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reconstruction
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Abstract

We present a method for fully automatic 3D reconstruction from a pair of weakly calibrated images

in order to deal with the modeling of complex rigid scenes. A 2D triangular mesh model of the scene is

calculated using a two-step algorithm mixing sparse matching and dense motion estimation approaches.

The 2D mesh is iteratively refined to fit any arbitrary 3D surface. At convergence, each triangular

patch corresponds to the projection of a 3D plane. The algorithm proposed here relies first on a dense

disparity field. The dense field estimation modelized within a robust framework is constrained by the

epipolar geometry. The resulting field is then segmented according to homographic models using iterative

Delaunay triangulation. In association with a weak calibration and camera motion estimation algorithm,

this 2D planar model is used to obtain a VRML-compatible 3D model of the scene.

I. INTRODUCTION

The evolution of techniques and hardware used in computer graphics allows more and more

realistic representations of our surrounding world. These representations are of interest in many

contexts:

� virtual reality such as navigation in well-known historic buildings or 3D video games;

� electronic business: the goal is here to transmit a 3D model of a desired object to potential

buyers to offer many different viewpoints;

� dangerous environment simulators (nuclear or military applications for instance).

Though real time rendering techniques are already available, the modelization step is still very

time consuming as it is manually performed. In this paper, we present a method for complex

scene modeling from sets or sequences of images with unknown camera motion, in the context
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of a static scene, or equivalent modeling for images acquired simultaneously from different

view-points. This model is then used for generating intermediate or extrapolated views.

Many recent works attempt to deal with 3D reconstruction from set of images. Two different

classes of approaches are generally proposed using different types of information: the first one

includes model-based methods and the second one deals with model-free methods.

In model-based approaches, the scene information is assumed to be composed of large polygo-

nal objects described by a limited set of 3D points characterizing the vertices of each 3D plane.

This model can be computed in the 2D space without 3D information. This can be done by

extracting, matching and 3D reconstructing points of interest [7] or edges [10]. One of the main

limitations of these methods is that effective planarity of generated facets is assumed but not

always satisfied. To enforce a global planarity, a manual intervention is even usually necessary to

indicate reliable coplanar points. Another way of estimating the model is to use disparity maps

(or alternatively depth maps). In [13], Kochet al. suggest computing differential properties from

a dense disparity map. Images are then segmented according to similar surface orientation at each

point of a region. The underlying strongly polyhedral assumption is indeed the major limitation

of model-based techniques.

To enlarge the variety of treated scenes, model-free representations (second class of approach-

es) have been proposed. Such methods generally rely on a dense disparity map. This map can

be combined with weak or strong calibration information to provide a depth map that can be

manipulated for view synthesis [7], [12]. The major limitation consists here in the estimation

of reliable dense disparity information allowing occlusion areas and spatial discontinuities to be

coped with efficiently.

The main objective of our study is to propose an entirely automatic approach for the recon-

struction of not necessarily polyhedral textured scenes. In addition to this non-specialized goal,

we impose to have the ability of an easy and real time visualization. This latter requirement

dismisses practically the use of methods based entirely on a dense depth map. On the other

hand, the removal of the polyhedral scenes assumption favors such approaches. Following these

two remarks and in order to comply with the previously described goals, our aim is to suggest

a compromise between model-free and model-based methods. We first propose to describe the

3D scene by a triangular mesh which can be displayed by most visualization dedicated systems.

Our method therefore belongs to the first class (model-based approaches) but as this triangular
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mesh is automatically computed from a dense disparity field, it is also related to the second

class.

The key point of our method is to segment the images into regions which are actually planar

in the 3D scene and to extract the planarity property from the image data (and not from a

user intervention). This is indeed equivalent to realizing motion segmentation according to an

homographic model. As the homographic model describing the set of admissible transformations

of planar patches is non-linear, a direct region-based segmentation method is hardly feasible. We

have therefore designed a two-step method. The first step provides a geometrically constrained

dense depth map and an associated discontinuity map. This dense information is then used to

initialize the second step: homographic model estimation and segmentation.

The outline of the paper is the following. The first section briefly describes geometric defini-

tions associated with perspective projection of two images. In this context, epipolar geometry is

presented. This important geometric constraint is used in all the following steps of our method

and has to be previously estimated.

