Using definite clause grammars to build
a global system for analyzing collections of documents

Joseph Chazalon® and Bertrand Cotiasnon®

?INSA de Rennes, Avenue des Buttes de Coésmes, F-35043 Rennes
UMR IRISA, Campus de Beaulieu, F-35042 Rennes

Université Européenne de Bretagne, France

ABSTRACT

Collections of documents are sets of heterogeneous documents, like a specific ancient book series, having proper
structural and semantic properties linking them. A particular collection contains document images with specific
physical layouts, like text pages or full-page illustrations, appearing in a specific order. Its contents, like journal
articles, may be shared by several pages, not necessary following, producing strong dependencies between pages
interpretations. In order to build an analysis system which can bring contextual information from the collection
to the appropriate recognition modules for each page, we propose to express the structural and the semantic
properties of a collection with a definite clause grammar. This is made possible by representing collections as
streams of document images, and by using extensions to the formalism we present here. We are then able to
automatically generate a parser dedicated to a collection. Beside allowing structural variations and complex
information flows, we also show that this approach enables the design of analysis stages, on a document or
a set of documents. The interest of context usage is illustrated with several examples and their appropriate
formalization in this framework.

Keywords: document collections, historical documents, batch processing, system design, system generation,
data flow, structural recognition, attribute grammars, definite clause grammars

1. INTRODUCTION

In this paper, we address several problems which raise when processing similar collections of documents, and
more specifically collections of historical documents. We call “collection” an heterogeneous set of document
images, or “pages”, such as:

e each page may be structured according to a particular physical layout, like multicolumn text pages, full-page
pictures or domain-specific tables, and may therefore require appropriate content extraction tools;

e the nature (physical layout) and the order (or sequence) of the pages that may appear in a collection are
characteristics of a kind of collection, and can be known (and described) before processing one collection
of this kind;

e the content to extract is often shared by several pages, leading to a strong interdependence between the
results produced by the recognition processes of each isolated page.

Further author information: (Send correspondence to J.C.)
J.C.: E-mail: joseph.chazalon@irisa.fr, Telephone: +33 (0)2 99 84 75 28
B.C.: E-mail: bertrand.couasnon@irisa.fr, Telephone: +33 (0)2 99 84 74 11



An example of a particular collection type may be a series of ancient poetry books* containing different types
of pages in variable order, for which we try to extract a global content, like poems, which can be shared by
several pages. The following sequences of pages may be belong to instances of this kind of collection:

cover_page, table_of_contents, poem_page, illustration_page,
cover_page, poem_page, poem_continued, poem_page, ..., table_of_contents,

The case of historical documents emphasizes the need for contextual information during analysis, as their
alteration through time and the fact they were produced for human understanding often leads to ambiguous
interpretations of isolated elements. Thus, we need to make use of a priori knowledge about a collection of
historical documents to be able to extract its content.

Our approach aims at providing a flexible and efficient way to process various document collections, so as
to be able to face structural variations in the collection (nature and order of pages), but also to allow various
information flow between each image recognition process in order to use contextual information, redundant
information and any available knowledge during the analysis of an image. Furthermore, to build a real analysis
system, we sometimes need to specify easily how to design stages or evaluation strategies, like, for example,
gathering statistical information on a subset of documents before processing the whole collection using this
knowledge.

The purposes of this paper are then:

1. to propose modifications of definite clause grammars (DCGs), which can be seen as a logical implementation
of attribute grammars (AGs), that allow to easily represent a collection of document images for processing,
to integrate external analysis processes and to generate a collection-level driving system;

2. to show that this formal approach permits to express a priori knowledge about a collection, so as to
model structural variations of a collection, enable intelligent information flow between analysis modules,
and design analysis stages or global evaluation strategies.

Our presentation is divided as follows: first we review known approaches and evaluate their ability to face the
formulated problem in Sec. 2; then we present in Sec. 3 the theoretical framework (namely attribute grammars
and definite clause grammars) that we use in our approach. We are then able to introduce in Sec. 4 the extensions
we propose to the base framework in order to model and process a collection of document images. After that,
we detail in Sec. 5 the different aspects of a collection that our approach enables to tackle. In Sec. 6, we finally
sum up our contribution and present some future work.

