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Abstract. In the analysis of highly-oscillatory evolution problems, it is commonly assumed4
that a single frequency is present and that it is either constant or, at least, bounded from below5
by a strictly positive constant uniformly in time. Allowing for the possibility that the frequency6
actually depends on time and vanishes at some instants introduces additional difficulties from both7
the asymptotic analysis and numerical simulation points of view. This work is a first step towards8
the resolution of these difficulties. In particular, we show that it is still possible in this situation to9
infer the asymptotic behaviour of the solution at the price of more intricate computations and we10
derive a second order uniformly accurate numerical method.11
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1. Introduction.15

1.1. Context. Highly-oscillatory evolution equations of the form

U̇ε(t) :=
d

dt
Uε(t) =

1

ε
AUε(t) + f

(
Uε(t)

)
, Uε(0) = U0, 0 ≤ t ≤ T,

where T is a strictly positive fixed time, independent of ε, and where the operator
A is supposed to be diagonalizable and to have all its eigenvalues in iZ (equivalently
exp(2πA) = I), have received considerable attention in the literature, from both
the point of view of asymptotic analysis [Per69, SV85, HLW06, CMSS12, CMSS15,
CLM17] and the point of view of numerical methods [CCMSS11, CMMV14, CCMM15].
However, allowing the parameter ε to take values in a whole interval of the form ]0, 1],
prevents the use of numerical methods constructed for specific regimes. As a matter
of fact, standard methods1 from the litterature [HNrW93, HW10] typically have error
bounds expressed as powers of the step-size h of the form2

error ≤ Ch
p

εq
, p > 0, q > 0,

where p is the order of the method and q is equal to p or p− 1: while suitable for the
regime ε close to 1, they require formidable computational power for small values of
ε. At the other end of the spectrum, methods based on averaging and designed for
small values of ε (see for instance [CMSS10]) typically admit error bounds of the form

error ≤ C(hp + εq), p > 0, q > 0,

where p is the order of the method and q is the order of averaging: they thus encompass
an incompressible error for larger values of ε. In contrast, uniformly accurate methods

1Univ Rennes, INRIA, IRMAR - UMR 6625, F-35000 Rennes, France. Philippe.Chartier@inria.fr
2Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France. Mohammed.Lemou@univ-

rennes1.fr
3Univ Rennes, IRMAR - UMR 6625, F-35000 Rennes, France. Florian.Mehats@univ-rennes1.fr
4Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64, CH-1211 Genève

4, Switzerland, Gilles.Vilmart@unige.ch
1Such as, for instance, the Runge-Kutta method used in the Matlab routine ODE45 (see the

“Numerical experiments” Section 3.4).
2The constant C here is independent of ε and h.

1

This manuscript is for review purposes only.



[CLM13, CCLM15, CLMV18] are robust schemes that are able to deliver numerical
approximations with an error (and at a cost) independent of the value of ε ∈]0, 1],

error ≤ Chp.

16

In this paper, our objective is to construct uniformly accurate methods for equa-17

tions whose frequency of oscillation depends on time. More precisely, we consider18

systems of differential equations of the form19

U̇ε(t) =
γ(t)

ε
AUε(t) + f

(
Uε(t)

)
∈ Rd, Uε(0) = U0 ∈ Rd, 0 ≤ t ≤ T,(1.1)20

where A ∈ Rd×d and where the function f is assumed to be sufficiently smooth. The21

parameter ε again lies in the whole interval (0, 1] and the real-valued function γ is22

assumed to be continuous on [0,+∞).23

Many semi-classical models for quantum dynamics also assume the form of highly24

oscillatory PDEs with a varying frequency (which, once discretized in space, obey25

equation (1.1)), e.g. quantum models for surface hopping [CJLM15], graphene models26

[MS11], or quantum dynamics in periodic lattice [Mor09]. In such applications, the27

frequency γ may depend on time (and sometimes also on Uε and measures the gap28

between different energy bands, while the parameter ε is nothing but the Planck29

constant. We emphasize that the case of a varying frequency with a positive lower30

bound has been studied in [CL17] for surface hopping, in [CJLM] for graphene, and31

also in [HL16] where the long-term preservation of adiabatic quantities is established32

in a situation where the right-hand-side of equation (1.1) is Hamiltonian. However,33

the case where the frequency may become small (e.g. of the order of ε) or even vanish34

is more delicate and requires special attention from both analysis and numerical points35

of view. This is the reason why the main novel assumption in this article is that the36

function γ vanishes at some instant t0, or more precisely, that there exists (a unique)37

t0 ∈ [0, T ] such that γ(t0) = 0.38

Our goal is to investigate problem (1.1) under these new circumstances, from both
the asymptotic analysis (when ε → 0) and the numerical approximation viewpoints.
For the sake of simplicity in this introductory paper, we assume that γ(t) is of the
form 3

∃p ∈ N∗, ∀t ≥ 0, γ(t) = (p+ 1)(t− t0)p.

We emphasize that this situation is not covered by the standard theory of averaging39

as considered e.g. in [Per69, SV85, HLW06, CMSS10, CMSS15, CLM17], and that40

recent numerical approaches [CCMSS11, CLM13, CCLM15, CLMV18] are ineffective.41

All techniques therein indeed rely fundamentally on the assumption that γ(t) ≥ γ042

uniformly in time, for some constant γ0 > 0, and cannot be transposed to the context43

under consideration here4.44

45

3Note that applying an analytic time-transformation to (1.1) allows to consider more general
analytic functions γ(t) and our analysis is not restricted to the polynomial case.

4As a related recent work, we also mention the study [AD18] for the uniformly accurate approx-
imation of the stationary Schrödinger equation in the presence of turning points which are spatial
points used in quantum tunnelling models and where the spatial oscillatory frequency vanishes (anal-
ogously to our assumption γ(t0) = 0 with t0 = 0). However, the equation under consideration is
linear and assumed to have an explicit solution on [t0, t1] for some t1 > 0 independent of ε. Beyond
t1, the problem can be handled with a Wentzel-Kramers-Brillouin expansion, since the frequency is
then lower bounded by positive constant.
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1.2. Formulation as a periodic non-autonomous problem and main re-46

sults. Upon defining uε(t) = exp
(
− (t−t0)p+1

ε A
)
Uε(t), the original equation (1.1)47

may be rewritten48

u̇ε(t) = F

(
(t− t0)p+1

ε
, uε(t)

)
, uε(0) = uε0 := exp

(
− (−t0)p+1

ε
A

)
U0,(1.2)49

where F (θ, u) = e−θAf(eθAu) is 2π-periodic w.r.t. θ and smooth in (θ, u). We make50

the following assumption:51

Assumption 1.1. The function f is twice continuously differentiable on Rd and52

there exists M > 0 such that for all 0 < ε ≤ 1, equation (1.2) with t0 ∈ [0, T ] has a53

unique solution on [0, T ], bounded by M , uniformly w.r.t. ε.54

In the sequel, C will denote a generic constant that only depends on t0 and on the55

bounds of ∂α2 F , α = 0, 1, 2, 3, on the set {(θ, u), θ ∈ T, |u| ≤ 2M}, where T = [0, 2π].56