In the second section, in order to facilitate a subsequent planar facet segmentation step, we

present a geometrically constrained disparity field estimation. This technique is derived from

a robust optical flow estimation approach. Unlike classical correlation methods, it provides a

reliable piecewise smooth motion field [3], [19]. Moreover the disparity estimation is constrained

by the associated epipolar geometry so that the estimated field is explicitly forced to be geo-

metrically consistent with a perspective projection model and with the fixed scene assumption.

This constraint also yields a substantial computational cost decrease (the 2D disparity estimation

problem is reduced to a 1D problem).

The third section presents the planar facet segmentation step of our method. To ensure the

effective planarity of each reconstructed triangle, an adaptive iterative triangulation based on

homographic models estimation is computed from the disparity field.

By arbitrarily fixing intrinsic parameters, 3D rotation and translation parameters can be ex-

tracted from the epipolar geometry. Using this 3D information, the resulting 2D model is then

re-projected in the 3D space to be visualized as a VRML representation.

This method has been validated on synthetic and real world images. Comparison with existing

classical techniques are presented in the last section of the paper.

Remark: in the following, vectors will be represented by bold letters.
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II. EPIPOLAR GEOMETRY

A. Definition

The characterization of the geometry associated with the two cameras is of key importance in

order to build a 3D model of the scene. In our case, we deal with two uncalibrated cameras (or

alternatively one moving camera shooting a rigid scene) assuming a pinhole camera model. This

model characterizes the projection of a 3D pointP�X� Y� Z� on a pointp�x� y� of the image

plane. In the case of two images, the projection model is defined by a system of two equations

linking a 3D pointP�X� Y� Z� to its projectionsp��x� y� in the first image andp��x
�� y�� in the

second one. Without lost of generality, we assume that the world coordinate system coincides

with the first camera coordinate system. The resulting system can be written using homogeneous

coordinates as follows (where�denotes homogeneous coordinates):

�p� � A��I ���P

�p� � A��R t��P
(1)

R is the rotation matrix andt is translation vector defining the second camera location

(extrinsic parameters). More precisely,R and t are the orientation and position of the first

camera expressed in the second camera coordinate system. MatrixA contains internal camera

parameters (intrinsic parameters).

Let C� andC� be the camera optical centers as well as the centers of camera coordinate

systems.p� belongs to line�C��P� andp� belongs to line�C��P�. ThusC�, C�, p�, p� and

P are coplanar points. This coplanarity constraint implies:

����
C�p� � �����C�C� �����

C�p�� � � (2)

where � denotes the scalar product and� denotes the cross product. In the second camera

coordinate system,
����
C�p� � A��

� �p�,
����
C�C� � t and

����
C�p� � RA��

� �p�.

Substituting these values in equation (2) leads to a relation linking the projections of a 3D

point in both images:

�pT
�
A�

�T �t��RA�
���p� � �� (3)

where�t�� denotes the cross product matrix associated with the translation vector.

This constraint calledepipolar constraint has been first introduced by Longuet-Higgins [15].

It is entirely defined by a��� homogeneous matrix called thefundamental matrix formulated as
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F� � � A�
�T �t��RA�

��. By construction, this matrix is of rank 2 and is defined up to a non-zero

scalar factor. A fundamental matrix has therefore only seven degrees of freedom.

The fundamental matrix can be used to determine theepipolar line l� in the second image

associated with pointp�. Line l� is defined by:

�l� � F� ��p� (4)

where�l� denotes homogeneous coordinates ofl�, i.e. all points inl� satisfy �pT�l� � �. The

epipolar constraint (3) can now be written as:

�pT
�
F� ��p� � �pT

�
�l� � �� (5)

which states that the correspondantp� of pointp� belongs tol�. The epipolar linel� thus defines

the set of admissible correspondants for pointp�.

B. Case specific application

The issue we address is the recovery of 3D information from sets of 2D images. It consists

in solving system (1) to obtain the 3D pointP. To that end, corresponding pointsp� and

p� and calibration parameters (extrinsic and intrinsic parameters) givingA�, A�, R, t have to

be recovered. The first issue can be greatly simplified by constraining the matching process

with the epipolar geometry while the second one can be achieved using a decomposition of

the fundamental matrix (see section V). The epipolar geometry estimation is indeed a crucial

key point of our method. The next paragraph will present the method we use to recover the

fundamental matrix from two uncalibrated images.

C. Fundamental matrix estimation

We assume here that corresponding points have been extracted and matched using a Harris

and Stephens detector associated with a cross correlation process. This first step is equivalent to

the one developed by Zhang [24].

