

Proof. We only prove the results for {24 as their adaptation to 92041 and 954,
is immediate. An integration by parts yields

G11(s,u) P oo 1
Q = — —G d
i1(57 U) Sril + P+ 1 s O_lJr—pf’r1 :tl(U, u) g,

where, from (2.3), the last integral is convergent and bounded by C—. This yields

spt+1

the well-posedness of 211 for all s > 0 and (2.7). We now simply remark that for all
s>0

Qi1(s,u) = / 1p (Fi1(o,u) — (F)(u))do 4+ Q11 (1, w).

o pF+1
This gives the well-posedness for s = 0 and (2.6) can be deduced from (2.7) written
for s = 1. A second integration by parts then gives

Gii(s,u)  p Hia(s,u) | p p /“’" 1
Q =— A - 1+ —— ———Hi1(o,u)do.
#1(5u) SPH p+1 gt +p +1 * p+1) ), o*tee +1(0,u)do

P
p+1

105 Previous integral is bounded by —%— owing to (2.3) and this yields (2.8). O

_pb
106 REMARK 2.2. Since (H2)7%T <2 for s > 1, estimates (2.6) and (2.7) also imply

S
107 for instance that for all s > 0,

C C|v|

108 [Q11(s,u)] < —————  and  [02Qx11(s,u)v| < —————.
(14 s)p+T (1+ s)ptt
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110 In order to state next result, we now define, for any function ¢ : T x R — R? and
111 for 0 <a <b< S, the integral
1P 1 -
112 (2.9) Z¢(a,b) = / —¢ o Sol,vs(o) do
113 p+1Ja |o—s|7HT €

114 where v° is assumed to be the solution of equation (2.1).

115 LEMMA 2.3. For a given p € N*, consider two smooth functions ¢, : T x R? —
116 R satisfying the estimates

117 (2.10) [Y(o,u)] <C  and  |Pp(o,u) + Ylo, U)L < OHL,
118 (I+o)mr] (I40) 77
119 for all @ € T and oll |u| < M. If p=1, we have

e+s9—0b

120 (2.11) Vb € [0, s0], Z°(0,b) = Ve log (

4 ) )00+ 0(v8),

So+¢€

121 (2.12) Vb€ [s0,5], I°(s0,0) = Ve log (b—si—i—s) () (v°(s0)) + O(Ve),

122 2
123 where averages are taken w.r.t. the first variable. If p > 2, we have the estimate
134 (2.13) V0<a<b<S$, |I°(a,b)|<Cer.

Proof. Consider 0 < b < sg. A change of variables allows to write Z¢(0,b) as

Fon< [T ] E p
O = 5 [ o o= e do

126 Now, we split (p+ 1)5p;+11I5(0, b) = Jo+ Js3 + Jo — J1 into the sum of the four terms
o 1 1 .

127 Jo = m —— | (¥) (v"(s0 — €0)) do,
0 \(L+o)rer (ol +0))7

5 _ ¢ r — o,v°(sg —e0))do
B ey (D e - o o

s0 50
= 1 = 1

129 Ja :/So_b (0,0 (s0 — €0))do, T = /So_b m(@ (v°(so — €0)) do,
e B a)r

130 ortt

where we have denoted r(o, u) = ¢(o, u) + —L2Y

)
(1+0) 7T
1 1 p

(102 omi(lto)d | pri B

. Owing to assumption (2.10) and

o — +00,

131 integrals Jo and Jy are absolutely convergent and uniformly bounded w.r.t. €. As
132 for Js, we use the relation

(W= W)(o,v%(s0 —€0)) _

(14 0)75T

P
o r+

1

134 +

135 (p+1)ow
6

—
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where we have taken equation (2.1) into account with pus = p = (—1)? and

Hoo — o,u
o= [ o,

o7 (1 4+ o) it

)

in order to write [J3 as

Js = k (io,f(())) e <5° - b,zf(b))

€ 5

51)«1#1 E 1 .
— | — (02K F_,,) (0,v° (50 — €0)) do
0+ 1) Jus o7

from which we may prove that J3 is bounded (note indeed that 0.k F_, is bounded).
For p > 1 it is clear that J; is bounded owing to (2.10) and finally, that Z¢(0,b)
is bounded. The contribution of J; for p = 1 is more intricate and requires to be
decomposed as follows

