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Abstract: Many tasks in computer vision and image analysis have recently been expressed as
the minimization of global energy functions describing the local interactions between the observed
data and the images features to be extracted. For the minimization of these global (often non-
linear) energy functions, a variety of stochastic or deterministic non-linear relaxation algorithms
have been described in the literature. The major drawback of relaxation algorithms remains the
amount of computation required to update the image. For real world applications the computation
time quickly becomes prohibitive on workstations. Several e�cient approaches have been proposed
to alleviate this computational burden. Among them, multigrid techniques [7, 23, 43]. have shown
to signi�cantly improve the convergence rate of linear and non-linear relaxation schemes. It is
also well known that the computations involved by these algorithms are regular and local, and
lead naturally to massive data parallelism, which is well suited for parallel processing on array
processor architectures. Standard parallel implementations of relaxation algorithms are based on the
simultaneous updating of the di�erent sites of the image. This kind of data parallelism unfortunately
does not exploit the large computing resources of large massively parallel processor arrays when the
image grid to be controlled is small. This is particularly true for multigrid relaxation algorithms,
in which coarse and �ne grids have to be handled sequentially.

In this paper, we present a new algorithmic framework which enables making a full use of
the large potential of data parallelism available on 2D processor arrays for the implementation of
non-linear multigrid relaxation methods. The approach combines two di�erent levels of parallelism:
parallel updating of the image sites and concurrent explorations of the con�guration space of the
problem. This approach is very e�cient and leads to fast convergence towards quasi-optimal so-
lutions. The method is demonstrated on two di�erent low-level vision applications: restoration of
noisy images and optical ow computation.
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Algorithmes parall�eles de relaxation multigrille pour

des applications de vision bas-niveau

R�esum�e : Dans les domaines de l'analyse d'images et de la vision un nombre important de tâches
s'expriment sous la forme de la minimisation de fonctions d'�energie globale. Ces fonctions d'�energie
d�ecrivent les interactions locales entre les primitives que l'on souhaite extraire et un ensemble
d'observations. Cette minimisation { non-lin�eaire dans la plupart des cas et portant sur un nombre
tr�es �elev�e de variables { est usuellement men�ee par des algorithmes it�eratifs dit de relaxation.

Malgr�e l'�elaboration de techniques de relaxation multir�esolution qui permettent d'accrô�tre
la vitesse de convergence de ces sch�emas it�eratifs, l'utilisation d'une telle algorithmique dans des
applications r�eelles reste probl�ematique. Le volume de calculs sous-tendu par ces m�ethodes est en
e�et extrêmement important et ne peut être r�ealis�e e�cacement sur des calculateurs s�equentiels
conventionnels. Fort heureusement, les calculs induits par ces algorithmes sont r�eguliers et locaux.
Ces propri�et�es pr�esagent d'un parall�elisme de donn�ees intensif pouvant être mis en �uvre de mani�ere
e�cace sur des architectures simd massivement parall�eles.

Les techniques classiques de parall�elisation des algorithmes de relaxation consistent �a remettre
�a jour simultan�ement des sous-ensembles de sites de la grille image. Ce parall�elisme de donn�ees se
caract�erise par une sous-utilisation du r�eseau de processeurs lorsque la taille de l'image �a traiter
est r�eduite. Ceci est particuli�erement vrai dans le cas des techniques de relaxation multigrille o�u les
grilles associ�ees aux di��erentes r�esolutions doivent être r�eactualis�ees de fa�con s�equentielle.

Nous proposons dans cet article de nouveaux sch�emas de relaxation parall�eles qui, tout en
s'appuyant sur des techniques algorithmiques multigrilles, permettent l'utilisation totale du large
potentiel de parall�elisme de donn�ees octroy�e par les architectures simd massivement parall�eles. Ces
approches, mêlant plusieurs niveaux de parall�elismes (r�eactualisation simultan�ee des sites et par-
cours de solutions concurrentes dans l'espace des con�gurations du probl�eme) se r�ev�elent particuli�e-
rement e�caces compar�ees aux techniques de relaxation classiques. La g�en�eralit�e de ces approches
est d�emontr�ee sur deux probl�emes de vision bas-niveau : la restauration d'images bruit�ees et la
mesure du mouvement apparent.

