A novel verification system for handwritten words recognition

Laurent Guichard
INRIA Bretagne Atlantique
IRISA, Rennes, France
lguichar@irisa.fr

Alejandro H. Toselli
Instituto Tecnológico de Informática
UPV, Valencia, Spain
ahector@iti.upv.es

Bertrand Couasnon
INSA de Rennes
IRISA, Rennes, France
couasnon@irisa.fr

Abstract

In the field of isolated handwritten word recognition, the development of highly effective verification systems to reject words presenting ambiguities is still an active research topic. In this paper, a novel verification system based on support vector machine scoring and multiple reject class-dependent thresholds is presented. In essence, a set of support vector machines appended to a standard HMM-based recognition system provides class-dependent confidence measures employed by the verification mechanism to accept or reject the recognized hypotheses. Experimental results on RIMES database show that this approach outperforms other state-of-the-art approaches.

1. Introduction

The interest for developing effective verification systems (VSs) for handwritten word recognition applications (HWR) that can distinguish when their outputs are not recognized with enough certainty (and consequently rejected) is still an active research topic. Such VSs are crucial and vital for several security-sensitive applications, as for example the case of the recognition of handwritten postal-address, legal amounts handwritten in bank checks, etc.

Commonly, VSs involve two parts: the confidence measures computation (CMs), which gives an idea of the achieved recognition quality of each word image, and the thresholding-based procedure, which stands for trading off between errors and rejections.

In the literature we can find a wide diversity of VSs for HWR. On one hand are the VSs directly applying a rejection rule to the HWR hypotheses scores [7, 6, 9]. For HWRs based on Hidden Markov Models (HMMs), by far the most successfully employed statistical tool according to the state-of-the-art, the VS rejection mechanism relies on the HMM decoding scores. Those approaches are limited by the intrinsic nature of the HWR, aimed at maximizing the recognition but not the rejection. On the other hand, some VSs, independent from the HWR, re-score the HWR hypotheses before performing the accept/reject action. [8] employs a multi-layer perceptron (MLP) to reevaluate the hypotheses, although this kind of classifiers are not designed for the rejection task. We propose to use the latter approach with support vector machines (SVM) to re-score the HWR hypotheses as they already proved their ability to verify isolated handwritten digits [1, 2].

As mentioned above, VS approaches rely on thresholding methods, which intend to adjust threshold values to decide whether accept or reject given recognized hypotheses. The formulation of the best error-reject trade-off and the related optimal reject rule is given in [3]. According to this, the optimal error-reject trade-off is achieved only if the a posteriori probabilities of the classes are known exactly. As they are always affected by errors, [4] suggests the use of multiple reject thresholds to obtain the optimal decision and reject regions. Nevertheless, most VSs employ a single threshold to accept/reject the selected hypothesis. Therefore, the VS we detailed here includes a method to generate artificial classes, each related to a threshold, in order to absorb the problem raised by inexact a posteriori probabilities.

In this paper, we present a new independent VS which aims at improving both rejection and recognition capabilities of the verified HWR. Our approach employs an alternative SVM-based confidence measures relying on the HWR grapheme segmentation information, and applies multiple thresholds to optimize the error-rejection trade-off.

This work is organized in the following way. Section 2 details our above-mentioned VS. Experimental results and conclusion are presented in sections 3 and 4.
2. Proposed verification system approach

The proposed VS is suitable for HWRs based on
grapheine/character-segmentation (explicit or implicit).
For a given word image input \(s \), the HWR outputs
the \(N \)-best recognized hypotheses along with their cor-
responding grapheme segmentations and recognition
scores. This list of \(N \)-best hypotheses serves as input
of our VS approach. To represent this list, we em-
ploy the following notation: \(\langle h_1 = (w_1, r_1), \ldots, h_N =
(w_N, r_N) \rangle \), where \(w_i \) and \(r_i \) denote respectively
the transcription and grapheme segmentation of the \(i \)th
recognized hypothesis \(h_i \) of word image \(s \). In turn,
each hypothesis \(h_i = (w_i, r_i) \) is associated with
a sequence of grapheine-label and sub-image pairs:
\(\langle(c_i, g_{i,1}), \ldots, (c_i, n_i, g_{i,n_i}) \rangle \), where \(n_i \) is the number
of recognized (grapheine/character) labels of the cor-
responding hypothesis transcription \(w_i \). Furthermore,
each \(h_i \) has an associated probability \(P_{HWR}(h_i) \) emit-
ted by the HWR.

Our VS approach is compounded by three different
modules: grapheine feature extraction, \(N \)-best hypothe-
ses re-scoring and hypothesis selection and verification.

The first module makes use of the segmentation in-
formation provided by HWR to split input word image
into the corresponding grapheine sub-images (i.e. char-
acter images in our case). Then, a feature extraction
process transforms each of these sub-images into a 95-
dimensional real-value vector composed of the follow-
ing set of features:

- 8th order Zernike moments (45 components);
- 8-contour directions histogram using Freeman
 chain code representation (48 components);
- Normalized grapheine pixels distributions within
 area above word upper line and area between base
 and upper lines (2 components).