To take into account the nullity of the fundamental matrix determinant, we follow a method

proposed by Boufamaet al. based on the virtual parallax [5]. This method may be briefly

described as follows. The fundamental matrix is first estimated from 8 matches: three of them

are selected to perform a projective change of basis to constraint the matrix to be of rank 2. A
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fourth arbitrary pair is also added to complete the projective change of basis [5]. The four last

pairs are then used to provide a unique fundamental matrix solution which respects the rank 2

constraint (determinant of null value).

In association with the determinant nullity constraint, the change of basis provides a normal-

ization effect on points coordinates: the coordinates of the three points selected to characterize

the new basis are assigned to values between 0 and 1. This involves that coordinates of points

belonging to the triangle defined by these points also belong to the range of 0 to 1. It has been

shown that normalization is a critical point for getting a well-conditioned system of equations

[9]. If pixel coordinates are used directly without normalization, the linear closed form solution

is not reliable due to numerical instability. In order to perform normalization for all points, the

pairs of points are chosen as near as possible to image corners.

Besides, to cope with erroneous matches, a robust estimation based on least median squares

estimation is incorporated [21].

III. D ENSE DISPARITY FIELD ESTIMATION

A. Constrained optical flow expression

Let Ii�s� be the intensity in theith image, wheres � �x� y� denotes the spatial position of pixel

s on the image gridS. Assuming a constant intensity along motion trajectories, the brightness

constancy assumption is expressed as:

DFD�s�ds� � I��s�� I��s� ds� � � � (6)

whereDFD stands for the Displaced Frame Difference function andfds � �dx� dy�� s � Sg for

the image displacements from position	 to position
. In the general case, this is a 2D problem:

for each pixels, dx anddy have to be recovered.

Using the epipolar constraint, it is possible to decompose the displacement vectords into

normal and tangential components with respect to the epipolar line (see Figure 1). The brightness

constancy assumption is therefore rewritten as:

DFD�s�ds� � I��s�� I��s � ns � �svs� � �� (7)

The normal componentns and the unit vector on the epipolar linevs can be computed from the

fundamental matrix for any positions (see eq. 4). The enforcement of the epipolar constraint
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at every point reduces the original 2D estimation problem to a 1D problem: the estimation of a

scalar field� � f�s� s � Sg along epipolar lines.

The DFD expression is highly non linear with respect to the displacements. To avoid a tough

non linear estimation, a Taylor expansion of this equation is considered around points � ns.

This linearization leads to a constrained optical flow equation:

I��s�� I��s� ns�� �svs �rI��s� ns� � �� (8)

wherer is the spatial gradient.

This equation relies nevertheless on an inherent ambiguity. The fundamental matrix defining

epipolar lines is well known to be far more reliably estimated for large displacements between

two camera view points. This large displacements assumption somewhat contradicts the in-

finitesimal disparity hypothesis implicitly associated to the Taylor expansion. To overcome this

incompatibility, the estimation is embedded in a coarse-to-fine multiresolution scheme.

B. Multiresolution scheme

In motion estimation, a multiresolution setup consists to rely on two pyramid imagesI k
i � i �

	� 
� k � �� � � � � K derived from the original images by successive Gaussian smoothing and a

regular subsampling by a factor of two in each direction. The resolution indexk spans fromK

(the coarsest resolution) to 0 (the finest resolution). The created pyramids allow to incrementally

estimate the unknown disparity field by successive estimation on data spaces defined at different

scales. The low resolution component of the disparity is estimated at the coarsest level where

the domain of validity of the linearized data model is larger due to the joint reduction of the

displacement magnitude (through subsampling) and of the image gradient (through smoothing).

To that end, at a given levelk, the disparity�k � f�ks � s � Sg is decomposed into an unknown

refinementd�k � fd�ks � s � Sg to be estimated and a known coarse disparity fieldb�k obtained

from the projection onto the current levelk of the previous level displacement field,��dk���.

The projection is here defined through the interpolation operator�.

Considering the brightness constancy assumption for the total displacement at levelk yields

the following equation:

Ik� �s�� Ik� �s� nk
s � �b�ks � d�ks �v

k
s� � �� (9)
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to be solved for all pointss with respect tod�ks .