S = /i 1i0<¢>(vs(b>)da+/@i 1J1r0(<¢)(v5(so — o)) - <¢>(Uf(b)))da

S0

:10g<w> GO + [ () (0" (50 — £0)) — () (v* (b)) dor

e+s9—0b so=t 140

To estimate the second term, we use (2.1) and so — eo < b < 59 to get

b -5
@ | < | [ om0 R (2w (rar | < OV
so that
[ o) WO < [* S <o

We finally obtain that
—-b
7200 = % tog (LR )00 + OE)

Mutatis mutandis, a similar conclusion holds true for the case a = sy and b > s¢ as
can be seen by writing the new value of J; as

/0 © <¢>(UE(30)) + <¢>(U€1(i0;_ EU)) — <w>(ve<80)) = log (1 + b _630) <¢>(U6(80))

+0(1). O

b—sg

2.2. The averaged model. We are now in position to state the first averaging
estimate, from which Theorem 1.2 follows by considering the change of variable T'.

PROPOSITION 2.4. Let v® be the solution of problem (2.1) on [0,S], under As-
sumption 1.1. Then, for all 0 < & < gy where €9 depends only on bounds on the
derivatives of F, the solution v° of the averaged model (2.2) exists on [0,S] and one
has
(2.14) Vs e 0,8], [v°(s) —v(s)| < Cevti.

7
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Proof. The integral formulation of equation (2.1) reads

(2.15)

“(s) =5 ! ) ! ve(0))do (s
FO =4 [ (P 0T + R,

where (with p, = sign(o — s¢)P)

g — 8o

(2.16) Ra(s):pilfos |a_i0|p$1 (FH< . ,Us(g)> — (F) (Us(g))) do,

which is well-defined for all s € [0,S]. From (2.5) with ¢ = sign(c — sg), o # so, we

have

do

iQu <|O—_SO|,U€(J

€

) = @0 (T2

+ (022,) <|a€30|’vs(a)> ¥%(0)

N (o (Z22.050)) - 0y 07000

|o — so|7¥T lo —so0| .
+ W(aggy) ( , U (U))

that is to say, taking v = qu,

(2.17)
1

g — 8o
— | F
o — so|71 ( “6(

where we have used (2.1).

therefore

(2.18)

€
7T _ _
gsp p 6QQ§MO- (|U SO|7UE(U)> Fl‘lo‘ (U 807 8(0')) b
(p+1)|o — so| 777 € € |
For o0 < s < 59 we have pu, = (—1)? = pus, ¢ = —1 and

p+1 So—S . S0 ¢
P Qus< - a“(s)>_9#s(€avo)>

a relation from which we may deduce, using (2.6) and Assumption 1.1, that |R*(s)]
Ce/(P+1) | In particular, |R*(sq)| < Ce/®+D . As for s > 50, we have p, = ¢ =

and thus
(2.19)

This manuscript is for review purposes only.

ertt ’ 1 Sop—0 so— 0
—0o)_ — F_ — d
(p+ 1)2/0 (80 — O')PT 2 Ha < £ v (0)> Hs < 5 v (U)> 9

<
1

@) =) o)) = e (9, (T2 (@)



189
190

191

192
193
194
195
196
197
198
199
200

209
210
211
212
213
214
215
216
217
218

and we may again conclude from (2.6) and Assumption 1.1 that |R°(s)| < Cevit for
so < s < S and eventually for all 0 < s < S. Finally, we have on the one hand,

1 /S 1 1
ve(s) = v§ + — (F) (v°(0))do + O(er+1),
@ =tit 0 [ () 6o + o)

and on the other hand,

v (s) = o + — /OS| L (P (0)do,

p+1 o — so|7HT

as long as the solution of (2.2) exists. Assumption 1.1 and a standard bootstrap
argument based on the Gronwall lemma then enable to conclude. ]

2.3. Next term of the asymptotic expansion. This section now presents
how the estimate of Proposition 2.4 (analogously Theorem 1.2) can be refined by
introducing an additional term of higher order in e, namely 5%, in the asymptotic
expansion.