The aim of this work is now twofold. On the one hand, we show that, under mild57

and standard assumptions, an averaged equation (for (1.2) of the form58

(1.3) ∀t ∈ [0, T ], u̇ε(t) = 〈F 〉 (uε(t)), uε(0) = uε059

persists (in 〈F 〉, function F is averaged w.r.t. the time variable).5 More precisely, we60

have the following theorem (see the proof in Section 2.2), which can be refined with61

the next-order asymptotic term (see Section 2.3).62

Theorem 1.2. Suppose that Assumption 1.1 is satisfied and consider the solu-63

tions uε(t), uε(t) of problems (1.2), (1.3), respectively, on the time interval [0, T ].64

Then, there exists ε0 > 0 such that for all ε ∈]0, ε0[, and all t ∈ [0, T ],65

(1.4) |uε(t)− uε(t)| ≤ Cε
1
p+1 .66

Note that the bound |uε(t) − uε(t)| ≤ Cε obtained in the classical case [SV85] of a67

constant frequency (that is to say in the case where γ(t) = 1 in equation (1.1)), is68

degraded to (1.4) for p ≥ 1. For p = 0, both estimates coincide.69

On the other hand, we construct in the case p = 1 a second-order uniformly70

accurate scheme for the approximation of uε, that is to say a method for which the71

error and the computational cost remain independent of the value of ε (for more72

details on uniformly accurate methods, refer for instance to [CCLM15, CLMV18]).73

2. Averaging results. We introduce the following function Γ : [0, T ] → [0, S]
with S = (T − t0)p+1 + tp+1

0 ,

Γ(t) :=

∫ t

0

|γ(ξ)|dξ = tp+1
0 + µt (t− t0)p+1, µt = sign(t− t0)p = ±1,

and notice right away that Γ is invertible with inverse Γ−1 : [0, S]→ [0, T ] given by

Γ−1(s) = s
1
p+1

0 + sign(s− s0) |s− s0|
1
p+1 , s0 = tp+1

0 .

5Note that here as in the sequel, we denote the average of a function ω : T 7→ Rd by

〈ω〉 =
1

2π

∫ 2π

0
ω(θ)dθ.
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Fig. 1. The functions Γ (in blue) and Γ−1 (in red) with t0 = 1 and T = 2 for p = 1, 2, 5.

Let us now consider for s = Γ(t) the function vε(s) = uε(t), which, for s 6= s0,74

satisfies75

d

ds
vε(s) =

1

Γ′ ◦ Γ−1(s)
u̇ε
(
Γ−1(s)

)
=

1

(p+ 1)|s− s0|
p
p+1

Fµs

(
s− s0
ε

, vε(s)

)
(2.1)76

77

with initial condition vε(0) = vε0 := uε0,

µs =

{
1 if (s− s0)p ≥ 0
−1 otherwise

and F±1(θ, u) := F (±θ, u).

As an immediate consequence of Assumption 1.1, equation (2.1) has a unique solution78

on [0, S], bounded by M uniformly in 0 < ε ≤ 1.79

In this section, our aim is to show that there exists an averaged model for (2.1)80

of the form81

(2.2) ∀s ∈ [0, S], v̇ε(s) =
1

(p+ 1)|s− s0|
p
p+1

〈F 〉 (vε(s)), vε(0) = vε0,82

and then construct the first term of the asymptotic expansion of vε (see Section 2.3).83

Note that, despite the singularity at s = s0 of the right-hand side of (2.2), its integral84

formulation clearly indicates the existence of a continuous solution on [0, S].85

2.1. Preliminaries. Let us introduce the following 2π-periodic zero-average
functions

G±1(θ, u) =

∫ θ

0

(F±1(σ, u)− 〈F 〉(u))dσ −
〈∫ s

0

(F±1(σ, u)− 〈F 〉(u))dσ

〉
,

and

H±1(θ, u) =

∫ θ

0

G±1(σ, u)dσ −
〈∫ s

0

G±1(σ, u)dσ

〉
.

Note that

1

2π

∫ 2π

0

F1(σ, u)dσ =
1

2π

∫ 2π

0

F−1(σ, u)dσ =
1

2π

∫ 2π

0

F (σ, u)dσ = 〈F 〉(u)

which is the reason why 〈F 〉 appears in lieu of 〈F±1〉 in the definition of G±1. It86

is clear that these functions and their derivatives in u are uniformly bounded: for87

|u| ≤ 2M , v ∈ Rd and s ∈ R, we have88

(2.3) |G±1(s, u)|+ |H±1(s, u)| ≤ C, |∂2G±1(s, u)v|+ |∂2H±1(s, u)v| ≤ C|v|,89
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90

(2.4) |∂22G±1(s, u)(v, v)|+ |∂22H±1(s, u)(v, v)| ≤ C|v|2,91

where we have denoted ∂2 the partial derivative with respect to the variable u. We92

eventually define the function93

(2.5) ∀u ∈ Rd,∀s ∈ R+, Ω±1(s, u) =

∫ +∞

s

1

σ
p
p+1

(F±1(σ, u)− 〈F 〉(u))dσ.94

The following two technical lemmas will be useful all along this article.95

Lemma 2.1. The function Ω±1 is well-defined for all s ∈ R+ and u ∈ Rd. More-96

over, for all u satisfying |u| ≤ 2M , all s ≥ 0 and all v ∈ Rd, we have the estimates97

98

(2.6) |Ω±1(s, u)| ≤ C, |∂2Ω±1(s, u)v| ≤ C|v|, |∂22Ω±1(s, u)(v, v)| ≤ C|v|2.99

Restricting to strictly positive values of s, i.e. s > 0, we have furthermore100

(2.7) |Ω±1(s, u)| ≤ C

s
p
p+1

, |∂2Ω±1(s, u)v| ≤ C|v|
s

p
p+1

,101

and102

(2.8)∣∣∣∣Ω±1(s, u) +
G±1(s, u)

s
p
p+1

∣∣∣∣ ≤ C

s1+
p
p+1

,

∣∣∣∣∂2Ω±1(s, u)v +
∂2G±1(s, u)v

s
p
p+1

∣∣∣∣ ≤ C|v|
s1+

p
p+1

.103

104

Proof. We only prove the results for Ω±1 as their adaptation to ∂2Ω±1 and ∂22Ω±1
is immediate. An integration by parts yields

Ω±1(s, u) = −G±1(s, u)

s
p
p+1

+
p

p+ 1

∫ +∞

s

1

σ1+ p
p+1

G±1(σ, u)dσ,

where, from (2.3), the last integral is convergent and bounded by C

s
p
p+1

. This yields

the well-posedness of Ω±1 for all s > 0 and (2.7). We now simply remark that for all
s ≥ 0

Ω±1(s, u) =

∫ 1

s

1

σ
p
p+1

(F±1(σ, u)− 〈F 〉(u))dσ + Ω±1(1, u).

This gives the well-posedness for s = 0 and (2.6) can be deduced from (2.7) written
for s = 1. A second integration by parts then gives

Ω±1(s, u) = −G±1(s, u)

s
p
p+1

− p

p+ 1

H±1(s, u)

s1+
p
p+1

+
p

p+ 1

(
1 +

p

p+ 1

)∫ +∞

s

1

σ2+ p
p+1

H±1(σ, u)dσ.