Mots-cl�e : optimisation globale, vision bas-niveau, relaxation parall�ele, parall�elisme de donn�ees,
architectures simd 2D.
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1 Introduction

Many tasks in computer vision and image analysis have recently been expressed
as global optimization problems [6, 12, 16]. The general issue is to �nd the global
minimum of an objective (also called energy) function which describes the interac-
tion between the di�erent variables modeling the image features in a given problem
[16]. Two kinds of variables are generally considered: observation variables which
correspond to the representation of the observed data and hidden variables (or la-
bels) which are the representations to be extracted from the original images. Energy
functions generally involve two components, one of which expresses the interaction
between the hidden labels and the observations and the other which encodes cons-
traints on the desired solution [16]. To keep the problem tractable, the energy is
often decomposed as a sum of local interaction functions de�ned on a neighborhood
[16]. Standard regularization approaches [41] as well as Markov Random Field-based
image analysis lead to the minimization of such global energy functions [16] (Mar-
kov Random Field (MRF) models de�ne a global probability distribution that is
maximized when an energy function is minimized [18]). The choice of these energy
functions is either heuristic or may be guided by a statistical modeling of the inter-
action between the variables.

De�ning global energy functions is a powerful tool for specifying non-linear in-
teractions between di�erent image features (luminance, edges, region labels, etc.).
They help to combine and organize spatial and temporal information by introducing
strong generic knowledge about the features to be estimated. For instance, global
energy functions have been successfully introduced in image restoration [4, 10, 18],
edge detection [16], image segmentation [16], stereovision [2], computed tomography,
surface reconstruction [12], visual motion analysis [8, 9, 21, 29] and scene interpre-
tation [35].

However, minimizing a global energy function is often an intricate problem: the
number of possible label con�gurations is generally very large and the global energy
function may exhibit many local minima. Computationally demanding stochastic re-
laxation algorithms are generally necessary to compute optimal solutions. Less cpu
intensive deterministic relaxation algorithms such as ICM [4], HCF (Highest Con�-
dence First [12]) or GNC (Graduated Non Convexity [6]) can often be used instead,
when a good initial guess is available. Deterministic approaches converge to con�-
gurations corresponding to local minima of the global energy function. They may
be combined with multigrid methods to improve the convergence rate of iterative
relaxation schemes [7, 23, 43].

The major drawback of relaxation algorithms is the amount of computation
required to update the image. For real world applications the computation time qui-
ckly becomes prohibitive on workstations. On the other hand, in low-level vision,

RR n�2184



4 E. M�emin, F. Heitz and F. Charot

the global energy functions usually adopted decompose into local interaction func-
tions which only involve a pixel and its neighbors [18, 41]. This local decomposition
may be related to the local statistical properties of Markov Random Field models
[14, 18]. As a consequence, the computations involved by these algorithms are regu-
lar and local, and thus independent variables in the image may be updated at once.
This leads naturally to massive data parallelism, which is well suited for parallel
processing on array processor architectures.

Standard parallel implementations of relaxation algorithms are thus based on
the simultaneous updating of subsets of non-neighboring sites in the image. These
subsets are obtained by considering a coloring 1 of the graph associated to the neigh-
borhood system de�ned on the image grid (this partition of the image sites is often
called a codage [4]). Most implementations of non-linear relaxation schemes on 2D
simd arrays make use of this paradigm (see for instance [26, 36] on the dap 510 or
[2, 5, 27, 40, 45] on the cm2). Implementations on linear simd arrays, based on the
same principle [13, 34, 33] have also been described, in order to design specialized
architectures. Alternate approaches involve the development of highly specialized
linear or non-linear (electrical) analog networks [25, 32, 41], Hop�eld neural net-
works [31, 38, 46] or Boltzmann machines [24], for mapping the underlying global
optimization problems.