In addition to pyramids of imagesI ki � fIki �s�� s � Sg� i � 	� 
, this equation involves

pyramids of tangent and normal vectorsnk � fnk
s � s � Sg, vk � fvks � s � Sg. These pyramids

are obtained considering fundamental matricesfF kg� k � �� ���� K deduced for each level from

the initial matrix F and a change of coordinates. More precisely, we have:

F k �MkTFMk� (10)

whereMk � diag�
k� 
k� 	� is the matrix associated with the considered change of basis involved

in the pyramidal representation. The matrixF k allows us to computenk
s andvks at resolutionk

for each pixels. As it is just a change of basis, there is no approximation in the estimation of

F k. Matrix F k provides the exact same epipolar geometry for levelk asF for full resolution.

Nevertheless, it must be pointed out that due to the interpolation process involved in the

projection of displacement fieldd between two consecutive resolution levels, the projected field

��dk��� may not respect the epipolar constraint at levelk.

To avoid this problem, and to guarantee that the projected disparity field follows the current

epipolar geometry, the coarse componentb�k is deduced by projecting the displacement��dk���

onto the epipolar lines at levelk (see Fig. 2).

Such a process allows to properly define a coarse disparity field belonging to the set of

admissible solutions at levelk.

C. Global estimation method

For the sake of clarity, we will omit the resolution upper-scriptk in all expressions throughout

the reminder of this paper. All the expressions will be meant to concern levelk. Following the

same principle as previously, the DFD expression (9) is linearized around points � ns � b�svs.
This leads to a displaced version of the constrained optical flow equation:

d�svs �r�I��s� � �I��s�� I��s� � �� (11)

where�I��s�
�
� I��s�ns�b�svs� is the backward registered version of the second image. Assuming

this equation is almost satisfied everywhere and the disparity field is piecewise smooth, the

disparity estimation problem may be addressed by the following minimization problem:

cd� � argmin
d�

H�d�� � argmin
d�

H��d�� I� � ��H��d���� (12)
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where� is an arbitrary fixed constant. The first termH� of the objective functionH represents

the data model based on the constrained optical flow equation assumption:

H��d�� I� �
X
s�S

�
h
d�svs �r�I��s� � �I��s�� I��s�

i
� (13)

The second termH� is a smoothness term which favors piecewise smooth disparity solutions. This

term is expressed over all pairs�s� r�� C of mutual neighbors (according to a 4-neighborhood

system in our implementation):

H��d�� �
X

�s�r��C

��jjds � drjj�� (14)

To cope with large deviations from the data model (resp. to allow disparity depth disconti-

nuities),H� (resp.H�) includes aM -estimator,�. Under some simple conditions [4], [6], [11],

(mainly the concavity of��
p
u�), any multidimensional minimization of the form “argminxi

P
s ��gs�x��”

may be turned into a so called semi-quadratic optimization problem of the form “argminx�zs

P
s �zsgs�x�

��

��zs�” involving new weight variableszs continuously lying in��� 	�. The function� (which

is never used in practice) is a decreasing function depending on�. Parameter� is a scalar

normalization depending on the chosenM -estimator. In our case, the weights are of two natures:

� (a) the data outliers weights,	 � f	s� s � Sg provided by the semi-quadratic formulation

of H�, and

� (b) the discontinuity weights
 � f
sr� � s� r �� Cg related to the semi-quadratic

formulation ofH� and lying on the dual edge grid.

The estimation problem is now expressed as a global minimization in�d�� 
� 	� of an extended

energy functionH � H� � �H� where:

����
���
H��

X
s�S

��	s�d�svs�r�I��s� � �I��s�� I��s��
� � ��	s�

H��
X

�s�r��C

��
sr kd�svs�b�svs�ns�dr k ����
sr�
�

wheredr � � b�r � d�r�vr � nr.

The energy contribution of a points to H� is thus weighted by a factor	s � ��� 	�: the

larger the contribution, the smaller the weight. Similarly, each pair of neighbors� s� r �� C
contributes toH� with a weight
sr � ��� 	� depending on their displacement vector difference

kds � drk. The larger the difference, the smaller the weight.
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The resulting semi-quadratic minimization problem is conducted alternatively with respect

to the different variables (here the scalar fieldd� and the two weight fields	 and 
). The

minimization with respect to weights are given in the following closed form [11]:

argmin
zs

X
s

zs gs�x�
� � ��zs� �

���gs�x��


gs�x�
� (15)

