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Abstract
In this paper, a new framework for the tracking of closed

curves is described. The proposed approach, formalized
through an optimal control technique, enables a continuous
tracking along an image sequence of a deformable curve.
The associated minimization process consists in a forward
integration of a dynamical model followed by a backward
integration of an adjoint dynamics. This latter pde includes
a term related to the discrepancy between the state vari-
ables evolution law and discrete noisy measurements of the
system. The closed curves are represented through an im-
plicit surface.

1. Introduction
Tracking the contours of an object is an essential task in

many applications of computer vision. Due to the chang-

ing shape of deformable or even rigid objects in image se-

quences such an issue appears to be very challenging in

the general case. Another serious difficulty comes from the

huge dimension of the space of deformable curves (infinite

in theory). This context makes difficult the use of recur-

sive Bayesian filters such as the particle filter [3], since

stochastic sampling in large state spaces is usually com-

pletely inefficient. For such an issue, numerous approaches

based on the level set representation have been proposed

[5, 6, 8, 12, 15, 16, 19, 21]. All these techniques de-

scribe the tracking as successive 2D segmentation processes

sometimes enriched with a motion based propagation step.

Segmentation techniques on spatio-temporal data have also

been proposed [1, 6]. Unless the introduction of knowledge

on the shape of interest [10, 18], these approaches are quite

sensitive to noise [13] and exhibit inherent temporal insta-

bilities. Besides, it is difficult in such techniques to require

the curve to obey to a specified dynamics and therefore to

proceed to a real tracking.

In [22], an approach based on a group action mean shape

has been used in a moving average context. Contrary to pre-

vious methods, this approach introduces, through the mov-

ing average technique, a tracking process. This tracking is

restricted to simple motions and does not allow to introduce

complex dynamical law defined through differential oper-

ators. The explicit introduction of a dynamic law in the

curve evolution law has been considered in [15]. However,

the proposed technique needs a complex detection mecha-

nism to cope with occlusions or missing data. Few works

attempted to mix stochastic filtering and a level set repre-

sentation for curve tracking [7, 20]. As mentioned earlier,

these works have to face a high dimensional sampling prob-

lem and as a consequence rely on crude discretization of

the non linear curve dynamics which may be problematic

in some situations. In this paper, we propose a technique

related to the optimal control theory [9, 11] for the track-

ing of closed curves. This technique enables to estimate in

batch mode the complete trajectory of the level set surface

according to a set of noisy measurements and a specified

dynamics. This method has the advantage to naturally au-

thorize to cope with high dimensional state spaces.

2. Variational tracking
In this section, we describe the general principles of the

proposed technique. This setup relies on control theory

recipes [9, 11].

Direct evolution model The state variable representing

the feature of interest X , is assumed to live in a func-

tional space W(t0, tf ) = {X |X ∈ L2(t0, tf ;V), ∂tX ∈
L2(t0, tf ;V)}, where V is an Hilbert space identified to

its dual space. The evolution in time range [t0; tf ] of the

state is described through a (non linear) differential opera-

tor M : V×]t0, tf [→ V , defined up to a control function

ν ∈ W(t0, tf ), and an initial value defined up to another

control variable η ∈ V :j
∂tX(t) + M(X(t), t) = ν(t) ∀t ∈]t0, tf [,
X(t0) = X0 + η.

(1)

We are facing a dynamical system which depends on the

whole trajectory of the control variables, ν(t), and on the

value of a control variable, η, modeling the uncertainty on

the initial condition.
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This direct problem (1) will be assumed to be well

posed, which means that we first assume that the applica-

tion V × V → V : ν(t), η �→ X(ν(t), η, t) is differentiable

and continuous ∀t ∈]t0, tf [ and secondly that given η ∈ V ,

ν ∈ W(t0, tf ) and tf > t0, there exists a unique function

X ∈ W(t0, tf ) solution of problem (1). Let us also as-

sume that some observations Y ∈ O of the state variable

components are available. These observations may live in a

different space (a reduced space for instance) from the state

variable. We will nevertheless assume that there exists a

(non linear) observation operator H : V → O, that goes

from the variable space to the observation space.