Nevertheless, standard data parallelism does not exploit the large computing re-
sources of the now available large massively parallel processor arrays when the image
grid to be controlled is small [37]. This is particularly true for multigrid relaxation
algorithms, in which coarse and �ne grids have to be handled sequentially.

In this paper, we present new algorithmic techniques which enable to make a full
use of the large potential of data parallelism available on 2D processor arrays for the
implementation of non-linear multigrid relaxation methods. The approach combines
two di�erent levels of parallelism: parallel updating of image sites and concurrent
explorations of the con�guration space of the variables modeling the image features.
This approach turns out to be very e�cient and leads to fast convergence towards
quasi-optimal solutions. The generality and the e�ciency of this technique is de-
monstrated on two di�erent low-level applications: optical ow computation and
restoration of noisy images.

The remainder of this paper is organized as follows. In Section 2, the general class
of non linear relaxation techniques considered in this paper is described. Represen-
tative examples of stochastic, deterministic and multigrid relaxation techniques are
presented. In Section 3, we present a parallel algorithmic framework which achieves
full e�ciency on 2D array processors for non-linear multigrid relaxation schemes.
Benchmarks on synthetic as well as real-world images are reported in Section 4 in
the case of motion estimation and image restoration problems.

1The coloring of a graph is the assignment of a color to each site such that two neighboring sites
are not of the same color

Inria



Parallel Non-linear Multigrid Relaxation 5

2 Non-linear relaxation algorithms and global optimi-

zation

2.1 Global optimization in low-level vision

The optimization of a global energy function is a powerful approach to extract rele-
vant representations (labels) from an image. The method proceeds as follows:
� One or more specialized modules extract features (spatio-temporal gradients,
edges...) from the images, that will be used as observations in the optimization
process.
� Observations are combined using local photometric and structural relations with
generic a priori knowledge on the label con�gurations (regularization scheme) in
order to derive estimates of the unknown labels [12, 16].

The problem is stated as the minimization of a global energy function describing
the interactions between the di�erent (observed an hidden) variables.

Let o = fos; s 2 Sg designate the observed data de�ned on a rectangular lattice
S. Let e = fes; s 2 Sg denote the unobserved (hidden) label �eld, de�ned on the
same lattice S2. Let � be the (discrete) state space of variable es and 
 the (�nite)
set of all possible label con�gurations e. Let G = fGs; s 2 Sg de�ne a neighborhood
system on S.

In the following we assume that the interactions between observed data o and
hidden labels e can be de�ned in terms of an energy function of the form

U(e; o) = U1(e; o) + U2(e); (1)

with U1(e; o)
4
=
X

s2S

V1(es; os); and

U2(e)
4
=
X

c2C

Vc(e): (2)

The optimal labeling is, by de�nition, the minimum of this energy function. The
�rst component U1(e; o) of the energy expresses (pointwise) interaction between the
hidden labels e and the observations o, the second term U2(e) encodes constraints
on the desired solution. The set of cliques associated to the neighborhood system G,
is denoted by C. Cliques c are subsets of sites which are mutual neighbors. The local
interaction function Vc depends only on the variables of clique c and expresses the
local interactions between these di�erent variables. The form of the local interaction
functions Vc is problem dependent. Local interaction models have several relevant
advantages: they are easy to specify and they yield tractable iterative computational
schemes in which the label con�gurations can be updated locally [4, 12, 18].