Previous integral is bounded by C

s
1+

p
p+1

owing to (2.3) and this yields (2.8).105

Remark 2.2. Since
(
1+s
s

) p
p+1 ≤ 2 for s ≥ 1, estimates (2.6) and (2.7) also imply106

for instance that for all s ≥ 0,107

|Ω±1(s, u)| ≤ C

(1 + s)
p
p+1

and |∂2Ω±1(s, u)v| ≤ C|v|
(1 + s)

p
p+1

.108

109
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In order to state next result, we now define, for any function φ : T × Rd → Rd and110

for 0 ≤ a ≤ b ≤ S, the integral111

Iε(a, b) =
1

p+ 1

∫ b

a

1

|σ − s0|
p
p+1

φ

(
|σ − s0|

ε
, vε(σ)

)
dσ(2.9)112

113

where vε is assumed to be the solution of equation (2.1).114

Lemma 2.3. For a given p ∈ N∗, consider two smooth functions φ, ψ : T× Rd →115

Rd satisfying the estimates116

|ψ(σ, u)| ≤ C and

∣∣∣∣∣φ(σ, u) +
ψ(σ, u)

(1 + σ)
p
p+1

∣∣∣∣∣ ≤ C

(1 + σ)1+
p
p+1

,(2.10)117

118

for all θ ∈ T and all |u| ≤M . If p = 1, we have119

∀b ∈ [0, s0], Iε(0, b) =

√
ε

2
log

(
ε+ s0 − b
s0 + ε

)
〈ψ〉 (vε(b)) +O(

√
ε),(2.11)120

∀b ∈ [s0, S], Iε(s0, b) =

√
ε

2
log

(
ε

b− s0 + ε

)
〈ψ〉 (vε(s0)) +O(

√
ε),(2.12)121

122

where averages are taken w.r.t. the first variable. If p ≥ 2, we have the estimate123

∀0 ≤ a ≤ b ≤ S, |Iε(a, b)| ≤ Cε
1
p+1 .(2.13)124125

Proof. Consider 0 ≤ b ≤ s0. A change of variables allows to write Iε(0, b) as

Iε(0, b) =
ε

1
p+1

p+ 1

∫ s0
ε

s0−b
ε

1

σ
p
p+1

φ (σ, vε(s0 − εσ)) dσ.

Now, we split (p+ 1)ε
−1
p+1 Iε(0, b) = J2 +J3 +J4−J1 into the sum of the four terms126

J2 =

∫ s0
ε

s0−b
ε

(
1

(1 + σ)
2p
p+1

− 1

(σ(1 + σ))
p
p+1

)
〈ψ〉 (vε(s0 − εσ)) dσ,127

J3 =

∫ s0
ε

s0−b
ε

1

(σ(1 + σ))
p
p+1

(〈ψ〉 − ψ) (σ, vε(s0 − εσ)) dσ,128

J4 =

∫ s0
ε

s0−b
ε

1

σ
p
p+1

r(σ, vε(s0 − εσ))dσ, J1 =

∫ s0
ε

s0−b
ε

1

(1 + σ)
2p
p+1

〈ψ〉 (vε(s0 − εσ)) dσ,129

130

where we have denoted r(σ, u) = φ(σ, u) + ψ(σ,u)

(1+σ)
p
p+1

. Owing to assumption (2.10) and

1

(1 + σ)
2p
p+1

− 1

σ
p
p+1 (1 + σ)

p
p+1

∼ − p

p+ 1

1

σ
3p+1
p+1

, σ → +∞,

integrals J2 and J4 are absolutely convergent and uniformly bounded w.r.t. ε. As131

for J3, we use the relation132

− (ψ − 〈ψ〉)(σ, vε(s0 − εσ))

σ
p
p+1 (1 + σ)

p
p+1

=
d

dσ
(κ (σ, vε(s0 − εσ)))133

+
ε

1
p+1

(p+ 1)σ
p
p+1

(∂2κF−µ) (σ, vε(s0 − εσ))134

135

6

This manuscript is for review purposes only.



where we have taken equation (2.1) into account with µs = µ = (−1)p and

κ(s, u) =

∫ +∞

s

(ψ − 〈ψ〉)(σ, u)

σ
p
p+1 (1 + σ)

p
p+1

dσ,

in order to write J3 as136

J3 = κ
(s0
ε
, vε(0)

)
− κ

(
s0 − b
ε

, vε(b)

)
137

+
ε

1
p+1

(p+ 1)

∫ s0
ε

s0−b
ε

1

σ
p
p+1

(∂2κF−µ) (σ, vε(s0 − εσ)) dσ138

139

from which we may prove that J3 is bounded (note indeed that ∂2κF−µ is bounded).140

For p > 1 it is clear that J1 is bounded owing to (2.10) and finally, that Iε(0, b)141

is bounded. The contribution of J1 for p = 1 is more intricate and requires to be142

decomposed as follows143

J1 =

∫ s0
ε

s0−b
ε

1

1 + σ
〈ψ〉(vε(b))dσ +

∫ s0
ε

s0−b
ε

1

1 + σ

(
〈ψ〉(vε(s0 − εσ))− 〈ψ〉(vε(b))

)
dσ144

= log

(
s0 + ε

ε+ s0 − b

)
〈ψ〉(vε(b)) +

∫ s0
ε

s0−b
ε

1

1 + σ
(〈ψ〉(vε(s0 − εσ))− 〈ψ〉(vε(b))) dσ.145

146

To estimate the second term, we use (2.1) and s0 − εσ ≤ b ≤ s0 to get147 ∣∣∣ [〈ψ〉(vε(τ))]
s0−εσ
b

∣∣∣ ≤ ∣∣∣∣∣
∫ b

s0−εσ

1

2
√
s0 − τ

(〈∂2ψ〉Fµ) (
τ − s0
ε

, vε(τ))dτ

∣∣∣∣∣ ≤ C√εσ148

149

so that∣∣∣∣∣
∫ s0

ε

s0−b
ε

(〈ψ〉(vε(s0 − εσ))− 〈ψ〉(vε(b)))
1 + σ

dσ

∣∣∣∣∣ ≤ C√ε
∫ s0

ε

0

√
σ

(1 + σ)
dσ ≤ C

√
s0.

We finally obtain that

Iε(0, b) =

√
ε

2
log

(
ε+ s0 − b
s0 + ε

)
〈ψ〉(vε(b)) +O(

√
ε).