2. KNOWN APPROACHES

It is important to note that implementing from scratch the analysis of a given collection with scripts is not
reasonable when considering real cases. The complex sequence of calls to document page analyzers and the
information flow between them may be impossible to express in a maintainable solution. Thus, we review in this
section different approaches related to the analysis of collections of documents, and in particular those which
deal with how to efficiently build a system dedicated to the processing of a specific type of collection.

Unluckily, the most relevant approaches disclose little or no information about their inner machinery. This is
the case of doc WORKS/e], a commercial product proposed by the European project Meta-ef, which was used to
extract content from German books dating from the 18" century using a rule-based system. Even if Le Bourgeois
points out in Ref. 1, p.154, that is may be hard to adapt this system to other collections, it shows that a high-level
specification may be an interesting way to face the problem of document collection analysis.

Some other systems address related problems, but may show some limitations, mainly because they cannot
deal with various physical structures or limit their information flow. Lin,? first, proposed a content extraction

*In this paper, we will often refer to simple examples with books so as to avoid describing complicated document sets.
"http://meta-e.aib.uni-linz.ac.at/



system for books with very structured results, by making use of relationships between table of contents pages and
book content pages. However, this system is entirely dedicated to books and cannot be easily adapted to other
document collections. On the opposite, some systems allow many variations, like mass or large-scale digitization
projects competing for the ICDAR 2009 Book Structure Extraction Competition.® They are working on building
generic systems able to extract structure information from any digitized book. Nevertheless, as they rarely make
assumptions about the kind of element which is processed, and then do not make use of a priori knowledge
about a collection, they only extract limited information with little structure.*

Finally, some approaches like smartFIX,> a mail-routing product which processes important amounts of
document pages from incoming and outgoing communication in a company to automatically perform business
tasks, have some qualities. They can face various document types, provide interesting tools to adapt the system
and have efficient workflows that integrate human verification and system training. However, their on-the-fly
recognition constraints limit information flow patterns between page analysis to a local merging of information
and prevent from managing relationships between distant document images, like a table of contents page and a
common text page in a book. As a result, this kind of system does not appear fitted to collections with strong
dependencies between distant document pages.

3. THEORETICAL FOUNDATIONS

This section quickly describes the basis over which our contribution is built. We need to introduce the attribute
grammar (AG) formalism and the definite clause grammars (DCGs) formalism before extending them, in Sec. 4,
for the purpose of document collection analysis. AGs can be seen as a structuring framework for the description
of collections of document images; and DCGs can be considered as a compilable expression of AGs in a logical
programming model.

3.1 Attribute Grammars Formalism

AGs were initially introduced by Knuth® for “specifying and implementing the (static) semantic aspects of pro-
gramming languages.” Since then, this formalism was successfully used in various fields. In particular, the work
of Tsai and Fu” in the field of pattern recognition showed that an AG can be a powerful mean to combine
statistical and structural tools in a recognition system. Paakki explains® that their versatility enables AGs to
“be used in many other fields where relations among structured information play a central role.”

AGs were extensively described in many works,% 9 which clearly defined this formalism, and we encourage

the reader to refer to the given references for a complete overview. What follows is a summary of the notations
and the vocabulary we will use in this article.

We will note AG =< G, A, R > an attribute grammar where:

G is a context-free grammar;
A is a set of attributes;
R is a set of semantic rules.

The context-free grammar G will be noted G =< N, T, P, S > where:

N is a set of non-terminal symbols;

T is a set of terminal symbols;

P is a set of production (or “derivation”) rules;

S is a starting symbol (or “axiom”) belonging to N.