Cost function We aim in that work at estimating the con-

trol variable of lower magnitude that minimizes a discrep-

ancy measure between the state variable and the observa-

tions. This is expressed by the minimization of a cost func-

tion J : W ×V → R defined as:

J(ν, η) =
1

2

Z tf

t0

||Y − H(X(ν(t), η, t))||2R dt +
1

2
||η||2B

+
1

2

Z tf

t0

||ν(t)||2Q dt.

(2)

Norms || · ||R , || · ||B and || · ||Q are induced associated to

the scalar products
〈
R−1·, ·

〉
O

,
〈
B−1·, ·

〉
V

and
〈
Q−1·, ·

〉
V

,

where R, B and Q are symmetric positive definite endo-

morphisms of V . In our application, R, B and Q are respec-

tively called the observation covariance matrix, the initial-

ization covariance matrix and the model covariance matrix.

Differential model The computation of the cost function

partial derivatives relies on the differentiation of the the sys-

tem of equations (1) with respect to the control variables

(ν, η) in the direction (δν, δη). Noting dX = ∂X
∂ν

δν +
∂X
∂η

δη ∈ W(t0, tf), we obtain the following problem:

˛̨̨
˛̨̨
˛̨̨
˛̨̨
˛

˛̨̨
˛̨̨
˛̨̨
˛̨̨
˛

Given (ν, η)∈(W,V), X(t) solution of (1)

and a perturbation (δν, δη)∈(W ×V),

dX =
∂X

∂ν
δν +

∂X

∂η
δη ∈ W(t0, tf ), is defined such that:j

∂tdX(t) + (∂XM)dX(t) = δν(t) ∀t ∈]t0, tf [,
dX(t0) = δη.

(3)

In this expression, the tangent linear operator ∂XM is de-

fined as the Gâteaux derivative of the operator M at point

X :

(∂XM)dX(t) = lim
β→0

M(X(t) + βdX(t)) − M(X(t))

β
. (4)

The tangent linear operator (∂XH) associated to H may be

defined similarly. The differentiation of cost function (2)

with respect to (ν, η) in the direction (δν, δη) reads:fi
∂J

∂η
, δη

fl
V

= −

Z tf

t0

fi
Y − H(X), (∂XH)

∂X

∂η
δη

fl
R

dt

+ 〈X(t0) − X0, δη〉Bfi
∂J

∂ν
, δν

fl
W

= −

Z tf

t0

fi
Y − H(X), (∂XH)

∂X

∂ν
δν(t)

fl
R

dt

+

Z tf

t0

〈∂tX(t) + M(X(t)), δν(t)〉Q dt.

(5)These expressions can be rewritten as:fi
∂J

∂η
, δη

fl
V

= −

Z tf

t0

fi
(∂XH)∗R−1(Y − H(X)),

∂X

∂η
δη

fl
V

dt

+
˙
B−1(X(t0) − X0), δη

¸
V

.fi
∂J

∂ν
, δν

fl
W

= −

Z tf

t0

fi
(∂XH)∗R−1(Y −H(X)),

∂X

∂ν
δν(t)

fl
V

dt

+

Z tf

t0

˙
Q−1(∂tX(t)+M(X(t)), δν(t)

¸
V

dt,

(6)

where (∂XH)∗, the adjoint operator of (∂XH), is defined

by the scalar product:

∀X ∈ V, ∀Y ∈ O 〈(∂XH) X, Y 〉O = 〈X, (∂XH)∗Y 〉V . (7)

Adjoint evolution model In order to estimate the gradient

of the cost function J , a first brute force numerical approach

consists in computing the functional gradient through finite

differences:

∇ek
J �

»
J(u + εek) − J(u)

ε

–
, k = 1 · · · p,

where u = (ν, η) ∈ (W,V), ε ∈ R is an infinitesimal per-

turbation and {ek, k = 1, . . . , p} denotes the unitary basis

vectors of the control space (W,V). Such a computation is

impractical for large dimensional spaces since it requires p
integrations of the evolution model for each required value

of the gradient functional. Adjoint model technique, as in-

troduced in control theory and data assimilation [9, 11], al-

lows to compute efficiently this gradient functional. To ob-

tain the adjoint equation, the first equation of model (3) is

multiplied by an adjoint variable λ ∈ W(t0, tf ) and inte-

grated on [t0, tf ]:Z tf

t0

〈∂tdX(t), λ(t)〉V dt +

Z tf

t0

〈∂XMdX(t), λ(t)〉V dt

=

Z tf

t0

〈δν(t), λ(t)〉V dt.