Mutatis mutandis, a similar conclusion holds true for the case a = s0 and b ≥ s0 as150

can be seen by writing the new value of J1 as151 ∫ b−s0
ε

0

〈ψ〉(vε(s0)) + 〈ψ〉(vε(s0 + εσ))− 〈ψ〉(vε(s0))

1 + σ
= log

(
1 +

b− s0
ε

)
〈ψ〉(vε(s0))152

+O(1).153154

2.2. The averaged model. We are now in position to state the first averaging155

estimate, from which Theorem 1.2 follows by considering the change of variable Γ.156

Proposition 2.4. Let vε be the solution of problem (2.1) on [0, S], under As-157

sumption 1.1. Then, for all 0 < ε < ε0 where ε0 depends only on bounds on the158

derivatives of F , the solution vε of the averaged model (2.2) exists on [0, S] and one159

has160

(2.14) ∀s ∈ [0, S], |vε(s)− vε(s)| ≤ C ε
1
p+1 .161

7
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Proof. The integral formulation of equation (2.1) reads162

(2.15) vε(s) = vε0 +
1

p+ 1

∫ s

0

1

|σ − s0|
p
p+1

〈F 〉 (vε(σ))dσ +Rε(s),163

where (with µσ = sign(σ − s0)p)164

Rε(s) =
1

p+ 1

∫ s

0

1

|σ − s0|
p
p+1

(
Fµσ

(
σ − s0
ε

, vε(σ)

)
− 〈F 〉 (vε(σ))

)
dσ,(2.16)165

166

which is well-defined for all s ∈ [0, S]. From (2.5) with ς = sign(σ − s0), σ 6= s0, we167

have168

d

dσ
Ων

(
|σ − s0|

ε
, vε(σ)

)
=
ς

ε
(∂1Ων)

(
|σ − s0|

ε
, vε(σ)

)
169

+ (∂2Ων)

(
|σ − s0|

ε
, vε(σ)

)
v̇ε(σ)170

= − ς

ε
1
p+1 |σ − s0|

p
p+1

(
Fςν

(
σ − s0
ε

, vε(σ)

)
− 〈F 〉 (vε(σ))

)
171

+
|σ − s0|

−p
p+1

(p+ 1)
(∂2Ων)

(
|σ − s0|

ε
, vε(σ)

)
Fµσ

(
σ − s0
ε

, vε(σ)

)
,172

173

that is to say, taking ν = ςµσ174

1

|σ − s0|
p
p+1

(
Fµσ

(
σ − s0
ε

, vε(σ)

)
− 〈F 〉 (vε(σ))

)
= −ςε

1
p+1

d

dσ

(
Ωςµσ

(
|σ − s0|

ε
, vε(σ)

))(2.17)

175

+
ςε

1
p+1

(p+ 1)|σ − s0|
p
p+1

∂2Ωςµσ

(
|σ − s0|

ε
, vε(σ)

)
Fµσ

(
σ − s0
ε

, vε(σ)

)
,176

177

where we have used (2.1). For σ ≤ s ≤ s0 we have µσ = (−1)p = µs, ς = −1 and178

therefore179

Rε(s) =
ε

1
p+1

p+ 1

(
Ω−µs

(
s0 − s
ε

, vε(s)

)
− Ω−µs

(s0
ε
, vε0

))(2.18)

180

− ε
1
p+1

(p+ 1)2

∫ s

0

1

(s0 − σ)
p
p+1

∂2Ω−µs

(
s0 − σ
ε

, vε(σ)

)
F−µs

(
s0 − σ
ε

, vε(σ)

)
dσ181

182

a relation from which we may deduce, using (2.6) and Assumption 1.1, that |Rε(s)| ≤183

Cε1/(p+1). In particular, |Rε(s0)| ≤ Cε1/(p+1). As for s ≥ s0, we have µσ = ς = 1184

and thus185

Rε(s) =Rε(s0) +
ε

1
p+1

p+ 1

(
Ω1 (0, vε(s0))− Ω1

(
s− s0
ε

, vε(s)

))(2.19)

186

+
ε

1
p+1

(p+ 1)2

∫ s

s0

1

(σ − s0)
p
p+1

∂2Ω1

(
σ − s0
ε

, vε(σ)

)
F1

(
σ − s0
ε

, vε(σ)

)
dσ187

188
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and we may again conclude from (2.6) and Assumption 1.1 that |Rε(s)| ≤ Cε
1
p+1 for189

s0 ≤ s ≤ S and eventually for all 0 ≤ s ≤ S. Finally, we have on the one hand,190

vε(s) = vε0 +
1

p+ 1

∫ s

0

1

|σ − s0|
p
p+1

〈F 〉 (vε(σ))dσ +O(ε
1
p+1 ),191

and on the other hand,

vε(s) = vε0 +
1

p+ 1

∫ s

0

1

|σ − s0|
p
p+1

〈F 〉 (vε(σ))dσ,

as long as the solution of (2.2) exists. Assumption 1.1 and a standard bootstrap192

argument based on the Gronwall lemma then enable to conclude.193

2.3. Next term of the asymptotic expansion. This section now presents194

how the estimate of Proposition 2.4 (analogously Theorem 1.2) can be refined by195

introducing an additional term of higher order in ε, namely ε
2
p+1 , in the asymptotic196

expansion.197

Proposition 2.5. Let µ = (−1)p, and δp = 1 if p = 1, δp = 0 otherwise. Under198

Assumption 1.1, if we consider the solutions v̄ε and w̄ε of the averaged equation (2.2)199

respectively on [0, s0] and [s0, S] and with the respective initial conditions200

v̄ε(0) = vε0 −
ε

1
p+1

p+ 1
Ω−µ

(s0
ε
, vε0

)
,(2.20)201

w̄ε(s0) = v̄ε(s0) +
ε

1
p+1

p+ 1

(
Ω1 (0, v̄ε(s0)) + Ω−µ (0, v̄ε(s0))

)
202

− δpε

4
log

(
ε

ε+ s0

)
〈∂2GF 〉 (v̄ε(s0)),203

204

and ṽε the continuous function defined by the following expressions:205

s ≤ s0, ṽε(s) = v̄ε(s) +
ε

1
p+1

p+ 1
Ω−µ

(
s0 − s
ε

, v̄ε(s)

)
− δpε

4
log

(
ε+ s0 − s
ε+ s0

)
〈∂2GF 〉 (v̄ε(s)),206

s0 ≤ s, ṽε(s) = w̄ε(s)− ε
1
p+1

p+ 1
Ω1

(
s− s0
ε

, w̄ε(s)

)
+
δpε

4
log

(
ε+ s− s0

ε

)
〈∂2GF 〉 (w̄ε(s0)) + βε207

208

where

βε =
ε

1
p+1

p+ 1
Ω1 (0, w̄ε(s0))− ε

1
p+1

p+ 1
Ω1 (0, v̄ε(s0)) ,

then we have209

(2.21) ∀s ∈ [0, S], |vε(s)− ṽε(s)| ≤ C ε
2
p+1 .210

211

Remark 2.6. In classical averaging theory (i.e. for γ(t) ≡ 1 or equivalently for212

p = 0), the solution vε(s) of (2.1) is obtained as the composition of three maps (see213

for instance [Per69] or [SV85]): (i) a change of variable of the form vε0 + εϕε0(vε0)214

applied at initial time, (ii) the flow map at time s of a smooth differential equation215

whose vector field is of the form 〈F 〉+ εF̃ ε and (iii) a change of variable of the form216

vε0 + εϕεs(v
ε
0) applied time s. The ε

1
p+1 and log terms in (2.20) and in ṽε and w̃ε are217

the counterpart of ϕε0(vε0) and ϕεs(v
ε
0) in this more intricate situation.218
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Proof. In order to refine estimates (2.18) and (2.19) of Rε(s) obtained in the proof219

of Proposition 2.4, we rewrite them as220

s ≤ s0 : Rε(s) =
ε

1
p+1

p+ 1

(
Ω−µ

(
s0 − s
ε

, vε(s)