We will consider, as usual, that each non-terminal can have inherited and synthesized attributes. Nevertheless,
in our case, we will require that both the start symbol and the terminal symbols can also have inherited and
synthesized attributes, which is usually not necessary.®



3.2 Definite Clause Grammars as an Implementation Language

DCGs are a formalism proposed by Pereira and Warren.!® They are defined by Paakki® as a “a logic counterpart
to context-free grammars such that non-terminals can be augmented with arguments, and productions can be
augmented with arbitrary code in Prolog.” Most of the logical programming languages now provide a DCG
library and can produce a parser after a compilation stage. We recommend the section 3.1 of Paakki’s attribute
grammar paradigms presentation® for further details on DCGs.

In our presentation, we will use the following notations (alternatives will be expressed with multiples deriva-
tions for a same left-hand part):

LEFT --> RIGHT represents the classical derivation operator (LEFT generates RIGHT)

El & E2 represents the concatenation of E1 and E2 (generates E1 then E2)

$ TERMINAL represents the consumption of a terminal (generates TERMINAL)

EPSILON represents the generation of an empty element in a rule
{PROLOG_CODE} represents some embedded Prolog code in a rule

non_term non terminals are written in lower case
SomeAttribute attributes (logical variables) start with an upper case letter for each word

non_term Argl ... ArgN optional arguments follow the symbol name and are separated with spaces

DCGs can be used to easily specify, with a succinct and appropriate language, the key elements for the
analysis of a collection: the definition of non-terminals (), production rules (P), and the start symbol (5) are
quite straight-forward. The main originality comes from the fact that attributes (A) are logical variables and
semantic rules (R) are logical relations (predicates). We will show in Sec. 4.2 what are the terminals (T') suitable
for a collection of document images and how to use them. The recognition automaton which is generated is a
top-down LL(k) parser, and it enables to evaluate the attributes while parsing the input, blurring the traditional
distinction between syntactical and semantic analysis, as both are performed at the same time.

Furthermore, this formalism can be readily extended in to increase its expressive power, thanks to the strong
integration of the logical language in the production rules, and therefore directly lead to an improved associated
parser.

4. EXTENSIONS FOR DOCUMENT COLLECTION PARSING

This section describes the extensions we propose to AGs and DCGs in order to be able to use them in the context
of the analysis of collections of document images. We first present the interests of AGs when trying to describe
a collection of document images. Then, we show that 3 key extensions enable to use DCGs to express a global
analysis process dedicated to a collection of document images. Those extensions are:

1. the use of special input stream for the parser;
2. the definition of a set of external image analyzers;

3. a special operator which enables to use the modified input stream and the external analyzers.

This permits to automatically generate a global process as a composition of image analyzers, capable of calling
them with an appropriate context.

4.1 Expressive Power of Attribute Grammars for Document Collections

In the case of the analysis of collections of heterogeneous or interdependent documents, AGs can be used to
express the structures of the collections and the dependencies between each document image. The production
rules, first, enable to adjust the description grain and to propose several abstraction levels (like book, chapter
and page) where it is possible to merge enough information for decision making by delaying local decisions. (This
is a first way to use context, a second way is to bring information from a global environment to a local decision
process, and will be presented in Sec. 4.3.) Alternatives in production rules enable to express the structure of



the collection (the nature and the order of the images it contains) and its variations, transforming structural
variability into a syntactical problem. Beside this, attributes and semantic relations can model links between
data used or produced by any analysis modules, and permit, among others, to specify how contextual information
flows.

Unlike an XML schema which may express the valid logical structures for a collection, an AG gives, in a formal
way, a full mapping between a physical structure and a logical structure, while limiting the valid configurations
for each. We can then consider that AGs give enough information to try to solve the inverse (as opposed to
synthesis) problem of the recognition of images collections.

We can therefore see that, in order to use the AGs modeling framework for the analysis of a collection of
document images, we first need to describe the structure of our collection with a context-free grammar (G),
which requires to decompose the global collection (S) into appropriate abstraction levels (N) clearly organized
(P). We will suggest in Sec. 4.2 some appropriate terminal symbols (T"). Secondly, we also need to describe
what information will be exchanged during this process (A) and how its components are related (R). Finally,
the actual recognition system needs to be implemented and run. DCGs can easily be used to define most of
those elements, as shown in Sec. 3.2.