After an integration by parts of the first term and using the

second equation of the differential model (3), we finally get:

−

Z tf

t0

〈−∂tλ(t) + (∂XM)∗λ(t), dX(t)〉V dt

= 〈λ(tf ), dX(tf )〉V − 〈λ(t0), δη〉V −

Z tf

t0

〈λ(t), δν(t)〉V dt.

(8)



where we introduced the adjoint operator (∂XM)∗ defined

by the scalar product:

∀X∈V, ∀Y ∈V 〈(∂XM) X, Y 〉V = 〈X, (∂XM)∗Y 〉V . (9)

To obtain an accessible expression for the cost function gra-

dient, we impose to the adjoint variable to be solution of the

following adjoint problem:j
−∂tλ(t) + (∂XM)∗λ(t) = (∂XH)∗R−1(Y −H(X(t)))
λ(tf ) = 0.

(10)

Functional gradient Combining equations (6), (8) and

(10) and recalling that dX = ∂X
∂ν

δν + ∂X
∂η

δη, the functional

gradient is given by:fi
∂J

∂ν
, δν

fl
W

+

fi
∂J

∂η
, δη

fl
V

=

Z tf

t0

˙
Q−1(∂tX(t)+M(X(t)),δν(t)

¸
V
dt−

Z tf

t0

〈λ(t),δν(t)〉Vdt

− 〈λ(t0), δη〉V +
˙
B−1(X(t0) − X0), δη

¸
V

=
˙
Q−1(∂tX + M(X) − λ, δν

¸
W

+
˙
−λ(t0) + B−1(X(t0) − X0), δη

¸
V

.

The derivatives of the cost function with respect to ν and η
are thus identified as:

∂J
∂ν

= Q−1(∂tX + M(X)) − λ, (11)

∂J
∂η

= −λ(t0) + B−1(X(t0) − X0). (12)

A gradient descent optimization can be set by canceling

these components. Introducing Q and B, the respective

pseudo inverses of Q−1 and B−1 [2], the state variables

update reads: j
∂tX(t) + M(X(t)) = Qλ(t)
X(t0) − X0 = Bλ(t0).

(13)

The second equation constitutes an incremental update of

the initial condition from the value of the adjoint variable

at the initial time. This system can be generalized to define

the following incremental formulation.

Incremental function Denotingj
X(t) = X̃(t) + dX(t) ∀t ∈ [t0, tf ],

X̃(t0) = X0,
(14)

where X̃(t) is either a fixed component or a previous esti-

mated trajectory of the state variable, equation (13) can be

written as:
∂tX̃(t) + M(X̃(t)) = 0 ∀t ∈]t0, tf [, (15)

∂tdX(t) + ∂X̃M(X̃(t))dX(t) = Qλ(t) ∀t ∈]t0, tf [. (16)

Hence, the update of the state variable X is driven by an

incremental function dX which depends on the whole tra-

jectory of the adjoint variable λ. The initial value of this in-

cremental function is given by the second equation of (13):

dX(t0) = Bλ(t0). (17)

Equations (10), (15), (16) and (17) give rise to a data as-

similation method with a dynamical model defined up to a

control variable. A sketch of the whole process is summa-

rized in Algorithm (2.1).

Algorithm 2.1 Let X(t0) = X0.
(i) From X(t0), compute X(t), ∀t ∈]t0, tf [ with a
forward integration of system (15).

(ii) X(t) being given, realize a backward integration of
the adjoint variable with the system of equations (10).

(iii) Compute the initial value of the incremental function
dX(t0) with relation (17).

(iv) From dX(t0), compute dX(t), ∀t ∈]t0, tf [ with a
forward integration of system (16).

(v) Update X = X + dX .