Now considering weights as being frozen, the minimization with respect tod� is a classical

weighted quadratic problem solved using an iterative method. Using a Gauss-Seidel scheme, the

local updated��n� at iterationn of the iterative solver is given for each points by:

d��n�
s �

��� 	s ��I��s�� I��s�� vs�r�I��s� � � �� �vs��
n��
s � b�s �
s�

�� 	s �vs�r�I��s��� � � �� �
s
� (16)

where�n��
s is the weighted average of neighboring disparity vectors at iterationn�	 and �
s is the

sum the spatial discontinuity variables betweens and its neighbors. The whole estimation process

problem can be seen as a non linear least squares minimization (Gauss-Newton minimization)

of the energy function:

� �I��s�� I��s� ds�� � �
X

�s�r��C

��jjds � drjj�� (17)

Such a minimization consists in linearizing the non linear term around a known solution. In

motion estimation context, such a minimization is usually embedded into a multiresolution

framework [16] and the successive linearizations take place around solutions estimated at coarser

resolutions. As for the convergence such a method shares the same deficiency as the Gauss-

Newton minimization: it may not converge if the initial solution is too far from the sought

minimum. It is therefore important, in case of long range displacements, to initialize the coarsest

resolution level (k � K) with a reasonable initial disparity field. In our case, we consider an

initialization derived from the interpolation of the initial matched points of interest used for

the computation of the fundamental matrix. We used here a bilinear interpolation based on a

Delaunay triangulation. The resulting displacement fielddK is projected on the top level of the

pyramid to provide an initial disparity fieldb�K for the coarsest resolution level with respect to

the associated epipolar geometry (projection on the associated epipolar lines (see fig. 2)). Let

us note that this dense disparity estimation method shares some common principles with the
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method proposed in [1]. Compared to our approach the differences consist mainly in the use of

a variationnal framework together with a Gaussian scale-space approach to recover long range

disparities (instead of a hierarchical multiresolution setup). Another difference lies also in the

use of the Nagel-Enkelmann operator as a smoothness term[17].

IV. SEGMENTATION

As our final goal is to provide a 3D reconstruction of the scene easy to handle, we now

introduce a segmentation method of the dense disparity field obtained at the previous step. The

method we propose is based on an adaptive triangular mesh structure. The idea of our technique

consists in recursively splitting an initial mesh until each triangular element corresponds to a

3D planar element. The associated splitting criterion is based on the homographic parametric

model-description of the disparity field. It can be easily shown that, according to a pinhole

camera model, the disparity associated with a planar surface projected respectively as
� in the

first image and
� in the second image satisfies an homographic model. This model is linear

using homogeneous coordinates. For the sake of clarity, all the following expressions are meant

to be expressed in homogeneous coordinates. The homographic model links two corresponding

pointss ands� ds of 
� and
� with a �� � homogeneous homography matrix namedH up

to a scalar factor�:

�s � 
�� Hs � ��s� ds�� (18)

The segmentation step we propose consists thus in triangulating the disparity map until the

disparity vectors associated with each patch correspond to a single representative homographic

model. An initial Delaunay triangulation is first performed by taking four arbitrary points near

the corners of the image. This triangulation is then refined until each triangle verifies a distance

criterion between the dense estimation disparity and a homographic model estimated within the

considered triangle.

A. Homography estimation

The homography estimation is performed using a method proposed by Robert and Faugeras

[20]. The method relies on the epipolar geometry to efficiently estimate the homography matrix

from three or more corresponding pairs of points.
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For H to be consistent with epipolar geometry, the homogeneous symmetric matrixF TH �

HTF must be null. This leads to 6 homogeneous equations with unknownsh ij (the coefficients

of H). In our case, each point of a considered triangleT accounts for one scalar equation. We

have therefore the following system of equations:

�s � T� �s � ds� F s� Hs� � �� (19)

where�a� b� c� denotes the triple product.

This over-constrained system can be rewritten in matrix notation asAh � �, whereh is an

8 components vector gathering the unknown coefficients ofH andA is a �jfs � Tgj � ��� �

matrix. An estimate ofh is computed using a SVD (singular value decomposition) of the matrix

AtA.

To be robust to problematic situations where the estimated disparities are likely to be biased or

erroneous (such as occlusion areas or range discontinuities), we exclude from this system points

which are not simultaneously in accordance with the data model and the smoothing model (points

for which the data outliers and the discontinuity weights approach zero).