)
− Ω−µ

(s0
ε
, vε0

)
− I−µ(0, s)

)
,

(2.22)

221

s ≥ s0 : Rε(s) = Rε(s0) +
ε

1
p+1

p+ 1

(
Ω1 (0, vε(s0))− Ω1

(
s− s0
ε

, vε(s)

)
+ I1(s0, s)

)
,

(2.23)

222
223

where the expression of Iεν coincides with Iε in Lemma 2.3 for φ(σ, u) = ∂2ΩνFν(σ, u)224

and ψ(σ, u) = ∂2GνFν(σ, u). If x and x differ by an O(ε
1
p+1 ), then, using (2.6)-(2.7),225

one has226

∀ν = ±1,
∣∣∣Ων (s

ε
, x
)
− Ων

(s
ε
, x
)∣∣∣ ≤ Cε 1

p+1227
228

and owing to (2.14), estimates v̄ε(0)−vε(0) = O(ε
1
p+1 ) and w̄ε(s0)−v̄ε(s0) = O(ε

1
p+1 ),

and the Gronwall lemma, it stems that

∀0 ≤ s ≤ s0, vε(s)−v̄ε(s) = O(ε
1
p+1 ) and ∀s0 ≤ s ≤ S, w̄ε(s)−vε(s) = O(ε

1
p+1 ).

As a consequence, vε(s) can be replaced by v̄ε(s) in (2.22) and by w̄ε(s) in (2.23), up229

to O(ε
2
p+1 )-terms.230

231

Case p > 1: Lemma 2.3 shows that the terms ε
1
p+1

p+1 I
ε
ν in (2.22) and (2.23) are of232

order O(ε
2
p+1 ), we thus have for s ≤ s0233

vε(s) = vε0 +
1

p+ 1

∫ s

0

〈F 〉 (vε(σ))

|σ − s0|
p
p+1

dσ +
ε

1
p+1

p+ 1

[
Ω−µ

(
s0 − σ
ε

, v̄ε(σ)

)]σ=s
σ=0

+O(ε
2
p+1 ),234

235

that is to say, by denoting V ε(s) = vε(s)− ε
1
p+1

p+1 Ω−µ
(
s0−s
ε , v̄ε(s)

)
, the equation236

V ε(s)− V ε(0) =
1

p+ 1

∫ s

0

〈F 〉
(
V ε(σ) + (vε(σ)− V ε(σ))

)
(s0 − σ)

p
p+1

dσ +O(ε
2
p+1 )237

=
1

p+ 1

∫ s

0

〈F 〉
(
V ε(σ)

)
dσ + 〈∂2F 〉 (V ε(σ)) (vε(σ)− V ε(σ))

(s0 − σ)
p
p+1

dσ +O(ε
2
p+1 ),238

=
1

p+ 1

∫ s

0

1

(s0 − σ)
p
p+1

〈F 〉
(
V ε(σ)

)
dσ +O(ε

2
p+1 ),239

240

where we have used Remark 2.2 to get the bound∫ s

0

∣∣∣∣∣ 1

(s0 − σ)
p
p+1

〈∂2F 〉 (V ε(σ))Ω−µ

(
s0 − σ
ε

, v̄ε(σ)

)∣∣∣∣∣ dσ ≤ Cε 1
p+1

∫ +∞

0

1

(σ(1 + σ))
p
p+1

dσ.

From V ε(0)− v̄ε(0) = O(ε
2
p+1 ) and equation (2.2), we obtain by the Gronwall lemma

∀s ≤ s0, |ṽε(s)− vε(s)| = |V ε(s)− v̄ε(s)| ≤ Cε
2
p+1 .
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For s ≥ s0, we write241

vε(s) = vε(s0) +
1

p+ 1

∫ s

s0

〈F 〉 (vε(σ))

(σ − s0)
p
p+1

dσ + (Rε(s)−Rε(s0))242

= vε(s0) +
1

p+ 1

∫ s

s0

〈F 〉 (vε(σ))

(σ − s0)
p
p+1

dσ − ε
1
p+1

p+ 1

[
Ω1

(
σ − s0
ε

, w̄ε(σ)

)]σ=s
σ=s0

243

+O(ε
2
p+1 ).244245

Denoting W ε(s) = vε(s) + ε
1
p+1

p+1 Ω1

(
s−s0
ε , w̄ε(s)

)
, we have the simple equation246

W ε(s) = W ε(s0) +
1

p+ 1

∫ s

s0

〈F 〉
(
W ε(σ))

)
(σ − s0)

p
p+1

dσ +O(ε
2
p+1 ),247

248

and by comparing with equation (2.2), Gronwall lemma enables to conclude that249

W ε(s) − w̄ε(s) = O(ε
2
p+1 ) given that W ε(s0) − w̄ε(s0) = O(ε

2
p+1 ) (by definition of250

w̄ε(s0) and W ε(s0) and estimate (2.21) for s = s0). The statement for s ≥ s0 now251

follows from βε = O(ε
2
p+1 ).252

253

Case p = 1: This case differs in that the terms
√
ε
2 I

ε
ν in (2.22) and (2.23) are now of254

order ε log(ε) for s close to s0. This yields for s ≤ s0255

vε(s) = vε0 +
1

2

∫ s

0

〈F 〉 (vε(σ))√
s0 − σ

dσ +

√
ε

2
Ω−µ

[(
s0 − σ
ε

, v̄ε(σ)

)]σ=s
σ=0

−
√
ε

2
I−µ(0, s)256

+O(ε),257258

that is to say, by denoting

V ε(s) = vε(s)−
√
ε

2
Ω−µ

(
s0 − s
ε

, v̄ε(s)

)
+
ε

4
log

(
ε+ s0 − s
ε+ s0

)
〈∂2GF 〉 (v̄ε(s)),

the equation259

V ε(s) = V ε0 +

∫ s

0

〈F 〉
(
V ε(σ)

)
2
√
s0 − σ

dσ +

∫ s

0

〈∂2F 〉 (V ε(σ))

2
√
s0 − σ

(vε(σ)− V ε(σ))dσ +O(ε)260

= V ε0 +

∫ s

0

〈F 〉
(
V ε(σ)

)
2
√
s0 − σ

dσ +

√
ε

4

∫ s

0

〈∂2F 〉 (V ε(σ))√
s0 − σ

Ω−µ

(
s0 − σ
ε

, v̄ε(σ)

)
dσ261

− ε

8

∫ s

0

log
(
ε+s0−σ
ε+s0

)
√
s0 − σ

〈∂2F 〉 (V ε(σ)) 〈∂2GF 〉 (v̄ε(σ)) +O(ε)262

= V ε0 +

∫ s

0

〈F 〉
(
V ε(σ)

)
2
√
s0 − σ

dσ +O(ε),263
264

where we have used Lemma 2.3 again now with φ(σ, u) = 〈∂2F 〉(u) Ω−µ (σ, u) and265