(vi) Return to (ii) and repeat until convergence

(J(ν(t), η) < threshold).

3. Application to curve tracking

We will focus in this section on the application of the

previous framework to curve tracking.

3.1. Contour representation and evolution laws

As we aim at tracking non parametric closed curves that

may exhibit topology changes along time, we will rely on an

implicit level set representation of the curve of interest Γ(t)
at time t ∈ [t0, tf ] of the image sequence [16, 21]. Within

that framework, the curve Γ(t) enclosing the target to track

is implicitly described by the zero level set of a function

φ(x, t) : Ω × R+ → R : Γ(t) = {x ∈ Ω | φ(x, t) = 0}.
In order to define a dynamics for the unknown surface,

the curve is assumed to be propagated at each frame instant

by a given velocity field, w(x, t) = [u(x, t), v(x, t)]
T

, and

diffuses according to a mean curvature motion. This dy-

namics is assumed to be valid up to an additive control func-

tion ν:
∂tφ + (w · n − εκ) ‖∇φ‖| {z }

�
=M(φ)

= ν, (18)

where the curvature and the normal are directly given in

term of surface gradient: κ = div(∇φ/‖∇φ‖) and n =

∇φ/‖∇φ‖. As indicated previously, the motion field trans-

porting the curve is assumed to be given by an external es-

timator. In practice, we used an efficient and robust version

of the Horn and Schunck optical-flow estimator [14]. The

additive control function allows us to model inaccuracy of

the velocity fields. Since it is rather difficult to infer pre-

cise errors model for this dynamics, we fixed the control

covariance matrix Q to a constant diagonal matrix (typically

Q = 0.005).

Tangent linear evolution operator To apply the setup

defined previously, we must first define the expression of

the directional derivative of the operators involved. Using

equation (18), the evolution operator reads in its complete

form:



M(φ) = ∇φ · w − ε||∇φ||div

„
∇φ

||∇φ||

«
.

This operator can be turned into a more tractable expression

for our purpose:

M(φ) = ∇φT
w − ε

 
Δφ −

∇
T

φ∇2φ∇φ

||∇φ||2

!
. (19)

The corresponding tangent linear operator at point φ finally

reads:

∂φMδφ = ∇δφT
w − ε

»
Δδφ −

∇φ
T

∇2δφ∇φ

||∇φ||2

+ 2
∇φ

T

∇2φ

||∇φ||2

 
∇φ∇φ

T

||∇φ||2
− Id

!
∇δφ

–
.

(20)

Operator discretization Before going any further, let us

describe the discretization schemes we considered for the

evolution law. This concerns the evolution operator, the as-

sociated tangent linear operator and the adjoint evolution

operator. We will denote as φt
i,j the value of φ at image

grid point (i, j) at time t ∈ [t0; tf ]. Using (18) and a semi-

implicit discretization scheme, the following discrete evo-

lution model is obtained:

φt+Δt
i,j − φt

i,j

Δt
+ Mφt

i,j
φt+Δt

i,j = 0.

Considering φx and φy, the horizontal and vertical gradient

matrices of φ, the discrete operator M is obtained as:

Mφt
i,j

φt+Δt
i,j =

„
(φt+Δt

x )i,j

(φt+Δt
y )i,j

«T

w

−
ε

||∇φt
i,j ||

2

„
−(φt

y)i,j

(φt
x)i,j

«T

∇2φt+Δt
i,j

„
−(φt

y)i,j

(φt
x)i,j

«
,

where we used usual finite differences for the Hessian ma-

trix ∇2φ and a first order convex scheme [21] for the ad-

vective term ∇φ · w. This scheme enables to compute the

surface gradients in the appropriate direction:

∇φ
T

i,jwi,j = max(ui,j , 0)(φi,j)
−
x + min(ui,j , 0)(φi,j)

+
x

+ max(vi,j , 0)(φi,j)
−
y + min(vi,j , 0)(φi,j)

+
y ,

where (φ)−x and (φ)−y are the left semi-finite differences,

whereas (φ)+x and (φ)+y are the right ones. The discrete

linear tangent operator is similarly defined as:

∂φt
i,j

Mδφt+Δt
i,j = Mφt

i,j
δφt+Δt

i,j −
2ε (A B)

||∇φ||4

„
(δφt+Δt

x )i,j

(δφt+Δt
y )i,j

«
,

where A and B are:

A = φt
xφt

y(φt
xyφt

x − φt
xxφt

y) + (φt
y)2(φt

yyφt
x − φt

xyφt
y),

B = φt
xφt

y(φt
xyφt

y − φt
yyφt

x) + (φt
x)2(φt

xxφt
y − φt

xyφt
x).