B. Splitting criterion

The distance criterion we chose to handle the splitting of the triangular mesh is decomposed

in two terms:

� The first one measures the adequacy ofH to the disparity field. The influence of each point

s of the triangle is weighted by the data model weight	s coming from the robust estimator

associated with the data model of the dense disparity estimator (occlusion areas do not

influence the distance measurement). The resulting adequacy term is given by:

C��T�H�d� �
	P
s�T 	s

X
s�T

	s�kHs� �s� ds�k� � kH���s� ds�� sk��� (20)

wherek k denotes the Euclidean distance.

� The second term is related to the presence of disparity discontinuities within the considered

triangle. This term is defined as the mean of discontinuity weights included in the considered

triangle. It is expressed as follows:��
�

C��T� 
� �
P

�s�r��CT
�s�r

jCT j

CT
�
� f� s� r �� s � T� r � Tg� CT � C

(21)
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where� s� r � denotes neighboring pixel of image 1.

More precisely, a given triangleT will be refined if the global criterionC��T�H�d���C��T� 
�

exceeds a given threshold
. The parameter� is an arbitrary fixed positive constant.

C. Triangulation refinement

The triangulation is refined by adding new points at the “centers of mass” of each triangle

which verifies the splitting criterion; the mass of each vertex being here given by the value of

their associated data outliers weights. A new Delauney triangulation is then performed taking

into account the new set of points (the previous vertices and the new added points). The new

triangular mesh is then considered again for splitting. This process is repeated until no triangle

verifies the splitting criterion. Using Delaunay triangulation guarantees optimal aspect ratio of

the triangular mesh and prevents degeneracy. Moreover the classical incremental algorithm is

used, which enables fast updating of the triangulation when the new vertices are inserted.

The overall synopsis of the segmentation scheme is presented in

V. 3D RECONSTRUCTION

So far we have obtained a 2D triangulation of the first image and an associated disparity

information. The last step of our method consists in recovering 3D information in order to build

the final 3D model. To that end, the calibration parameters of the cameras have to be provided

or estimated.

A. Estimation of camera parameters

As the aim is not an accurate reconstruction but a visually satisfactory 3D representation we

have used a weak calibration technique. This approach consists in assigning some arbitrary values

the intrinsic parameters (represented by matrixA) and then estimating the extrinsic parameters.

The intrinsic parameters are chosen in order to respect the following assumptions: the projection

of the optical center is supposed to be at the center of the image, coordinate image axes are

perpendicular, horizontal and vertical pixel sizes are fixed and equal to one and the focal length is

assigned to a realistic value. The fundamental matrixF allows to estimate theessential matrix

E. This matrix only depends on the extrinsic parameters, i.e. the rotation matrixR and the
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translation vectort between the first and the second camera location:

E � ATFA � �t��R� (22)

where�t�� is the antisymmetric cross product matrix associated with the translation vectort. As

shown by Tsai and Huang in [23], the essential matrix can be decomposed in order to recover

rotation and translation parameters. Using a singular value decomposition,E can be written as

follows:

E � � E
�

�t� (23)

where� and� are two orthogonal matrices andE
�

is a diagonal matrix. It can be shown that an

essential matrix has one null singular value, while the two others have the same value (they can

be assigned to 1 because of the homogeneous property) [23]. MatrixE
�

can thus be rewritten

as follows:

E
�

� T� R�

�

�
BBB�

� � �

� � 	

� �	 �

�
CCCA

�
BBB�

	 � �

� � �	
� 	 �

�
CCCA

� (24)

Injecting this decomposition in equation (23) leads to write the matrixE as a product of an

antisymmetric matrix by an orthogonal one. By identification with equation (22), we can extract

rotation and translation matrices:

E � �T��� �z 	 �tR��
t� �z 	

�t�� R
(25)

We must notice that this decomposition is not unique. The rotation is only defined up to�

while the translation is defined up to a scalar factor. The adequate pair of matrices is obtained

by ensuring all 3D reconstructed points to be in view of both of the cameras.

B. 3D geometry computation and texture correction

The resulting intrinsic and extrinsic parameters lead to two projection matrices. The vertices

of the image triangulation are then back-projected into the 3D space by solving system (1)

according to the dense disparity field. This 3D point set defines a 3D continuous triangular

mesh. Triangular facets are textured using imageI�, and the result is saved as a VRML format
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file. The textured triangular mesh description is well adapted for visualization with real time

interactivity thanks to specialized hardware which perform fast rendering of OpenGL calls.