PROPOSITION 2.5. Let p = (=1)?, and 6, =1 if p =1, 6, = 0 otherwise. Under

Assumption 1.1, if we consider the solutions U° and w® of the averaged equation (2.2)
respectively on [0, so] and [so, S] and with the respective initial conditions

1
_ grtt S0
2.20 f0)=vi — (—, 5),
( ) v%(0) = v5 P+l I3 5”0
e T

e (s9) = 0°(s0) +
(s0) (s0) P

(920 (0 9%(50)) + 2 (0,7 (s0)) )

(5p€ € =€
B Tlog <5 + so> GEF) (7 (e0))

and V¢ the continuous function defined by the following expressions:

I . eFiT So0—85 _, Ope eE+s9g—s .
< = - _
a0 ) = 07(5) + 0 (U (9)) - Bl (ST (i) (0709

50 < s, 5&(5) _ wg(s) . gr¥t Q, <S — 507@6(8)> + (%Tglog (5+5€50) <32GF> (’LIJE(SO)) +Bgl

p+1 €
where . .
B = 0 (0,0 (s0)) — Q4 (0,5 (s0))
p+ 1 9 p+ 1 b b
then we have
(2.21) Vs €[0,5], [vi(s)—°(s)| < Cerir.

REMARK 2.6. In classical averaging theory (i.e. for v(t) = 1 or equivalently for
p = 0), the solution ve(s) of (2.1) is obtained as the composition of three maps (see
for instance [Per69] or [SV85]): (i) a change of variable of the form v§ + epf(v§)
applied at initial time, (ii) the flow map at time s of a smooth differential equation
whose vector field is of the form (F) + eFe and (i1i) a change of variable of the form
v§ + et (v§) applied time s. The e7T and log terms in (2.20) and in ©° and W° are
the counterpart of ¢§(v§) and ©5(v§) in this more intricate situation.

9
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Proof. In order to refine estimates (2.18) and (2.19) of R®(s) obtained in the proof
of Proposition 2.4, we rewrite them as

(2.22) 1
s < so: RE(s) = ;Tl (QH (50; S,UE(S)> 0, (%O,us) —Iu(OaS)) :
(2.23)

1
p+1

15 _ 1 € £
s>s0:R°(s)=R (3(1)+p+1 (Ql (0,v (50))_91<

S — 8o

; UE(S)> + Zi(so, 8)) :

€

where the expression of Z¢ coincides with Z¢ in Lemma 2.3 for ¢(o,u) = 020, F, (0, u)
and ¥ (o,u) = 02G,F,(o,u). If z and z differ by an O(Eﬁ), then, using (2.6)-(2.7),
one has

Vv = +1, ‘Q,, (fx) —Q, (fg)‘ < Cevir
g €
1

and owing to (2.14), estimates v°(0)—v°(0) = O(sﬁ) and W (sg)—0°(sg) = O(er+1),
and the Gronwall lemma, it stems that

V0 <s<sg, v°(s)—0°(s) = O(Eﬁ) and Vsp <s <S5, @0(s)—v°(s) = O(Eﬁ)l

As a consequence, v°(s) can be replaced by v°(s) in (2.22) and by @°(s) in (2.23), up
to O(aﬁ)—terms.

1
Case p > 1: Lemma 2.3 shows that the terms sp‘::ll Z¢ in (2.22) and (2.23) are of

order O(E%>, we thus have for s < s

v (8) = v + — /O (F) (), , €77 [Qu (SO_“,UE<U)>T_S+O(EJI>7

p+1 |0—80|# p+1 € o=0

1
ept1

that is to say, by denoting V=(s) = v°(s) — 71 02-

H (%,@5(3))7 the equation

e ) (V@) + (v (o) = VE()) 2
/

Ve(s) — E(O):p+1 ( == do 4 O(e7+T)
Sg —0)prtl
1L 2 (F) (V(0))do + (0o F) (V< (0)) (v°(0) = VE(0)) . 2
_p+1/0 P do + O(77),
1o _ i
:p+1/0 = (F) (V¥(0))do + O(e7T),

where we have used Remark 2.2 to get the bound

9

1)17 (0uF) (VE(0))02, (SO — Uﬁ(o))

Y 1
do < Cewit / — do.
0o (c(1+o0))rH
2

From V¢(0) —©°(0) = O(¢7+1) and equation (2.2), we obtain by the Gronwall lemma

Vs <so, [0°(s) = o°(s)] = [VE(s) — 0°(s)] < Cerhr
10
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261