4.2 Document Collection as a Stream of Images

During common text parsing, the source file (a stream of characters) is processed though several well-defined
stages. First, the lexical analyzer segments it into lezemes (some blocks of text), and categorizes them according
to a function, giving them meaning. The resulting tokens are grouped in a single stream, and can, in the second
stage, be analyzed by a parser. The terminal symbols (T") accepted by this parser are the token values it can
take as an input.

For a collection of document images, things are a bit different: first, data is already segmented (images are well
separated), and second, external information is often needed when analyzing a document image. This external
information can be the result of the same analysis process on a previous page, some important parameter for an
algorithm, or even a dictionary for word recognition. It is therefore important to be able to bring information
from the global collection level to the isolated document image analysis level, and we need to be able to delay
the categorization of each image until the global processing of the collection.

As a result, it is necessary for a parser working on a collection of document images to be able to accept
a stream of separated images as an input, and lazily call appropriate analysis tool on each of them, with the
appropriate context, when information contained in an image is needed. As no prior categorization is possible
for any image, the only terminal we will use in our system will be a single image, and the input stream of
some generated parser will be a stream of document images, appearing in the same order as how documents are
physically organized in the collection. This first modification can be summarized as:

T = document images
The implementation of such a parser is possible thanks to 3 key points:

1. due to the flexibility of the DCGs model, we can define the type of terminal symbols we want the parser
to work on (streams of characters are just one option);

2. so as not to store every image data in memory, we can simply keep a reference to it in our stream;

3. by adding a new operator (presented in Sec. 4.3) to our DCG description, we can cope with those references
to the images, and call an appropriate contextual recognition on an image when needed.

When calling the collection parser, we will only need to give it a stream of references to images data.



4.3 Integrating External Analysis Processes

We have seen how to build a parser that accepts a stream of images as an input, but we still need to explain
how to trigger an (external) analysis process for a given image. What we propose is to add a set (E) of external
analyzers to our AG formalism which can be used in our description, and to add a new operator (ANALYZE) to
the presented DCG formalism which will be able to call those analyzers and cope with the special input stream.

4.3.1 Adding an external analyzers set to AGs

The set E of usable external analyzers is a set of definitions very similar to predicate definitions. For each
external analyzer, we store:

e the name of the analyzer (its identifier in the grammar) and a reference to this external module (like a file
name);

e the set of attributes (or parameters) it accepts and their type.

The AG definition then becomes an extended attribute grammar definition, which we note
AGext =< Geol, A, R, E > where:
A and R are left unchanged;
E is the set of external analyzers;
Geol is a collection grammar.

The collection grammar is defined as Geo1 = < N, Timg, P, S > where:

N s a set of abstract levels in the collection;
S is its top-level element;
P describes the structure of the collection;
Timg is a single element set containing a raw image reference prototype.

4.3.2 Adding a new operator to DCGs

The new operator, which we will note ANALYZE, enables to dynamically choose which analysis module (from E)
has to be called for each document image, and to give it as much information as it needs. It also enables to
extract specific information from each document image we encounter. From the collection point of view, it mainly
permits to bring contextual information from the global process to a local document analysis module, in order to
help it analyzing the current document image; and to retrieve information produced, in a prediction-verification
fashion. This is a new terminal consuming operator which triggers a given “lexical and contextual” analysis on
an image. The syntax of this operator is:

ANALYZE (external_analyzer_ident Paraml Param2 ... ParamN)

It works in three steps:

1. the parser consumes the current terminal (the document image under its head) and extract the reference
to its content;

2. the external analysis module is invoked: thanks to a serialization mechanism, the external tool is provided
the reference to the image and to any content given as input parameter to the operator (like inherited
attributes);

3. when the external module terminates, its status and results are sent back to the global collection parser: if
the external module failed recognizing the image, the global parser will backtrack to the previous alternative
and explore it, otherwise the results sent in output parameters are used like synthesized attributes.