In the following, we consider a standard 8-neighborhood system for G. The cliques
c 2 C associated to the 8-neighborhood are shown in Fig. 1 and contain at most four
sites. This energy class comprises most usual energy functions used in computer

2Di�erent lattices for E and O can also be adopted

RR n�2184



6 E. M�emin, F. Heitz and F. Charot

vision [2, 16, 21] (the extension of the approach presented in this paper to larger
neighborhoods is straightforward, although not only a notational matter).

neighborhood system G

s

cliques associated to G

Figure 1: 8-neighborhood structure and associated cliques

For the minimization of these global (possibly non-linear) energy functions, a
variety of stochastic or deterministic relaxation algorithms as well as multigrid tech-
niques have been described in the literature. These di�erent classes of algorithms
are described in the following section.

2.2 Non-linear relaxation algorithms

2.2.1 Stochastic relaxation

Since the seminal work of Kirkpatrick et al. [28] on simulated annealing, stochastic
relaxation has been intensively studied and used in large scale optimization problems
[1, 18]. Stochastic relaxation algorithms theoretically guarantee convergence towards
the global minimum of highly non-linear and non-convex objective functions. The
�nal solution theoretically does not depend on the initial state of the system. This
class of algorithm thus provides robust solutions when no prior knowledge on the
optimal solution (or no relevant initial guess) is available. These attractive features
however are generally obtained at a great computational expense. Several hundred
iterations (i.e. full scans of the image) are indeed generally necessary to reach conver-
gence.

Stochastic relaxation may be seen as the combination of two procedures: a sam-
pling process and an annealing schedule. The sampling process generates a sequence
of states according to a Gibbs distribution (Eqn. (3)) at temperature T . At each
temperature the system is allowed to reach a statistical equilibrium. The probability
of being in a state e with energy U(e; o) at temperature T is given by the following

Inria



Parallel Non-linear Multigrid Relaxation 7

Gibbs (or Boltzmann) distribution:

PrfE = ejO = og =
1

Z(T )
� exp(�

U(e; o)

T
); (3)

where Z(T ) is a normalization constant { known as the partition function { depen-
ding on temperature T . The annealing schedule is de�ned by a controlled decrease
of temperature T . If the temperature is decreased adequately (i.e. slowly enough)
one can show that the sampling process converges towards the fundamental states
of the system i.e. the minimum energy states (see [1, 18] for convergence theorems).

A typical example of a stochastic relaxation algorithm is described in Fig. 2.
The algorithm presented in Fig. 2 is based on a sampling process called the \Gibbs
sampler", proposed by Geman and Geman in [18] for the optimization of MRF-
related global energy functions. Its dynamics di�er somewhat from the standard
Metropolis algorithm [1] in that it directly uses the local characteristics of Gibbs
distribution (Eqn. (3)) rather than a random choice based on the energy di�erence
between two states of the system. The updating of a given site s is local and only
involves site s and its neighbors (Fig. 2). This particular algorithm has been widely

function SR( _e;U(o; e)) result ê 2 
 ;

_e : initial con�guration ;
e(k) : current con�guration at iteration k ;
T0 : initial temperature value ;
AS(T ) : annealing schedule ;

k = 0 ;
e(k) = _e ;
repeat until convergence criterion satis�ed
f

choose a site s (randomly or according to a speci�ed order) ;
assign to site s label es according to the conditional distribution:
PrfEs = esjEr = er; r 2 �s ; og
= 1

Zs(Tk)
exp[� 1

Tk
fV1(es; os) +

P
c2Cjs2c

Vc(e)g]

Tk = AS(Tk�1) ;
g
ê = e(k) ;

Figure 2: A stochastic relaxation algorithm based on the Gibbs sampler

used in image processing and computer vision applications [10, 11, 18]. It is adopted
here as a representative example of this class of global optimization techniques.

2.2.2 Deterministic relaxation

Stochastic optimization algorithms are time consuming, especially in low-level vision
applications in which the con�guration spaces are often very large. Most of the recent

RR n�2184



8 E. M�emin, F. Heitz and F. Charot

papers [8, 9, 11, 12, 21] resort to deterministic schemes which are more appealing, as
far as computation time is concerned. Deterministic relaxation converges to a local
minimum of the energy function, but this loss of optimality may be compensated
for by an appropriate initial guess. When a relevant initial guess is not available,
the solution at convergence may however be far from the optimum and lead to poor
performances [23, 29].