As for the iterative solver involved in the implicit discretiza-

tion, we used a conjugated gradient optimization. The dis-

cretization of the adjoint evolution model is finally obtained

as the transposed matrix corresponding to the discretization

of the derivative of the evolution law operator.

3.2. Initial condition

In order to define an initial condition, we assume that

an initial contour of the target object is available. It can be

provided by any segmentation technique or specified by the

user. In this work we used a simple thresholding technique.

Given this initial contour, we initialized the implicit func-

tion at the first time as a signed distance function. More pre-

cisely, the value of φ(x, t0) is set to the distance g(x, Γ(t0))
of the closest point of the initial curve Γ(t0), with the con-

vention that g(x, t0) is negative inside the contour, and pos-

itive outside. An additive control variable models the un-

certainty we have on the initial curve. This initial condition

reads: φ(x, t0) = g(x, Γ(t0)) + η(x, t).
The covariance matrix, B, associated to the initial state

control variable has been defined as a diagonal matrix which

fixes a low uncertainty in the vicinity of the initial given

curve and an increasing uncertainty as soon as the curve

moves away from the initial contour:

B(x) = Id − e−|g(x,t0)|.

3.3. Measurement equation
To link the image data to the unknown surface vari-

able we rely on a measurement modeling that involves lo-

cal probability distributions of the intensity function. This

model compares at each point of the image domain a lo-

cal photometric histogram to two global probability density

functions ρo and ρb modeling respectively the object and

background intensity distribution. These two distributions

are assumed to be estimated from the initial location of the

target object. The proposed measurement equation reads:

F (φ, I)(x, t) = [1 − dB(ρVx
, ρo)]

2
1φ(x)<0+

[1 − dB(ρVx
, ρb)]

2
1φ(x)≥0 = ε(x, t),

(21)

where dB is the Bhattacharya probability density distance

measure defined as:

dB(ρ1, ρ2) =

Z 255

0

p
ρ1(z)ρ2(z)dz.

and ρVx
is the probability density in the neighborhood of

pixel x. Let us note that by replacing the densities with

intensity average, we retrieve the Chan and Vese functional

proposed for image segmentation [4]. The corresponding

linear tangent operator in the sense of distributions [4] is:

∂φF =
`
[1 − dB(ρVx

, ρo)]
2 − [1 − dB(ρVx

, ρb)]
2
´
δ(φ),

(22)

where δ(·) is the Dirac function. The covariance associ-

ated to the measurements discrepancy has been fixed to a

diagonal matrix corresponding to the minimal empiric local

photometric covariance:

R(x, t) = E[Min((1 − dB(ρVx
, ρo))

2, (1 − dB(ρVx
, ρb))

2)].

This measurement equation and the corresponding adjoint

linear tangent operator are involved in the adjoint model

(10):

−∂tλ(t) + (∂φM)∗λ(t) = (∂φF )∗R−1F (φ, I).



4. Experimental results
As a first example, we applied our assimilation technique

for the tracking of a car in the Hamburg taxi sequence. The

initial curve is given by a threshold technique. The results

are presented on figure 1. They show that the proposed sys-

tem enables to track quite accurately a curve surrounding a

region of interest, conserving the car topology.

t=0 t=9

t=17 t=25
Figure 1. Hamburg taxi. Result of the assimilation technique.

To further illustrate the interest of the proposed tech-

nique, we tracked a curve delineating alphabetic letters.

The measurements consist of a set of four binary letters

images, as presented on figure 2 and the curve has been

initialized with the shape of the letter A. On the same

figure, we plotted the results obtained at intermediate

instants in order to show how curve deforms continuously

along the sequence to give some kind of morphing results.