262

263
264
265
266
267
268

269

270

For s > s, we write

1
Denoting We(s) = v°(s) + SOy (2222, w7 (s)), we have the simple equation

€

W (s) = We(s0) + — /<F>(W€( )))do—i-(’)( ),

p+1 (0750)“1

and by comparing with equation (2.2), Gronwall lemma enables to conclude that
We(s) — we(s) = O(eviT) given that W*(so) — w(so) = O(e7i7) (by definition of
e (sp) and W¢(sp) and estimate (2.21) for s = sgp). The statement for s > sy now
follows from (¢ = O(Eﬁ).

Case p = 1: This case differs in that the terms §I§ in (2.22) and (2.23) are now of
order elog(e) for s close to sg. This yields for s < s
L [*(F) (v(0)) Ve So—0 Ve
'UE(S) = ’08 + 5/0 ﬁd(f + 79711 - 71)6(0') o — 7.’[7#(0, S)
+0(e),

that is to say, by denoting

Vels) = vl = Yo (2 () )+ S1og (S20) i) 070

€+ 580

the equation

Vi =i+ [ wi‘(j)do + [HEHED 4e(0) - v (oo + 0

:V05+/0 <2z/(80j ‘[/ (02 SO_UJ)) u (SOEG,ag(a)>dcx

s IOg (5+sofa

3 e+so0 ) € _e
8 ) Voo (02F) (VE(0)) (0:G F) (v°(0)) + O(e)

*(F) (V<(0))
=V5 do+ 0O
0 +/O 2\/80TO' o+ (5)7
where we have used Lemma 2.3 again now with ¢(o,u) = (02F)(u)Q_, (o,u) and
Y(o,u) = (02F)(u) G_,, (0,u), and noticed that (¢) = (0:F) (G—,) = 0, to get rid
of the second term of the second line. The third term may be bounded through an
integartion by parts. We finally conclude by Gronwall lemma. For s > sq, we get

v (s) = v (s0) + % / <F>U(v\/_;(;))da - § [91 ("jo,wf(a))]” + %Il(so,s)

O=80

11
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278
279

380

285

288

289
290
291
292

that is to say, by denoting

W) = of(o) 4 o (a0 ) - Sion (i) @6 F) (o)

the equation

i) =Wt [ fF [T OO 0, (722 a10) ) a

s lo
g [ g§%°) F) (W2(0) (826 F) (5(50) + O()

= 87<F )) g e
= +/ sl O,

where we have used equation (2.12) of Lemma 2.3, and we may conclude as before.O

2517+1

COROLLARY 2.7. Let p = (—1)?, 6, =11ifp=1, 6, = 0 otherwise and 1y =
Under Assumption 1.1, consider uj and u$, the solutzons of

(2.24) ut(t) = (F)(u (1)),
respectively on [0, tg] and [to, T| with respective initial conditions

e _
B (70, ug)

and

=€ —€ 5# =€ =€ 6176 €
w3(t0) = 5 (to) " (0 (0, 5 (10))+02- (0,55 (10)) )+ Tog (14 70) (06 F') (i (t0))
Then we have

2

(2.25) Vee[0,T], |uf(t) — ()| < Cert

where U° is the continuous function defined on [0,T] by the following expressions:

e . et . Ope 1+7 .
OStsts O =0+ 0, (nai0) - Bl (15T ) @6 @)

to <t <T: u(t)=u3t)— O (ru3(t)) + 2e log (1+7) (9:GF) (u3(to)) + ﬂs,l

4

with 7= 29 gng 5o = <70, (0,35 (to)) — SEE0, (0, (fo)-

3. A micro-macro method. In this section, we suggest a micro-macro de-
composition, analogous to the one introduced in [CLM17] and elaborated from the
asymptotic analysis of Section 2. In a second step, we propose a uniformly accurate
numerical method derived from this decomposition.