A very popular non-linear deterministic relaxation scheme, known as the \Ite-
rated Conditional Mode" (ICM) algorithm, has been proposed by Besag in 1986
[4]. ICM basically corresponds to non-linear Gauss-Seidel relaxation. It typically
converges within about ten iterations (i.e. full scans of the image) to a local mini-
mum of the objective function. As already stated, these good performances on the
convergence speed have to be moderated, since poor solutions may be reached on
highly non-linear models when a suitable initial con�guration - close to the optimum
- is not available.

The updating scheme in the ICM algorithm is local and only involves the labels
at the current site s and its neighbors (Fig. 3). This algorithm is described in Fig. 3.
It is used in this paper as a standard example of non-linear deterministic relaxation.

function ICM( _e;U(o; e)) result ê 2 
 ;

_e : initial con�guration ;
e(k) : current con�guration at iteration k ;

k = 0 ;
e(k) = _e ;
repeat until convergence criterion satis�ed
f

choose a site s (randomly or according to a speci�ed order) ;
assign to site s the label es that minimizes:

�U(es) = U(e(k� 1); o)� U(e(k); o) where : es(k) = es

er(k) = er(k� 1) 8r 6= s

= V1(es; os) +
X

c2Cjs2c

Vc(e)

g
ê = e(k) ;

Figure 3: The ICM relaxation algorithm

2.2.3 Multigrid relaxation

It is well known that multigrid methods can signi�cantly improve the convergence
rate of linear and non-linear iterative relaxation schemes [7, 20, 23, 43]. Multigrid

Inria



Parallel Non-linear Multigrid Relaxation 9

methods may also be useful when the energy to be minimized has many local mi-
nima, as is often the case with non-linear models. It has indeed been conjectured
that multigrid analysis may, to a certain extent, smooth the energy landscape. Fast
deterministic relaxation schemes can then be used at coarse scales to obtain a good
initial guess that may be re�ned at the �ner scales. This procedure often yields fast
convergence towards good estimates, even if the initial con�guration of the system
is far from the optimum [7, 23, 27, 29].

Multigrid relaxation techniques have been considered for image analysis models
based on partial di�erential equations [15, 43] as well as on MRF models [2, 29]. Yet,
in multigrid implementations of relaxation algorithms devoted to the minimization
of global non-linear energy functions, the choice of the energy functions (and the
adjustment of their parameters) at di�erent scales remains a key problem. A stan-
dard choice is to adopt the same function at all scales, even though the interactions
between variables are often resolution-dependent.

In [23], a new multigrid algorithm (called \multiscale relaxation") applicable
to the minimization of global energy functions used in image analysis or computer
vision tasks is developed. This algorithm is not equivalent to the standard multi-
grid approaches proposed in [15, 29, 43]. It is related to a multiscale \constrained"
exploration of the set of solutions of the original optimization problem. The glo-
bal optimization problem is solved within a sequence of particular subspaces of the
original space of con�gurations. These subspaces contain constrained con�gurations
describing the expected solutions at di�erent scales. Each subspace de�nes a new
\coarse" energy function whose parameters are derived from the original (full re-
solution) objective function. This constrained optimization is implemented using a
coarse to �ne procedure on a pyramidal structure.

\Multiscale relaxation" typically converges within a few iterations (about ten
full scans of the image) towards estimates that are close to the global optimum of
the energy function [23]. In comparison, a standard stochastic method (simulated
annealing) requires several hundred iterations to converge to similar solutions. It is
also shown in [23] that these relaxation schemes yield better results than the stan-
dard multiresolution processing used in this �eld [21, 29]. This attractive relaxation
scheme will be considered in the following as a good candidate for highly e�cient
parallel implementations. It is described in the remainder of this section.