From the external module point of view, parameters allow information passing, and the only constraint each
analysis module has is to be able to process an image and send a failure notification when it cannot accomplish
its task. We then rely on a standard interface and a common serialization method between external modules
and the global collection parser.

If an external analyzer is also based on a grammatical description, then we are able to express constraints
over elements across document image boundaries, and we can use different representation space for the image
analysis level (bi-dimensional for example) and the collection space (generally mono-dimensional). It shows that
this approach is not a simple decomposition of a single grammar over different modules, because the input stream
of the global collection analyzer is different from the one of the image processing modules. Furthermore, this
integration of external modules only relies on a standard interface, allowing any kind of image processing tool
which conforms to the later to be part of the global process.

5. DESCRIBING A COLLECTION WITH AN EXTENDED DCG

This section aims at illustrating how to describe the different aspects of a collection of document images, in order
to cope with the various difficulties is contains, using the approach we presented. We present here examples
which, while being simple, show how to express each of those aspects in a concise way. In a first time, we explain
how describing the structural variation of the collection enables to dynamically call the appropriate analyzer
on a given image, like in a syntactical problem. In a second time, we focus on the description of information
dependencies between document images, and on how to express them using semantic construct, so as to enable
an automated information flow. Finally, we show that the proposed formalization allows to describe analysis
stages in order to build complex global systems.

5.1 Describing the Structural Variation of the Collection

We have identified two kinds of structural variations in a collection of document images. The first is a variation
in the nature of the document image. The collection can contain documents with different physical structures,
requiring different analysis methods. By “different documents”, we can both consider effectively different docu-
ments, like a blank pages and text pages, or a similar documents which were altered and for which the primitive
extraction produces an unpredictable result: we then have damaged and understandable documents. The fol-
lowing code excerpt belongs to a simplified description of a digitized book, showing how to cope with this kind
of variation. The first rule, book, shows how to combine elements; the second, some_blank_pages, shows how
to call an external analyzer and accept alternatives.

book --> cover_page & some_blank_pages & table_of_contents &
some_blank_pages & book_content ...

some_blank_pages --> ANALYZE(blank_page_verifier) & some_blank_page
some_blank_pages --> EPSILON

The second variation kind lies in the order of the elements in the collection, like, for example, when a table
of contents can be found at the beginning or at the end of a book, in a unpredictable way for each book of a
series. It requires some more advanced techniques to be able to explore the collection of document in a more
flexible order. The Enhanced Position Formalism we proposed!! contains several operators that can be adapted
for our collection recognizer. Even if those operators were initially designed for a bi-dimensional analysis, their
logic remains valid in our case. The generated parser may require some transformations, but we recommend
Ref. 11 for further details. The two useful operators are:

e FIND(rule) UNTIL (stop_condition) which searches for the closest element from the current position
that permits to apply production rule, unless the production stop_condition can be applied before;

e AT(position) which modifies the current position of the parser’s head, and then allows a flexible navigation
in the stream to analyze, with jumps, absolute positioning, or direction change.



In the following example, we show how to accept book structures which can contain a table of contents at the
beginning or at the end of the collection of document images.

book --> find_toc & some_blank_pages & chapters

find_toc --> AT(collection_start) &

FIND(table_of_contents) UNTIL (tenth_page_from_start)
find_toc --> AT(collection_end) &

FIND(table_of_contents) UNTIL (tenth_page_from_end)

The book rule describes the structure of the book with a list of the elements to recognize. The find_toc rule
describes the search for a table of contents from the start or from the end of the collection, considering only ten
pages before giving up. For sake of simplicity, the next examples will not use those extensions.

5.2 Describing Information Dependencies in the Collection

The ability to control the information flow going to and coming from analysis components is as important aspect
of document collection recognition. We may need to make information flow in various ways, so as to express
contextual relationships between documents. We could want to share page numbering information between
neighbor pages. We could also want to bring table of contents data from the beginning of a book to the first page
of each chapter to check chapters’ titles. Furthermore, as we have shown how to accept variations in collection
structure, we cannot predict when some piece of information will be produced nor used. We may then need
some “automatic plumbing” mechanism which takes care about the activation and the storage of any piece of
information.