ψ(σ, u) = 〈∂2F 〉(u)G−µ (σ, u), and noticed that 〈ψ〉 = 〈∂2F 〉 〈G−µ〉 = 0, to get rid266

of the second term of the second line. The third term may be bounded through an267

integartion by parts. We finally conclude by Gronwall lemma. For s ≥ s0, we get268

vε(s) = vε(s0) +
1

2

∫ s

s0

〈F 〉 (vε(σ))√
σ − s0

dσ −
√
ε

2

[
Ω1

(
σ − s0
ε

, w̄ε(σ)

)]σ=s
σ=s0

+

√
ε

2
I1(s0, s)269

+O(ε),270271
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that is to say, by denoting

W ε(s) = vε(s) +

√
ε

2
Ω1

(
s− s0
ε

, w̄ε(s)

)
− ε

4
log

(
ε

ε+ s− s0

)
〈∂2GF 〉 (w̄ε(s0)),

the equation272

W ε(s) = W ε(s0)+

∫ s

s0

〈F 〉
(
W ε(σ)

)
2
√
σ − s0

dσ−
√
ε

4

∫ s

s0

〈∂2F 〉 (W ε(σ))√
σ − s0

Ω1

(
σ − s0
ε

, w̄ε(σ)

)
dσ273

+
ε

8

∫ s

s0

log
(

ε
ε+s−s0

)
√
σ − s0

〈∂2F 〉 (W ε(σ)) 〈∂2GF 〉 (w̄ε(s0)) +O(ε)274

= W ε(s0) +

∫ s

s0

〈F 〉
(
W ε(σ)

)
2
√
σ − s0

dσ +O(ε),275
276

where we have used equation (2.12) of Lemma 2.3, and we may conclude as before.277

Corollary 2.7. Let µ = (−1)p, δp = 1 if p = 1, δp = 0 otherwise and τ0 =
tp+1
0

ε .278

Under Assumption 1.1, consider ūε1 and ūε2, the solutions of279

˙̄uε(t) = 〈F 〉(ūε(t)),(2.24)280281

respectively on [0, t0] and [t0, T ] with respective initial conditions

ūε1(0) = uε0 −
ε

1
p+1

p+ 1
Ω−µ (τ0, u

ε
0)

and

ūε2(t0) = ūε1(t0)+
ε

1
p+1

p+ 1

(
Ω1 (0, ūε1(t0))+Ω−µ (0, ūε1(t0))

)
+
δpε

4
log (1 + τ0) 〈∂2GF 〉 (ūε1(t0)).

Then we have282

(2.25) ∀t ∈ [0, T ], |uε(t)− ũε(t)| ≤ C ε
2
p+1283

where ũε is the continuous function defined on [0, T ] by the following expressions:284

0 ≤ t ≤ t0 : ũε(t) = ūε1(t) +
ε

1
p+1

p+ 1
Ω−µ (τ, ūε1(t))− δpε

4
log

(
1 + τ

1 + τ0

)
〈∂2GF 〉 (ūε1(t)),285

t0 ≤ t ≤ T : ũε(t) = ūε2(t)− ε
1
p+1

p+ 1
Ω1 (τ, ūε2(t)) +

δpε

4
log (1 + τ) 〈∂2GF 〉 (ūε2(t0)) + βε,286

287

with τ = |t−t0|p+1

ε and βε = ε
1
p+1

p+1 Ω1 (0, ūε2(t0))− ε
1
p+1

p+1 Ω1 (0, ūε1(t0)).288

3. A micro-macro method. In this section, we suggest a micro-macro de-289

composition, analogous to the one introduced in [CLM17] and elaborated from the290

asymptotic analysis of Section 2. In a second step, we propose a uniformly accurate291

numerical method derived from this decomposition.292
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3.1. The decomposition method. Let uε(t) be the solution of (1.2) and let293

ũε(t) be the approximation defined in Corollary 2.7, and consider the defect function294

(3.1) ∆ε(t) = uε(t)− ũε(t), for t ∈ [0, T ].295

296

Proposition 3.1. Assume that f is of class C2 and consider the solution uε(t)297

of (1.2) on [0, T ]. For p ≥ 1, the function ∆ε(t) defined by (3.1) satisfies298

(3.2) ∀t ∈ [0, T ], |∆ε(t)| ≤ Cε
2
p+1 ,299

300

(3.3) ∀t ∈ [0, t0[∪]t0, T ],
∣∣∣∆̇ε(t)

∣∣∣ ≤ Cε 1
p+1 and if p = 1

∣∣∣∆̈ε(t)
∣∣∣ ≤ C.301

Proof. By construction, ũε is continuous on [0, T ] and estimate (3.2) is nothing302

but (2.25). However, its derivatives are not continuous at t0. Hereafter, it is enough303

to consider t in [0, t0[ as the same arguments can be repeated for values in ]t0, T ].304

From the expression of305

ũε(t) = ūε1(t) +
ε

1
p+1

p+ 1
Ω−µ (τ, ūε1(t))− δpε

4
log

(
1 + τ

1 + τ0

)
〈∂2GF 〉 (ūε1(t)), τ =

(t− t0)p+1

ε
,306

307

it stems by definition of Ω (see (2.5)) that308

∆̇ε(t) =F−µ (τ, uε)− F−µ (τ, ūε1)− ε
1
p+1

p+ 1
∂2Ω−µ (τ, ūε1) 〈F 〉(ūε1)309

− δp
√
ε

2

√
τ

1 + τ
〈∂2GF 〉 (ūε1) +

δpε

4
log

(
1 + τ

1 + τ0

)
d

dt

(
〈∂2GF 〉 (ūε1)

)
,(3.4)310

311

where we have omitted t in uε(t) and ūε1(t). Since |ūε1(t) − uε(t)| ≤ Cε
1
p+1 on [0, t0]

(and |ūε2(t) − uε(t)| ≤ Cε
1
p+1 on [t0, T ]), we have from Prop. 2.4 and Eq. (2.6), the

following estimates

|F−µ (τ, uε)− F−µ (τ, ūε1)| ≤ Cε
1
p+1 and

∣∣∣∣∣ ε
1
p+1

p+ 1
∂2Ω−µ (τ, ūε1) 〈F 〉(ūε1)

∣∣∣∣∣ ≤ Cε 1
p+1 .