As already explained, the \multiscale relaxation" scheme is based on a \mul-
tiscale" exploration of the set of all possible label con�gurations 
 [23]. Let us
assume that the size of the full resolution lattice is 2m � 2m. First recall that the
energy function assigns an energy value to all possible con�gurations of the labeling
e = fes; s 2 Sg, es 2 �, e 2 
.

Instead of considering the minimization of energy function (Eqn. 2) directly on
the full generally huge label con�guration space 
, let us consider the minimization
of the energy function U on a hierarchy of nested subspaces 
l which are composed
of label con�gurations constrained to be blockwise constant over cells of size 2l � 2l

(Fig. 4.)

RR n�2184



10 E. M�emin, F. Heitz and F. Charot

These nested con�guration spaces (
l � 
l�1 � � � � � 
1 � 
0 = 
 ) are related
to a description of the labeling at di�erent scales. Scale 0 corresponds to the original
con�guration space 
, scale l corresponds to con�gurations which are constant over
blocks Bl

k; k = 1; . . . ; Nl, partitioning S and of size 2l � 2l (Fig. 4)3.

scale 2scale 1scale 0

Figure 4: Multiscale spaces of con�gurations: example of constrained con�gurations
in 
0 = 
 (scale 0), 
1 (scale 1) and 
2 (scale 2). Labels are represented by vectors
for easier visual interpretation.

It is easy to see that at scale l, the number of independent labels is reduced by a
factor 2l � 2l. Hence a con�guration e = fes; s 2 Sg 2 
l can be represented on a
coarse grid Sl of size 2m�l � 2m�l (Fig. 5). The corresponding con�guration on the
grid Sl will be denoted el = fels; s 2 Slg (elk being the common label of all the
sites of block Bl

k � S). These con�gurations el belong to a \reduced" con�guration
space �l.

As a consequence, the energy of a labeling e 2 
l may be rewritten as a function
of labels de�ned on Sl. It turns out that at scale l one can derive from the energy
function U(e; o) an equivalent coarse energy function U l(el; o) which is a function of
the coarse labeling el de�ned on Sl:

U l(el; o) = U1(�
l(el); o) + U2(�

l(el)): (4)

Here �l is an isomorphism that associates to a con�guration el de�ned on the coarse
grid Sl, the corresponding full resolution con�guration in 
l (Fig. 5). The multiscale
energy functions U l are de�ned for scales l = 0; . . . ; L.

Now it is easy to verify that if G is an 8-neighborhood system, the energy function
U l at scale l can be expressed as a sum of local interaction functions associated to
the same 8-neighborhood system on the coarse grid Sl. Indeed, let us consider c 2 C,
an arbitrary clique associated to the �ne grid energy (c contains at most 4 mutual
neighboring sites, see Fig. 1). The sites in cmay be either included in a 2l�2l constant
label cell, or may sit astride 2, 3 or 4 di�erent cells (see Fig. 6). As a consequence,
the local interaction functions V1(e; o) and Vc(e) associated to the original �ne grid
energy function can be rewritten on the coarse grid for cliques containing up to four
neighboring sites on grid Sl. Hence U l can be expressed as a sum of interaction

3Other classes of \coarse" con�gurations may be de�ned: bilinear approximations are for instance
described in [39].

Inria
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e2
e1

e0

�1(e1)�0(e0) �2(e2)

Figure 5: A constrained labeling at scale l can be represented on a coarse grid Sl. �l

associates to a coarse con�guration el the corresponding con�guration in 
l (de�ned
at full resolution)

clique

2i � 2i constant label cell

Figure 6: Example of clique locations with respect to cells with constant labels

RR n�2184



12 E. M�emin, F. Heitz and F. Charot

functions depending on 1, 2, 3 or 4 site cliques associated to an 8-neighborhood
system.