The second module performs a re-scoring of each
\(N \)-best recognized hypotheses by using SVM classi-
ers, each of which modeling a specific grapheine class
\(c \) from the whole grapheine classes set considered in
the recognition. In this way, given a pair \((c_{i,j}, g_{i,j}) \)
with \(i \in [1, N] \) and \(j \in [1, n_i] \), the corresponding
SVM assigns it a new score \(P_{SV M}(c = c_{i,j}) \).
The SVM output score is approximated to a posterior
probability by using the softmax function, as described
in [10]. Once all individual grapheine probabilities have
been computed, a global SVM score of hypothesis \(h_i \)
is calculated as the geometric mean of their respective
grapheme scores:

\[
P_{SV M}(h_i) = \sqrt[n_i]{ \prod_{j=1}^{n_i} P_{SV M}(c = c_{i,j}|g_{i,j}) } \quad (1)
\]

We realized after some informal experiments that this
way of computing the SVM global score works prop-
erly well for this case. Moreover, this makes the SVM
score independent from hypothesis length (number of
grapheines) and thereby comparable across different
length hypotheses.

The final confidence measure (CM) of hypothesis \(h_i \)
is then computed by linearly combining their respective
global HMM and SVM scores:

\[
P(h_i) = \alpha P_{SV M}(h_i) + (1 - \alpha) P_{HWR}(h_i) \quad \forall i \in [1, N] \quad (2)
\]

This linear combination of classifier scores aims at bal-
ancing the weakness of each of them by the empirically
tuned coefficient \(\alpha \).

Once all hypotheses of the \(N \)-best list have been re-
scored, the third and last module is in charge to select
the best one (i.e. with the maximal CM score) and to
perform the accept/reject action on it. In order to do
this, the hypotheses are first re-ordered according to
their new CM scores, defining a new list: \(\{\hat{h}_1, \ldots, \hat{h}_N\} \),
such that \(P(\hat{h}_i) \geq P(\hat{h}_j) \) \(\forall 1 \leq i < j \leq N \). Then, the
reject/accept action decision is conducted by the thresh-
holding mechanism using the computed difference of the
two best re-scored hypotheses

\[
d_{12} = P(\hat{h}_1) - P(\hat{h}_2)
\]
as a value to be compared with the corresponding
threshold. Experiments conducted by other works [8]
have shown that this strategy gives the best results.

As was mentioned in section 1, the proposed verifi-
cation mechanism is based on multiple class-dependent
thresholds. To define these classes, we have clus-
tered into different length-classes all word transcrip-
tions from the HWR lexicon according to their length.
It is worth mentioning that the use of length-class-
dependent thresholds serves somewhat to mitigate the
problem related to the fact that it is not compar-
able, for example, rejection of 10-characters words with
one character error respect to rejection of 2-characters
words with one character error.

Formally, the set of length-classes is defined as:

\[
\Omega = \{\text{length}(w) : w \in \text{Lex}\}
\]

where \(\text{length} \) is a function returning the number of
grapheines of word transcription \(w \). We also em-
ploy \(\omega_j \in \Omega \) with \(j \in [1, ||\Omega||] \) to denote an ele-
ment belonging to \(\Omega \). Thus, each of the length-classes:

\[\omega_1, \omega_2, \ldots, \omega_{|\Omega|} \] has been linked to a respective threshold: \(t_1, t_2, \ldots, t_{|\Omega|} \), whose values are set up during the tuning phase. The detailed description of this tuning phase is, for the moment, out of the scope of the present paper.

The verification process performs for a given selected hypothesis \(\hat{h}_1 \) and its associate threshold \(t_j \) (\(t_j \rightarrow \omega_j = \text{length}(\hat{h}_1) \)) the accept/reject action of word image \(s \), according to:

\[
\text{if } d_{12} \geq t_j \text{ then accept } \hat{h}_1 \ \text{else reject } \hat{h}_1
\]

3 Experiments

3.1 Experimental setup

Experiments have been carried out on the RIMES database used at the ICDAR 2009 competition [5]. The database contains a total of 59,202 running words with their transcriptions and a vocabulary-size of 1,612 different words. Table 1 presents basic statistical information of the corpus along with the partition definition employed to carry out the experiments.

Table 1. Basic statistics of the RIMES-DB words corpus and its standard partition.

<table>
<thead>
<tr>
<th>Num. of:</th>
<th>Training</th>
<th>Valid.</th>
<th>Test</th>
<th>Total</th>
<th>Lex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>44,196</td>
<td>7,542</td>
<td>7,464</td>
<td>59,202</td>
<td>1,612</td>
</tr>
<tr>
<td>charact.</td>
<td>230,259</td>
<td>39,174</td>
<td>38,906</td>
<td>308,339</td>
<td>65</td>
</tr>
</tbody>
</table>

The HWR used here is a standard HMMs-based recognizer which extracts feature vectors using a sliding window, models lexicon words by a concatenation of continuous left-to-right grapheme HMMs and employs the Viterbi algorithm to look for the HMM-concatenated models that maximize the probability to produce the given feature vector sequence. We participated to the ICDAR 2009 competition with this HWR (IRISA system), details and results can be found in [5].