Since texture is extracted from a real image, perspective correction has to be performed prior

to mapping. As for most existing formats, VRML renderers assume texture is provided in a front

view, with a possible scale factor. In real images, texture of planar areas appear with perspective

distortion, which differs from a front view by a 2D homography.

During visualization, texture mapping is usually performed through affine transformation. For

a 3D triangular mesh, an affinity is defined for each 3D facet. The 3 vertices of a 2D triangle

in the texture image are mapped onto the corresponding 3D facet vertices. Thus any affine

transformation of a triangle front-view is a correct texture. A perspective view is not a suitable

texture, and it is not compensated by affine mapping. The 3D model then suffers from distorted

texture.

The usual way to solve this point is to perform texture correction on each facet. For each

triangular facet in the 3D mesh, a front view of the triangle is generated, by computing the

appropriate homography. This homography is applied to the corresponding triangle in the 2D

mesh, thus generating a corrected texture triangle of different shape and size. One texture image

per facet is then necessary, which is time and memory expensive.

We propose a technique that corrects perspective distortion for all triangles and provides a

single texture image for the whole scene.

The idea is to perform the correction without modifying the 2D mesh positioning. Only the

texture inside each triangle is modified. To do so, we define an homography which transforms

the perspective view of a 3D facet into an affine view of the same 3D facet, with conservation

of the triangle vertices. The affine mapping performed during visualization will then be correct.

A 2D homography is defined by four points. For a given 2D triangle the proper correction

homographyH is defined by the three triangle verticesa, b, c and a fourth pointg, which is the

projection of the 3D facet center of gravityG. H leavesa, b and c unchanged and transforms

g into g�, the 2D triangle center of gravity (see figure 4). OnceH is known, the homography

is applied on the triangle texture usingH�� and bilinear interpolation. Figure 5 illustrates our

texture correction on a synthetic scene.
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VI. RESULTS

The proposed method has been applied on different kinds of image sequences. It has been

run both on real world sequences and synthetic sequences for which the actual motion field is

known.

The first sequence we are considering here is the well known synthetic “Yosemite” sequence

(figure 7). In order to satisfy the rigidity assumption, a major part of the sky containing moving

clouds has been removed. Two different image pairs of this sequence have been considered.

In the first one, which is composed of two consecutive images (images 11 and 12) the small

range of the displacements (not more than 4 pixels) makes critical the estimation of the epipolar

geometry. The second image pair, composed of far apart images in the sequence (images 3 and

12), constitutes a difficult benchmark towards the differential aspect of our method (up to 30

pixels of displacement).

As expected and shown on the recovered disparity map (figure 8(a)), the disparities are larger

in the mountain area in the foreground and continuously decrease while we move towards the

valley. The global aspect of this map is in accordance with what could be expected from visual

inspection.

Following [2], we provide quantitative comparative results on this pair of images. Angular

deviations with respect to the actual flow field have been computed. The table in figure 6 lists the

mean angular value error and associated the standard deviation. It gathers some results presented

in [2], and by other authors (only the higher and the lower mean square error obtained by state

of the art methods are presented in comparison with the classical Horn and Schunck algorithm).

Let us note that we report here only performances of similar algorithms (energy based dense

estimators). Other results of more complex method combining motion estimation with a joint

segmentation may be found in the literature.

As may be observed, compared to others our method yields to a higher angular discrepancy.

Let us note that, nevertheless, it stays satisfactory. A few remarks must be done at this point.

First: unlike the best methods mentioned in the table, our method uses a simple iterative solver

(Gauss-Seidel). It could be therefore improved by using more efficient solvers. Second: it must

be pointed out that our method is aone-dimensional method. It is therefore much faster than

the others. Besides, due to small motion the epipolar geometry is quite difficult to estimate
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accurately.

Let us now consider the second sequence, composed of far apart images (images 3 and 12)

of the “Yosemite” sequence. Experiments on this sequence have shown that, due to the presence

of very large displacements (up to 30 pixels of displacements), non constrained optical flow

estimators (even embedded in a multiresolution framework) do not converge towards acceptable

solutions. As shown in the disparity map presented figure 8(b) our method provides consistent

results. The foreground mountain is characterized by important disparity values whereas in the

background, disparities decrease smoothly. The dense disparity field estimation performs well for

an image presenting both small and large displacements. The resulting field is globally smooth

and nevertheless presents discontinuities on important depth changes.