To exploit the sequence of multiscale energy previously de�ned (Eqn. 4), instead
of minimizing the original energy function (Eqn. 2) over the full con�guration space

, we consider the following sequence of optimization problems:

êl = argmin
e2
l

U(e; o); l = L; . . . ; 0: (5)

By Eqn. 4, this is equivalent to the minimization of the coarse energy functions:

êl = arg min
el2�l

U l(el; o); l = L; . . . ; 0: (6)

These optimization problems are solved using a standard coarse-to-�ne multigrid
strategy (Fig. 7). Starting from a coarse scale L, the optimization problem is �rst
solved in subset 
L (Eqn. 5) by solving the equivalent problem (Eqn. 6). An estimate
of êL is obtained by the ICM algorithm described previously. This de�nes a �rst
(crude) solution to the original problem, and will be re�ned on the subsequent �ner
levels.

At level l, let êl designate the estimate obtained after the convergence of the
deterministic relaxation. The algorithm at resolution level l� 1 is initialized by the
con�guration [�l�1]�1 � �l(êl) which corresponds to an interpolation of el on the
�ner grid Sl�1 using a simple repetition of the estimated labels (see Fig. 7). Note

interpolation

level l

level l � 1

...

êl�1

relaxation

êl

Figure 7: A coarse-to-�ne strategy for optimization at scales i = n; � � �0

Inria



Parallel Non-linear Multigrid Relaxation 13

that this interpolation de�nes a consistent prolongation (or interpolation operator)
from coarse space 
l to space 
l�1 (indeed, êl and its interpolation at level l � 1
are associated to the same con�guration �l(êl) at full resolution and hence have
identical energies).

After interpolation, a new relaxation step is performed until convergence is ob-
tained at scale l� 1; this procedure is repeated at the �ner scales.

We note that whereas the algorithm uses a multigrid representation of labels,
only one level (full resolution) is used for the observation �eld o, as can be seen in
Eqn. 4 (Fig. 8). The multiscale algorithm is summarized in Fig. 9.

e 2 


labels el observations o

e2 2 �2

e1 2 �1

Figure 8: The multiscale relaxation structure

This approach has been used in several low-level vision applications, [23, 27] and
tested on real world image sequences. The multiscale relaxation scheme leads to
solutions that are close to the one obtained by stochastic relaxation. The updating,
at each level, in the multiscale relaxation algorithm remains local and only involves
a pixel and its neighbors. Since the algorithm converges rapidly (typically within
10 full scans of the image) this results in a highly e�cient massively parallelizable
algorithm.

3 Parallel implementations on SIMD 2D array

3.1 Parallel updating of the image sites

Most of the low-level image processing algorithms have properties of locality { the
calculations at each image site depend only on the site itself and on surrounding
sites { and regularity { the same computation has to be carried out on each pixel.
These properties are synonymous with massive data parallelization.

RR n�2184



14 E. M�emin, F. Heitz and F. Charot

MS Relaxation Algorithm

_el : initial con�guration at scale l ;
êl : estimated con�guration at scale l ;

Choose the initial con�guration _eL ;
for l from l = L (coarse resolution) to l = 0 (�ne resolution)
f
êl = ICM( _el; U l(el; o)) ; where: el = fels; s 2 Slg

o = fos; s 2 Sg
if (l 6= 0)
f
_el�1 = [�l�1]�1 � �l(êl) ;

g
g

Figure 9: The multiscale relaxation algorithm

These features and the fact that the basic data structure associated with images
is a bidimensional regular lattice have motivated the design of massively paral-
lel computers (with a high number of processors). Simd computers with bit-serial
processing elements, arranged in a two-dimensional array, often a mesh, were �rst
considered. Then Vlsi design capabilities gave a new impulse to this �eld and hy-
brid design solutions were proposed. Commercial systems, much more complex than
the single-bit mesh connected computers are now available. The cm-2 (Thinking
Machine Corporation) combines single bit and oating point processing elements.
In the Maspar mp-1 systems, oating point operations are carried out by the basic
processing elements. Moreover, these machines implement advanced interconnection
structures. The size of processor arrays has become larger and larger in the past
decades and has now reached nearly the image size.