Besides, 2
√
τ ≤ 1+τ , |ε log ε| ≤

√
ε, and the first estimate of (3.3) is thus proven. As-312

suming now that p = 1 and using again equations (1.2) and (2.2), a second derivation313

leads to314

∆̈ε(t) = −2
√
τ√
ε

(
∂1F (τ, uε)− ∂1F (τ, ūε1)

)
+ ∂2F (τ, uε)F (τ, uε)315

− 2∂2F (τ, ūε1) 〈F 〉(ūε1) + 〈∂2F 〉(ūε1)〈F 〉(ūε1)−
√
ε

2
∂22Ω1 (τ, ūε1)

(
〈F 〉(ūε1), 〈F 〉(ūε1)

)
316

−
√
ε

2
∂2Ω1 (τ, ūε1) 〈∂2F 〉(ūε1) 〈F 〉(ūε1) +

1− τ
2(1 + τ)2

〈∂2GF 〉 (ūε1)317

−
√
ε

2

√
τ

1 + τ
〈∂2GF 〉 (ūε1) +

ε

4
log

(
1 + τ

1 + τ0

)
d2

dt2

(
〈∂2GF 〉 (ūε1)

)
.318

319
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Thanks to Assumption 1.1, Lemma 2.1 and (2.2), all the terms are clearly uniformly320

bounded, except the critical one in the first line, which requires more attention. We321

get322 ∣∣∣∣√τ√ε(∂1F (τ, uε)− ∂1F (τ, ūε1)
)∣∣∣∣ ≤ C |t− t0|ε

|uε − ūε1| ≤ C
|t− t0|
ε
|ūε1 − ũε|+ C,323

324

where we have used the result of Proposition 2.5, i.e. |uε − ũε| ≤ Cε. It remains,325

using the expression of ũε, to observe that for t 6= t0, 0 < τ ≤ τ0 so that owing to326

(2.7), we obtain327

√
τ√
ε
|ũε − ūε1| ≤

√
τ√
ε

(√
ε

2
|Ω1 (τ, ūε1)|+ ε

4

∣∣∣∣log

(
1 + τ

1 + τ0

)∣∣∣∣ |〈∂2GF 〉 (ūε1(t0))|
)

328

≤ C
√
τ√
ε

√
ε√
τ

+ C

√
τ

τ0

∣∣∣∣log

(
1 + τ

1 + τ0

)∣∣∣∣ ≤ C.329
330

This completes the proof.331

3.2. A uniformly accurate first order numerical method. We are now in332

position to introduce uniformly accurate numerical schemes for (1.2). In this Section,333

we derive a uniformly accurate first-order method for p ≥ 1. Consider 0 = t0 < . . . <334

tk < · · · < tN = T a subdivision of the interval [0, T ] containing the singularity t0,335

with h = maxk=1,...,N (tk − tk−1). Inspired by the integral schemes in [CLMV18], we336

introduce the following method,337

(3.5) uk+1 = uk +

∫ tk+1

tk
F
( (t− t0)p+1

ε
, uk
)
dt338

Thanks to estimate (3.2) and the first estimate of (3.3), we obtain the following339

proposition.340

Proposition 3.2. Assume that f is of class C1. Consider the solution uε(t)
of (1.2) on [0, T ], and the numerical scheme uk defined in (3.5). Then uk yields a
uniformly accurate approximation of order one of the solution uε(tk). Precisely, there
exist ε0 > 0 and h0 > 0 such that for all ε ≤ ε0 and all h ≤ h0,

|uk − uε(tk)| ≤ Ch

for all tk ≤ T and where C is independent of ε and h.341

The method (3.5) can be efficiently implemented numerically by using the Fourier
expansion of the vector field F (θ, u),

F (τ, u) =
∑
`∈Z

ei`τF`(u).

The induction (3.5) then reads342

uk+1 = uk + (tk+1 − tk)F0(uk) +
∑
` 6=0

(ε
`

)1/(p+1)

F`(u
k)

∫ tk+1

tk
eiε

−1k(t−t0)p+1

dt.343

Using the change of variables s = ε−1k(t− t0) and introducing the notation

Λp(t) =

∫ +∞

t

eis
p+1

ds,
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we obtain the method (3.5) can be implemented numerically as344

(3.6)345 uk+1 = uk + (tk+1 − tk)F0(uk)346

+
∑
6̀=0

(ε
`

)1/(p+1)

F`(u
k)

(
Λp
(( `
ε

)1/(p+1)

(tk − t0)
)
− Λp

(( `
ε

)1/(p+1)

(tk+1 − t0)
))

.347

348

Observe that the function Λp(t) can be evaluated using the incomplete complex349

Gamma function Γ(ν, z) =
∫ +∞
z

tν−1e−tdt where ν = 1/(p + 1) for which efficient350

numerical packages exist.351

3.3. A uniformly accurate second order numerical method. In this sec-
tion, we introduce a scheme of uniform order two. The new method provides ap-
proximations (ūk,∆k) of the pair (ūε(tk),∆ε(tk)). Assume that t0 is one of the
discretization points, i.e. t0 = tk0 for some k0. An approximation uk of uε(tk) is then
derived by assembling the approximation ũk of ũε(tk) from formulas in Corollary 2.7
and eventually by setting uk = ũk + ∆k. Given that problem (2.24) is nonstiff, any
second-order numerical scheme is suitable for the computation of ūk and thus of ũk,
and we simply choose here the Heun method

ūk+1 = ūk +
h

2
〈F 〉(ūk) +

h

2
〈F 〉

(
ūk + h〈F 〉(ūk)

)
.

As a consequence, we limit ourselves to the scheme for ∆ε. Starting from352

(3.7) ∆ε(tk+1) = ∆ε(tk) +

∫ tk+1

tk
F (τ(ξ), ũε(ξ) + ∆ε(ξ)) dξ − (ũε(tk+1)− ũε(tk)),353

where τ(ξ) = |ξ−t0|p+1

ε , we consider at time tk+1/2 = tk+tk+1

2 the approximation

∆k+ 1
2 = ∆k +

∫ tk+
1
2

tk
F
(
τ(ξ), ũk + ∆k

)
dξ − (ũk+

1
2 − ũk).

Since the function ũε + ∆ε = uε has a bounded first time-derivative, the error associ-
ated to this scheme is of order O(h2). Expanding F in Fourier series, we see that the

scheme necessitates the computation of integrals of terms of the form ei`ξ
2

which may
be easily computed numerically using the complex erf function. Now, for k < k0 and
t ≤ t0, we identify the smooth part of uε(t) as

aε(t) = ūε(t) + ∆ε(t)− ε

4
log

(
1 + τ

1 + τ0

)
〈∂2GF 〉 (ūε(t)),

so that

uε(t) = ũε(t) + ∆ε(t) = aε(t) +

√
ε

2
Ω1 (τ(t), ūε(t))

and, by Proposition 3.1 and its proof, it is clear that the second time-derivative of aε

is uniformly bounded. In order to approximate (3.7), we remark that

aε(ξ) = ak +
ak+1/2 − ak

tk+1/2 − tk
(
ξ − tk

)
+O(h2),

where setting ūk+1/2 = ūk + h
2 〈F 〉(ū

k), we define for τk+1/2 = τ(tk+1/2),

ak+1/2 = ūk+1/2 + ∆k+1/2 − ε

4
log

(
1 + τk+1/2

1 + τ0

)
〈∂2GF 〉 (ūk+1/2).
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Moreover, we have

∀(s, ŝ) ∈ R2
+,

∣∣Ω1(s, ūk)− Ω1(ŝ, ūk)
∣∣ =

∣∣∣∣∣
∫ ŝ

s

F (σ, ūk)− 〈F 〉(ūk)√
σ

dσ

∣∣∣∣∣ ≤ C|√ŝ−√s|
so that ∣∣∣∣√ε2 Ω1

(
τ(ξ), ūk

)
−
√
ε

2
Ω1

(
τ(tk), ūk

)∣∣∣∣ ≤ Ch
and
√
ε

2
Ω1 (τ(ξ), ūε(ξ)) =

√
ε

2
Ω1

(
τ(ξ), ūk

)
+

√
ε

2

(
ξ − tk

)
∂2Ω1

(
τ(ξ), ūk

)
〈F 〉(ūk)+O(h2).