To assess our VS, comparisons have been made between our approach and others already published:

SVM-ST: VS presented in section 2 using SVM-rescoring and just a global single reject threshold.

MLP-ST: VS employing MLP classifier-based grapheme re-scoring (see [8]). As SVM-ST, it uses just a global single reject threshold.

HMM-ST: as described in [7], a global single reject threshold is applied to the difference between the CMs of the first and second HWR hypotheses.

SVM-MT: our VS explained in section 2 using SVM-rescoring and multiple reject thresholds.

The SVM classifiers employed to re-score graphemes use a Gaussian kernel and were trained with the one-against-all strategy for multi-class SVM classification. In this sense, grapheme samples to train SVM and MLP classifiers were obtained through segmenting the word images of the training set with our HMMs-based HWR in forced alignment mode.

The RIMES-DB partition sets employed in the experiments are highlighted in table 1. While HMMs, SVMs and MLPs parameters learning is carried out on the training set, multiple thresholds tuning is performed on the validation set using an algorithm derived from [11]. Finally, reported results of the comparisons among the different approaches have been obtained on the test set.

For the VS using multiple reject thresholds, a number of 17 thresholds were set according to the number of classes produced by regrouping the RIMES lexicon words with the same lengths, (i.e. RIMES lexicon contains words varying from 1 to 17 characters). The number of hypotheses generated by the HWR for each recognized word-image was set to 10.

To compare the performance of the different VS approaches, the Receiver Operating Characteristic (ROC) curve which plots the True Rejection Rate (TRR) versus the False Rejection Rate (FRR) was used. The TRR (resp. FRR) is defined as the number of wrong (resp. well) recognized words that are rejected divided by the number of well (resp. wrong) recognized words. In addition, the area under a ROC curve provides an adequate overall estimation of the rejection capabilities. This area is denoted as AROC. The Performance (PFR) versus Error Rate curve is also plotted to demonstrate the increase of well recognized words brought by the VS. The PFR (resp. ER) is defined as the number of well (resp. wrong) recognized words divided by the total number of words.

3.2 Evaluation of the proposed VS

The following results were all obtained on the test set partition. Figure 1-(a) presents the ROC curves obtained through the four different VS approaches: SVM-MT, SVM-ST, HMM-ST and MLP-ST. It can be observed that SVM-MT and SVM-ST are the best performing approaches in the FRR range of 0% to 30%. Clearly in that range, SVM-ST outperforms HMM-ST and MLP-ST, corroborating in this way the CM quality of the approach. Similarly, SVM-MT outperforms all of the others, including SVM-ST, confirming that multiple-thresholds-based VSs generally performs better than single-threshold one.

Additionally, figure 1-(b) plots the VS performance
versus error rate for each of the proposed approaches. Once again, it is specially notable for the ER range of 0% to 2.5%, the good performance achieved by SVM-MT and SVM-ST with respect to the others.

Those experiments demonstrate the superiority of our VS SVM-MT. One important feature to notice is the improvement in term of performance even without rejection. Indeed, the performance of the HWR (HMM-ST) increases from 78.6% to 83.7% when adding our VS (SVM-MT).

For each VS, table 2 gives the AROC values, the TRR values for a FRR set to 10% and the PFR values without rejection and for an ER set to 2.5%.

Table 2. AROC values, TRR values for a constant FRR set to 10%, PFR values without rejection (PFR1) and PFR values for a constant ER set to 2.5% (PFR2).

<table>
<thead>
<tr>
<th>Approach</th>
<th>AROC</th>
<th>TRR(%)</th>
<th>PFR1(%)</th>
<th>PFR2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM-MT</td>
<td>0.899</td>
<td>73.3</td>
<td>83.7</td>
<td>68.4</td>
</tr>
<tr>
<td>SVM-ST</td>
<td>0.874</td>
<td>68.9</td>
<td>83.7</td>
<td>63.1</td>
</tr>
<tr>
<td>MLP-ST</td>
<td>0.864</td>
<td>64.5</td>
<td>82.3</td>
<td>58.4</td>
</tr>
<tr>
<td>HMM-ST</td>
<td>0.822</td>
<td>56.3</td>
<td>78.6</td>
<td>53.6</td>
</tr>
</tbody>
</table>

4 Conclusion

This paper introduces an alternative independent verification system using a confidence measure based on SVMs rescoring and multiple rejection thresholds to verify handwritten word recognized hypotheses. The experimental results obtained show that the proposed approach boosts the rejection capabilities of the HWR as, for example, the performance increases from 53.6% to 68.4% for an error rate set to 2.5%. It also improves the global recognition performance which rises from 78.6% to 83.7% when rejection is disabled.

References