12
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294

296
297
298

299
300

310
311

315

316

w
—_
~

318
319

3.1. The decomposition method. Let u®(t) be the solution of (1.2) and let
u®(t) be the approximation defined in Corollary 2.7, and consider the defect function

(3.1) A% (t) = u(t) — u®(¢), for t € [0,T].
PROPOSITION 3.1. Assume that f is of class C? and consider the solution u®(t)
of (1.2) on [0,T]. Forp > 1, the function A®(t) defined by (3.1) satisfies

(32) we[0,T],  |A%(H)] < Cev,

(3.3) ¥t e [0,to[Ulto, 11, )Af(t)‘gcs# and if p =1 ‘Ae(t)‘ga

Proof. By construction, 4 is continuous on [0,7] and estimate (3.2) is nothing
but (2.25). However, its derivatives are not continuous at to. Hereafter, it is enough
to consider ¢ in [0,¢g] as the same arguments can be repeated for values in |tg, T
From the expression of

~c __ =€ gﬁ —E _ (SPi 1 +7 —E _ (t - tO)p+1
T 0) = W) + 0 (i) - % hog (15D ) @GR (@), 7= S
it stems by definition of © (see (2.5)) that
A —€ ‘C:p}rl —€ €
AS(1) = Py (o) — Py () — S 0,00, (7.5) () (55)
_é \f VT dpe 1+7
(3.4 @6 ) )+ 2oy (11) 406 P @),

where we have omitted ¢ in w(t) and u§(¢). Since |u§(t) — u®(¢)| < Cevit on [0, to]
(and |u5(t) —u(t)| < CemT on [to, T]), we have from Prop. 2.4 and Eq. (2.6), the
following estimates

5P+1

SOEP%.
p+1

|F_, (1,u¢) — F_, (1,45)| < Cev T and

7022 (7, 4i) (F)(ai)

Besides, 24/7 < 147, |eloge| < /€, and the first estimate of (3.3) is thus proven. As-
suming now that p = 1 and using again equations (1.2) and (2.2), a second derivation
leads to

As(t) = —2\\//5;(81F(T,u,6) — 81F(7',ﬂ§)) + 0o F (T,UE)F(T,us)
~ 200F (7,5) (F) 30) + (36 () () 56) — 0860 (r,56) () @), () )
~ Y5 0uh (7,05) Gu)(05) () 0) + 51 5z (oGP ()
YT (0,6 ) (5) + 5 g (fi;) & (106 F) @),
13
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324

325

326

327

328

329

330

331

336
337

338

339
340

341

342

Thanks to Assumption 1.1, Lemma 2.1 and (2.2), all the terms are clearly uniformly
bounded, except the critical one in the first line, which requires more attention. We
get

\/; € £ ‘ to‘ € _ | tO‘ € _E
‘\/g(alF(T,u)—ﬁlF(T,ul)><C —u — @] < CE—ag - | + .

where we have used the result of Proposition 2.5, i.e. |u® — @®| < Ce. It remains,
using the expression of u®, to observe that for ¢t # ¢y, 0 < 7 < 73 so that owing to
(2.7), we obtain

Vo< Y (£ 91<T,u§>|+j‘1og(j++;)\<82GF><ui<to>>|)

1
<C ££ +C log ( +7 ) <C
VeENT 1+
This completes the proof. ]

3.2. A uniformly accurate first order numerical method. We are now in
position to introduce uniformly accurate numerical schemes for (1.2). In this Section,
we derive a uniformly accurate first-order method for p > 1. Consider 0 =t° < ... <
tF < ... < tN = T a subdivision of the interval [0,7] containing the singularity to,
with b = maxj—;__ n(t* —t*~1). Inspired by the integral schemes in [CLMV18], we
introduce the following method,

tk+1

t — to)Pt1
(3.5) kTl = oF —|—/ F<(70)7uk>dt
tk 3

Thanks to estimate (3.2) and the first estimate of (3.3), we obtain the following
proposition.

PROPOSITION 3.2. Assume that f is of class Ct. Consider the solution uf(t)
of (1.2) on [0,T], and the numerical scheme u* defined in (3.5). Then u* yields a
uniformly accurate approzimation of order one of the solution uf(t*). Precisely, there
exist eg > 0 and hg > 0 such that for all e < eg and all h < hg,

|u* —uf (t*)| < Ch

for all t* < T and where C is independent of ¢ and h.