Therefore, denoting

bk = ak +

√
ε

2
Ω1

(
τ(tk), ūk

)
,

our numerical scheme takes the form354

∆k+1 =∆k +

∫ tk+1

tk
F
(
τ(ξ), bk

)
dξ +

∫ tk+1

tk

(
ξ − tk

)
∂2F

(
τ(ξ), bk

) ak+1/2 − ak

tk+1/2 − tk
dξ355

+

∫ tk+1

tk

√
ε

2

(
ξ − tk

)
∂2F

(
τ(ξ), bk

)
∂2Ω1

(
τ(ξ), ūk

)
〈F 〉(ūk)dξ356

+

∫ tk+1

tk

√
ε

2
∂2F

(
τ(ξ), bk

) (
Ω1

(
τ(ξ), ūk

)
− Ω1

(
τ(tk), ūk

))
dξ357

+ ũε(tk+1)− ũε(tk),358359

and has a truncation error of size O(h3), uniformly in ε. As for k ≥ k0, we have360

ak = ūk + ∆k +
ε

4
log

(
1 + τ

1 + τ0

)
〈∂2GF 〉 (ūε(t0)) + βε, bk = ak − ε1/2

2
Ω1

(
τ(tk), ūk

)
,361

362

and363

∆k+1 =∆k +

∫ tk+1

tk
F
(
τ(ξ), bk

)
dξ +

∫ tk+1

tk

(
ξ − tk

)
∂2F

(
τ(ξ), bk

) ak+1/2 − ak

tk+1/2 − tk
dξ364

−
∫ tk+1

tk

√
ε

2

(
ξ − tk

)
∂2F

(
τ(ξ), bk

)
∂2Ω1

(
τ(tk), ūk

)
〈F 〉(ūk)dξ365

−
∫ tk+1

tk

√
ε

2
∂2F

(
Γ(τ)

ε
, bk
)(

Ω1

(
τ(ξ), ūk

)
− Ω1

(
τ(tk), ūk

))
dτ366

+ ũε(tk+1)− ũε(tk).367368

According to the above computations, the uniform accuracy with second order of the369

proposed scheme may now be stated:370

Proposition 3.3. Assume that f is of class C2. Consider the solution uε(t)
of (1.2) on [0, T ], and the numerical scheme (ũk,∆k) defined above. Then uk =
ũk+∆k yields a uniformly accurate approximation of order two of the solution uε(tk).
Precisely, there exist ε0 > 0 and h0 > 0 such that for all ε ≤ ε0 and all h ≤ h0,

|uk − uε(tk)| ≤ Ch2

for all tk ≤ T and where C is independent of ε and h.371
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3.4. Numerical experiments. We test our method on the Hénon-Heiles sys-
tem with solution Uε = (q1, q2, p1, p2),

U̇ε(t) =
(γ(t)

ε
p1, p2,−

γ(t)

ε
q1 − 2q1q2,−q2 − q21 + q22

)
, Uε(0) = (0.9, 0.6, 0.8, 0.5),

with a time-varying parameter γ(t) = (p+1)(t−t0)p where t0 is a zero of multiplicity p.
The associated filtered system, satisfied by the variable uε(t) ∈ R4 defined by

uε(t) = (cos(θ)q1(t)− sin(θ) p1(t), q2(t), sin(θ)q1(t) + cos(θ)p1(t), p2(t)) ,

with θ = (t−t0)2
ε , takes the form (1.2) with372

F1(θ, u) = 2 sin θ
(
u1 cos θ + u3 sin θ

)
u2, F2(θ, u) = u4,373

F3(θ, u) = −2 cos θ
(
u1 cos θ + u3 sin θ

)
u2, F4(θ, u) = −

(
u1 cos θ + u3 sin θ

)2
+u22−u2.374375

We consider a time interval of length T = 1 and take t0 = 1/3 as time where the376

oscillatory frequency vanishes. The reference solution is obtained using the matlab377

ode45 routine with a tiny tolerance. In Figures 2 and 3, we have represented the error378

versus the stepsize of the numerical solution uk in (3.5) (uniform order 1) in cases379

where γ(t) has multiplicities p = 1 and p = 2 respectively. In Figure 4, we consider380

the method of Section 3.3 (uniform order 2) for p = 1. On the left pictures, the error381

is plotted as a function of the stepsize h, for fixed values ε ∈ {2−k, k = 0, · · · , 11}382

where lines of slope 1 (Fig. 2 and 3) and slope 2 (Fig. 4) can be observed. On the383

right pictures, the error is plotted as a function of ε, for fixed values h ∈ {0.1/2k, k =384

0, · · · , 9}, which illustrates the uniform accuracy of the schemes with respect to ε. All385

curves are in perfect agreement with Propositions 3.2 and 3.3.386

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 2. Method (3.5) (uniform order 1) for multiplicity p = 1. Error as a function of h for
ε ∈ {2−k, k = 0, · · · , 11} (left) and error as a function of ε for h ∈ {0.1/2k, k = 0, · · · , 9} (right).
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Fig. 3. Method (3.5) (uniform order 1) for multiplicity p = 2. Error as a function of h for
ε ∈ {2−k, k = 0, · · · , 11} (left) and error as a function of ε for h ∈ {0.1/2k, k = 0, · · · , 9} (right).
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Fig. 4. Method with uniform order 2 for multiplicity p = 1. Error as a function of h for
ε ∈ {2−k, k = 0, · · · , 11} (left) and error as a function of ε for h ∈ {0.1/2k, k = 0, · · · , 9} (right).

4. Conclusion. In this work, we have derived the first terms of the asymptotic387

expansion in ε of the exact solution of equation (1.2). As compared to standard388

averaging where γ is assumed to be bounded from below by a strictly positive constant,389

convergence towards the so-called averaged model is severally deteriorated for large390

values of p. For p = 1, the next term in the asymptotic expansion behaves quite391

unexpectedly as ε log(ε) when ε goes to zero and this seems to be the first time such392

a behaviour is revealed. Based on this asymptotic expansion, we have shown that393

it is possible to construct uniformly accurate numerical schemes of orders 1 for all394

p ≥ 1 and 2 for p = 1. Whether one may envisage to construct a uniformly accurate395

second-order method for p > 1 remains an open question and will be the subject of396

further investigations.397
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[CCMM15] F. Castella, Ph. Chartier, F. Méhats, and A. Murua. Stroboscopic averaging for the410
nonlinear Schrödinger equation. Found. Comput. Math., 15(2):519–559, 2015.411

[CCMSS11] M. P. Calvo, Ph. Chartier, A. Murua, and J. M. Sanz-Serna. Numerical stroboscopic412
averaging for ODEs and DAEs. Appl. Numer. Math., 61(10):1077–1095, 2011.413

[CJLM] N. Crouseilles, S. Jin, M. Lemou, and F. Méhats. A micro-macro method for a kinetic414
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