Contrary to other results, the curve is here only driven by a

mean curvature motion. The assimilation principle allows

to track the global deformation of the curve along time

thanks to the batch approach that considers all the set of

available observations.

We then applied the process to the tracking of a run-

ning tiger. This sequence composed of 27 frames is of bad

quality: it includes motion blur at some places and is quite

noisy. The initial curve that determines probability density

functions of the tiger and the background is obtained with a

simple threshold technique. The results shown on figure 3

illustrate the fact that despite the very bad quality of images,

the method allows to track the tiger in a consistent way.

For this sequence, we also plotted on figure 4 a se-

quence of segmentation obtained through a Chan and

Vese segmentation process [4] based on the same data

model as our measurements model (eq. 21-22) and with

an additional penalization term on the curve length. As

can be observed from figure 4 the mask obtained with

t = 0 t = 1

5
t = 2

5
t = 3

5

t = 4

5
t = 1 t = 6

5
t = 7

5

t = 8

5
t = 9

5
t = 2 t = 11

5

t = 12

5
t = 13

5
t = 14

5
t = 3

Figure 2. Letter sequence. Result of the assimilation process.

The curve is superimposed on the observed letter images at times

t = 0, 1, 2, 3.

this spatial segmentation technique are of good quality on

some images. They nevertheless appears to be unstable

along time and would require a delicate tuning of the

parameter to obtained a consistent sequence of curves. At

the opposite, the curves provided by the proposed technique

are more stable in time and consistent with respect to the

object shape and its deformation. Compared to traditional

segmentation techniques the assimilation techniques pro-

vides results which reflect in a more coherent way the

topology and the deformation of the target object along

time. Due to the bad quality of the image sequence and

to the amplitude of the motions we can observe that it is

nevertheless difficult for the curve to fit precisely and in a

continuous way to the photometric boundaries of the object.

The differences between the results obtained through as-

similation and successive photometric segmentations are fi-

nally illustrated on a cardiac magnetic resonance imaging

sequence 1. The purpose is here to track the left ventricle.

The result of the method are presented on figure 5. As can

be observed the target region approximatively delineated in

the first image by the user is well tracked. The succes-

sive deformations of the region are recovered in a coherent

continuous way. The sequence of curve delineates well the

evolution of a target region of interest specified at the ini-

tialization stage. In comparison, the results obtained from

the same initialization with the Chan and Vese technique

show an immediate expansion of the target region to other

regions of the image characterized by the same photometric

1http://mrel.usc.edu/class/preview.html



t = 0 t = 2

t = 4 t = 5

t = 7 t = 10

t = 14 t = 17

t = 19 t = 21

t = 23 t = 26
Figure 3. Tiger sequence. Result of the assimilation technique.

Despite of the noisy images, the global shape of the tiger is pre-

served along the time.

distribution (see figure 6). Incoherent merging or splitting

of regions regarding the effective deformations of an object

shape is maybe one of the main problems met when running

spatio-temporal analysis on the basis of consecutive single

spatial analysis (even chained together through their initial-

izations).

5. Conclusion
In this paper, a new framework allowing the visual track-

ing of curves has been presented. The proposed technique

relies on data assimilation technique formulated through an

optimal control problem [9] and allows to handle in batch

mode the tracking of an implicit surface. The technique

is simple and consists in a forward integration of a level-set

dynamics coupled with a backward integration of an adjoint

dynamics incorporating a data measurement model. The

method incorporates only few parameters representing the

different errors involved in the considered system.

In this work, the curve velocity fields is assumed to be

t = 0 t = 2

t = 4 t = 5

t = 7 t = 10

t = 14 t = 17

t = 19 t = 21

t = 23 t = 26
Figure 4. Tiger sequence. Successive segmentations obtained

through a Chan and Vese level-set technique with a data model

based on local probability density measurement and a Bhat-

tacharya distance (eq. 21-22).

known. Nevertheless we could couple the curve tracking

with a similar tracking mechanism on the velocity fields to

improve the performances [17]. This will be the subject of

future works.
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