The method (3.5) can be efficiently implemented numerically by using the Fourier
expansion of the vector field F(0, u),

F(r,u) = Z T Fy(u).
LEL
The induction (3.5) then reads

tk+1

uFtl = ok 4 (tk+1 k )+ Z( )1/(p+1) e(uk)/ eigflk(t—to)pﬂdt.
(40 ik

Using the change of variables s = e~ 1k(t — t¢) and introducing the notation

+oo »
A() = / ¢ d,
t

14
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we obtain the method (3.5) can be implemented numerically as

(3.6) ufT =wF 4 (P — MY Ry (uh)

PR () ()

0#£0

Observe that the function A,(t) can be evaluated using the incomplete complex

Gamma function I'(v,z2) = f;oo t*~te~'dt where v = 1/(p + 1) for which efficient
numerical packages exist.

3.3. A uniformly accurate second order numerical method. In this sec-
tion, we introduce a scheme of uniform order two. The new method provides ap-
proximations (@¥, AF) of the pair (a@(t*),A%(t*)). Assume that to is one of the
discretization points, i.e. to = t*0 for some ko. An approximation u* of u(t*) is then
derived by assembling the approximation u* of u¢(t¥) from formulas in Corollary 2.7
and eventually by setting u* = @* + A*. Given that problem (2.24) is nonstiff, any
second-order numerical scheme is suitable for the computation of @* and thus of @*,
and we simply choose here the Heun method
h

@ = a4 Y@ + S (F) (3 + B(F) @)

As a consequence, we limit ourselves to the scheme for A®. Starting from

tk+1

(3.7) A =A%) + [ F(1(€),u(§) + A%(€)) de — (@ (") — u (")),

tk

—to|PTL . . k4 k+1 . .
where 7(§) = \5%, we consider at time tF+1/2 = £+l — the approximation

et g
ARtz = AF 4 / F(1(6),@" + A¥) de — ("3 — a¥).
tk
Since the function u® + A® = u® has a bounded first time-derivative, the error associ-
ated to this scheme is of order O(h?). Expanding F in Fourier series, we see that the
scheme necessitates the computation of integrals of terms of the form ¢€* which may

be easily computed numerically using the complex erf function. Now, for k < kg and
t < to, we identify the smooth part of u®(t) as

€ 147
() = us(t Af(t) — -1  — F)Y (u(t
() = w0) + 250 - 1og ({17 ) (0u6F) (0 (0),
so that
€ _ e € __ € ﬁ —€
W) = (1) + A%(1) = a*(6) + 5 (1) 5 (1)
and, by Proposition 3.1 and its proof, it is clear that the second time-derivative of a®
is uniformly bounded. In order to approximate (3.7), we remark that
ak+1/2 _ gk

a(é) =d" + T2 ik (€=t +0(n?),

where setting a¥+1/2 = ¥ 4+ &(F)(a*), we define for 7#+1/2 = 7(¢tk+1/2),

k+1/2
aF Y2 ghtl/2 L ARFL/2 £ log 1+ 7h+L/ (.G F) (ﬁk+1/2)_
4 ]. +’7’0

15
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Moreover, we have

V(s 8) € R%, |1 (s, a") — Qu(8,a%)] = /S il Uk>\/_g<F>(Uk>do < CIV5— /s
so that
V2 (@), 7) — Yoo (+().5)| < On
and
V2 (7(9).55(©) = Yo (r(€).1) + Y (€~ 1) 0 ((6). ) (F) (1) + O,

Therefore, denoting
b =dk + %Ql (T(tk),ﬂk) ,

354 our numerical scheme takes the form

N it N tht1 i oy ak L2 gk
tk+1 \/»
356 / 5 (€= 17) 0aF (7(€),0°) 080 (7(€), a*) (F)(a*)dg
1 \/,
/ YE0R (1(9), 1) (@1 ((€),5) — O (r(1), ) de
438 () — e (),
360 and has a truncation error of size O(h?®), uniformly in e. As for k > ko, we have
1/2
01 ab =@+ AF 4 Slog (ST ) (0,GF) (@ (o)) + 7, bF = aF — Sy (r(t), "),
362 4 1+7o 2
363 and
o k+1 k o k o k gy @2 —at
tk tk -
tk+l \/g
365 — 5 (& = %) 0o F (7(£),b%) 0201 (T (%), a*) (F)(a*)dé
tk
Ve, (T
366 — [ FOF (; b’f) (1 (&), a¥) — Qq (r(t7),a")) dr
t
463 + () — ().