Luckily, the unification process and the logical variables provided by a Prolog implementation enable a
seamless flow of information between the rules of a DCG. In the following example, we transformed a bit the
previous example by adding an attribute TocData that will enable table of contents information to reach the
analyzer of a chapter’s title page.

book --> table_of_contents TocData & some_blank_pages & chapters TocData

a_chapter TocData --> ANALYZE(chapter_title_page TocData) & other_chapter_pages

Information produced in some way by the analysis of a table of contents section is stored in the logical variable
TocData which is later passed to the chapters rule. It will be passed to each chapter, and the a_chapter rule
accepts a parameter which is transmitted to the chapter_title_page analyzer. This information flow remains
valid even if we change the inner behavior of the recognition modules, or if the information produced changes.
We may also add various attributes to our grammar to enable the exchange of many other elements, between
any recognition module.

The previous information flow shows how to broadcast information produced during the analysis of one or
more images (a table of content) to other images (chapter pages) where it can be useful, even if it needs to be
stored for later use because it cannot be transmitted immediately : here the recognition of blank pages delays
the routing of the content summary. Furthermore, various other schemes of information flow could easily be
designed, in order to distribute, to merge or even to accumulate information.

Finally, as any kind of information can be exchanged with this approach, we are not limited to results
of content recognition. We can, for example, bring some threshold value or some dictionary to each image
analyzer. We can also transform information between each image analyzer call, and then propose a more complete
integration of the various processes which can be useful in the analysis of a collection of document images. As
a result, using semantic constructs of a DCG enable to exchange, along the global recognition process, any kind
of information that can be used to validate or guide image analysis work.



Figure 1. A clean page (left) producing clear rulings, and a damaged one (right), from the same register.

5.3 Composing Analysis Stages in a Global Process

A global content extraction process may also require to specify more precisely stages in the analysis, like,
for example, alternation between recognition, validation and training processes. Those analysis stages can be
expressed as rules, working on a set of document images, and predicates, transforming information, that a global
description combines in a consistent way.

We are therefore capable of expressing a full specification of information generation, transformation and
sharing (and forgetting) over a collection of document images. It is particularly interesting when we want to use
the result of the recognition of some element to help the recognition of another element after some transformation.

In our last example, we consider a practical case of historical documents in order to show how our modeling
approach enables to express the global composition of several complicated processes. In this case we want to
localize specific content areas, separated by rulings (represented by line segments), in military registers dating
from the early 20" century. Each register is composed of several pages with the same visual structure (dimensions
of content areas are stable) but between registers this structure can change. Inside a register, we have to
distinguish two cases for each page:

1. the page is well conserved and line detection produces clear results;

2. the page is damaged and we cannot base our analysis only on line extraction.

Figure 1 shows a clean page image and a damaged one belonging to the same register. In order to cope with
damaged document, we perform a two pass analysis on each register.

The first pass tries to locate ruling positions on clean images. Then, a machine learning stage (not detailed
here) uses collected information to produce a statistical layout (cell dimensions) model for the content areas of a
register. Finally, the second pass tries to locate some damaged separators using the statistical layout information:
we use the redundancy of structural information in the register to create a contextual information for each page
image. The following example shows how to collect separator positions for a register. The first derivation tries
to extract positions with an external analyzer (find_clean_separators), the second ignores unreadable pages
(using the terminal consuming operator $), and the third builds an empty result when no more document is
available.



locate_content_separators Separators -->
ANALYZE(find_clean_separators PageResults) &
locate_content_separators OtherPagesResults &
{merge_result PageResults OtherPagesResults Separators}
locate_content_separators Separators -->
$ UnreadablePage &
locate_content_separators Separators
locate_content_separators Separators -->
EPSILON &
{build_empty_result Separators}

The global process can then be expressed in a few lines, in order to combine separator localization, knowledge
production (the “layout”, storing cell dimensions) and enhanced localization using this statistical information.
We use here a SELECT(rule) operator, proposed in Ref. 11, which restores the parser’s head position after
the recognition of some rule. It enables us to go back to the first document image, while conserving collected
information.

process --> SELECT(locate_content_separators SomePositions) &
{learn_register_layout SomePositions Layoutl} &
enhanced_content_locator Layout

6. CONCLUSION

In this paper, we showed that DCGs can be a powerful yet simple formalism to design and generate a global
recognition system dedicated to a specific type of collection of heterogeneous documents sharing some content,
or having interdependent interpretation.