The disparity field computed from images 3 and 12 has been then iteratively triangulated to

obtain a 3D model of the valley. The final 2D triangulation is shown figure 10(b). Figure 10(a)

presents the initial triangulation obtained through a Delaunay triangulation of initial matched

points of interest. The associated VRML model has been computed by arbitrarily fixing the

focal length to 1000. Figure 11 presents some interpolated images. The camera displacement

along the z-axis is not far away from the real 3D motion. The resulting images are visually

satisfactory. Figure 12 exemplifies more complex displacements illustrating occlusion problems.

Some reconstruction results obtained for a static scene shot by a moving commercial camera

are shown in figures 13, 14, 15, 16 and 17. Two reconstructions are presented here (the views

are obtained with the same 3D displacement of the virtual camera). The first one comes from

the “image-matching” software, developed by Zhang [24], which gives a list of matching points

of interest that respect the epipolar geometry. Those points are triangulated and re-projected

to obtain a 3D model. The examples presented in figures 14(a), 15(a), 16(a) and 17(a) are

constructed from 89 automatically extracted matching points. The synthesized views outline the

presence of outliers points that make the model visually uncomfortable. This effect can mostly

be explained by the presence of spurious matches that respect epipolar geometry and luminance

consistency. The second 3D model results from our algorithm (figures 14(b), 15(b), 16(b) and

17(b)). A visual inspection of reconstructed images shows far less artifact. Such results could

now be used in the context of video manipulation applications.

Let us point out that others results may be found in the PhD thesis of Lionel Oisel [18](in
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French).

VII. CONCLUSION

In this paper we have presented a method for the reconstruction of a complex scene from a

pair of weakly calibrated images. This method relies on the estimation of a dense disparity field.

The estimator proposed here is constrained by the epipolar geometry and incorporates robust

estimation. We have experimentally demonstrated that the recovered fields are of good quality

even in unfavorable case (very close views). The final 3D reconstruction is obtained through a

segmentation process handled as a recursive adaption of a triangular mesh. The outliers detection

provided by the dense robust estimation is also used in the segmentation step to improve the

quality of the final reconstruction. The efficiency of our approach has been validated on both

polyhedral and non polyhedral complex scenes. The models obtained are sufficiently good to be

used in a comfortable way in the context of video manipulation applications. Nevertheless, more

accurate results could be expected using self-calibration methods available in the literature. An

extension of our algorithm would consist in considering the trifocal tensor (associated with three

images [22]) instead of the fundamental matrixF , to avoid many degenerate estimation cases of

F . This could naturally lead to take into account more than two images to improve the VRML

model quality.
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a b

c d

Fig. 5. View of the scene used as texture image, before correction (a) - after correction (b) - View of the 3D reconstructed

model, using texture image without correction (c) - using corrected texture image (d).

Technique Mean error Standard deviation

Horn and Schunck [2] ����o 	��	�o

Black [3] ���
o ��
�o

Lai and Vemuri[14] 	���o 	���o

Our method ���
o ��
�o

Fig. 6. Comparative results on “Yosemite” sequence.

a b c

Fig. 7. Original images 3 (a), 11 (b) and 12 (c) of the “Yosemite” sequence.
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a b

Fig. 8. Disparity map for images 11 and 12 (a) and 3 and 12 (b) (the darker the smaller the disparity value)

a b

Fig. 9. Outliers due to occlusion for images 11 and 12 (a) and 3 and 12 (b) (the darker the smaller the weight�s)

a b

Fig. 10. Points of interest triangulation (a) and resulting 2D triangulation (b) associated with image 3
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a b

c

Fig. 11. Translation along Z axis simulations.

a

b c

Fig. 12. Complex motion simulation: viewpoint on the right (a) viewpoint on the left (b) and viewpoint behind the foreground

mountain (c).
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Fig. 13. Two original images of an indoor sequence.

a b

Fig. 14. Left original image resynthesized: model computed directly from automatically extracted and matched points (a),

model obtained by our method (b)
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a b

Fig. 15. Two synthesized views from the same view point: model computed directly from automatically extracted and matched

points (a), model obtained by our method (b)

a b

Fig. 16. Two synthesized views from the same view point: model computed directly from automatically extracted and matched

points (a), model obtained by our method (b)
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a b

Fig. 17. Two synthesized views from the same view point: model computed directly from automatically extracted and matched

points (a), model obtained by our method (b)
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