369  According to the above computations, the uniform accuracy with second order of the
370 proposed scheme may now be stated:

PROPOSITION 3.3. Assume that f is of class C?. Consider the solution u (1)
of (1.2) on [0,T], and the numerical scheme (u*, A*) defined above. Then uF =
u* + A¥ yields a uniformly accurate approzimation of order two of the solution u® (t*).
Precisely, there exist eg > 0 and hg > 0 such that for all e < eg and all h < hg,

[u¥ — uf (t*)| < Ch?

for all t* < T and where C is independent of ¢ and h.
16
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3.4. Numerical experiments. We test our method on the Hénon-Heiles sys-
tem with solution U® = (g1, g2, p1, p2),

. t t
Ue(t) = (@plal&a _9(']1 - 2(111127 —q2 — Q% + QS>5 UE(O) = (09706a 08705)a

with a time-varying parameter v(t) = (p+1)(t—to)? where ¢, is a zero of multiplicity p.
The associated filtered system, satisfied by the variable u®(t) € R* defined by

us(t) = (cos(0)q(t) — sin(6) p1(t), g2(£),sin(0)qs (¢) + cos(0)pr (1), p2(t)) ,
with 6 = @, takes the form (1.2) with

Fi(0,u) = 2sin0(u1 cos 0 + us sin@)uz, Fy(0,u) = uy,
F5(0,u) = —20089(u1 cos 0 + us sin9)uQ, Fy(0,u) = —(u1 cos 0 + us sin9)2—|—u§—uQ.

We consider a time interval of length T = 1 and take ¢ty = 1/3 as time where the
oscillatory frequency vanishes. The reference solution is obtained using the matlab
ode45 routine with a tiny tolerance. In Figures 2 and 3, we have represented the error
versus the stepsize of the numerical solution u* in (3.5) (uniform order 1) in cases
where 7(¢) has multiplicities p = 1 and p = 2 respectively. In Figure 4, we consider
the method of Section 3.3 (uniform order 2) for p = 1. On the left pictures, the error
is plotted as a function of the stepsize h, for fixed values e € {27% k =0,---,11}
where lines of slope 1 (Fig. 2 and 3) and slope 2 (Fig. 4) can be observed. On the
right pictures, the error is plotted as a function of ¢, for fixed values h € {0.1/2%, k =
0,---,9}, which illustrates the uniform accuracy of the schemes with respect to . All
curves are in perfect agreement with Propositions 3.2 and 3.3.

107 F 107!
102 102
g g
3 g
; 10° ; 10
3 7 ~
10 107
-5 L L -5 L L
10 10
107 10° 102 10 10 102 102 107! 10°
h €

Fi1G. 2. Method (3.5) (uniform order 1) for multiplicity p = 1. Error as a function of h for
e€ {27k k=0,---,11} (left) and error as a function of € for h € {0.1/2%, k =0,---,9} (right).
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Fic. 3. Method (3.5) (uniform order 1) for multiplicity p = 2. Error as a function of h for
e€e27 k=0,---, eft) and error as a function of € for h € {0. ,k=0,---, right).
27k k=0 11} (left) and f fe for h € {0.1/2F k=0 9 h

L™ error

X

F1a. 4. Method with uniform order 2 for multiplicity p = 1. Error as a function of h for
ec{27F k=0,---,11} (left) and error as a function of € for h € {0.1/2F k =0,---,9} (right).

4. Conclusion. In this work, we have derived the first terms of the asymptotic
expansion in e of the exact solution of equation (1.2). As compared to standard
averaging where -y is assumed to be bounded from below by a strictly positive constant,
convergence towards the so-called averaged model is severally deteriorated for large
values of p. For p = 1, the next term in the asymptotic expansion behaves quite
unexpectedly as €log(e) when € goes to zero and this seems to be the first time such
a behaviour is revealed. Based on this asymptotic expansion, we have shown that
it is possible to construct uniformly accurate numerical schemes of orders 1 for all
p > 1 and 2 for p = 1. Whether one may envisage to construct a uniformly accurate
second-order method for p > 1 remains an open question and will be the subject of
further investigations.
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