We proposed 3 extensions to AGs and DCGs: we suggested to consider images as terminals in order to easily
model the collection; we used this representation to introduce a set of external analyzers working on images;
and finally we added a new operator to our DCG parser to enable the use of this new input stream and of those
external analyzers.

Using those extensions (and some we previously proposed!!), we showed it was possible to dynamically choose
which analyzer use on a given image, giving it all the context it needs thanks to a seamless flow of information
between the collection level and the document image level. This was made possible through the usage of the
syntactical and the semantic components of an AG to describe the different aspects of a collection: we expressed
its structural variation using non-terminals and production rules, while we expressed information dependencies
between processes with attributes and semantic rules. We also showed that by combining those description tools,
we were able to define analysis stages in at the global collection level and to integrate various information-centered
processes into a common collection analyzer which can be automatically generated.

Our further work includes the exploration of the integration of interaction stages with a human operator;
and a better separation of the different aspects of the system, in particular information flow patterns, in order
to simplify their specification.

ACKNOWLEDGMENTS

This work has been done in cooperation with the Archives départementales des Yvelines in France, with the
support of the Conseil Général des Ywvelines.



[1]
2]

[11]

REFERENCES

Le Bourgeois, F., [Les documents écrits], ch. Reconnaissance des structures, 87-178, Informatique et
Systemes d’Information, Hermes Lavoisier (2006). 2-7462-1143-2.

Lin, C. C., Niwa, Y., and Narita, S., “Logical structure analysis of book document images using contents
information,” in [Proc. Fourth International Conference on Document Analysis and Recognition (ICDAR)],
2, 1048-1054 (Aug. 1997).

Doucet, A., Kazai, G., Dresevic, B., Uzelac, A., Radakovic, B., and Todic, N., “ICDAR 2009 Book Structure
Extraction Competition,” in [Proc. Tenth International Conference on Document Analysis and Recognition
(ICDAR)], (2009).

Coyle, K., “Mass digitization of books,” The Journal of Academic Librarianship 32(6), 641-645 (2006).
Klein, B., Dengel, A., and Fordan, A., [Reading and Learning], vol. 2956/2004 of Lecture Notes in Computer
Science, ch. smartFIX: An Adaptive System for Document Analysis and Understanding, 166—186, Springer
Berlin / Heidelberg (2004).

Knuth, D. E., “Semantics of Context-Free Languages,” Mathematical Systems Theory 2(2), 127-145 (1968).
Tsai, W.-H. and Fu, K.-S., “Attributed grammar - tool for combining syntactic and statistical approaches
to pattern recognition,” Systems, Man and Cybernetics, IEEE Transactions on 10, 873-885 (Dec. 1980).
Paakki, J., “Attribute grammar paradigms—a high-level methodology in language implementation,” ACM
Computing Surveys 27(2), 196-255 (1995).

Deransart, P., Jourdan, M., and Lorho, B., [Attribute grammars: definitions, systems and bibliography],
Springer-Verlag New York, Inc., New York, NY, USA (1988).

Pereira, F. C. N. and Warren, D. H. D., “Definite clause grammars for language analysis—a survey of the
formalism and a comparison with augmented transition networks,” Artificial Intelligence 13(3), 231-278
(1980).

Coiiasnon, B., “DMOS, a generic document recognition method: application to table structure analysis in

a general and in a specific way,” International Journal on Document Analysis and Recognition 8, 111-122
(June 2006).