Relaxation algorithms lead to local and regular image updating and are perfectly
well adapted to massive parallelization. In the following we consider parallel imple-
mentations of the di�erent classes of non-linear relaxation algorithms described in
Section 2 on bi-dimensional simd array architectures with a number of processors
in the order of the image size (Fig. 10). Due to its attractive convergence properties
and its generality, the \multiscale relaxation" algorithm is a good candidate for the
development of comprehensive massively parallel low-level vision algorithms. The
parallel implementation of this multigrid technique will thus be considered carefully.

simd 2D array architectures are de�ned on a 2D regular lattice of processing
elements (pes) in which each pe has access to its own local memory unit and has
basic alu functions. A pe is directly interconnected to its four nearest neighbors
in the lattice and the array is controlled by a single control ow (simd). The array
controller has its own memory and sends instructions and data to the set of pes. simd
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N

N

Control

Unit

Figure 10: simd 2D array architecture

2D array architectures are thus well suited for doing massively parallel synchronous
updatings of the state of the image �eld.

Before describing the di�erent parallel relaxation algorithms which have been
studied, we �rst present the general constraints imposed by the parallel implemen-
tation of non-linear relaxation schemes on simd machines.

3.1.1 Constraints in the parallel synchronous updating of the image

As stated in the previous section, the relaxation algorithms associated with low-
level vision models have several appealing features. To update an image site, one
simply replaces its label by a function of the site label itself and of its neighbors'
labels: this updating is spatially invariant. The assignment of one pixel to each
processing element, in order to update simultaneously the whole image grid, is a very
attractive solution. However, the following constraint has to be satis�ed: neighboring
pixels should not be updated simultaneously to ensure convergence of the relaxation
algorithm4. To take into account this constraint, the grid is usually partitioned into
di�erent sets where pixels belonging to one set may be updated simultaneously. Such
a partition is called a \coding" [3]. The number of sets is, of course, neighborhood
dependent, as illustrated in Figure 11 where 4 and 8-neighborhood systems are
considered. Pixels belonging to the same set have the same label. We can notice
that in the case of a 4-neighborhood the image is divided into two sets. Four sets
are necessary when an 8-neighborhood is considered.

4The theoretical convergence properties of parallel versions of stochastic relaxation algorithms,

which violate this constraint, are studied in [44]
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Figure 11: Coding of the image plane for a 4 or 8-neighborhood structure

3.1.2 E�cient pixel allocation schemes

As explained previously, the standard allocation scheme, (one pixel per processor),
used for instance in [30, 36, 45], leads to a lack of e�ciency due to the updating
constraint. For instance only half of the processor array would work simultaneously
in the case of a 4-neighborhood. To keep as many processors as possible busy one
can use a block allocation scheme, based on non overlapping blocks containing sites
which should not be updated simultaneously.

A block is composed of adjacent pixels having di�erent labels. Its size is equal
to the number of sets associated to the coding. Pixels belonging to the same block
are updated sequentially and are controlled by the same processor. The size of the
blocks is 2x1 for a 4-neighborhood and 2x2 for an 8-neighborhood. This allocation
scheme is the basis of our di�erent parallel implementations. It is used in particular
for the parallelization of the single resolution stochastic and deterministic relaxation
algorithms.

3.2 Standard parallel relaxation

The �rst parallelization approach we consider here is a standard approach which
corresponds to a straightforward implementation of relaxation methods on bidi-
mensional simd arrays. The simplest method consists of associating, (at the initial
resolution for the single resolution schemes and at each resolution for the multi-
grid scheme), one processing element per site of the grid [36]. Taking into account
the constraints described in the previous section, a more e�cient allocation scheme
consists of assigning one processor to each block of sites that should not be upda-
ted simultaneously. In the multigrid relaxation, the di�erent resolution levels are
processed sequentially. Therefore this algorithm may be seen as successive initiali-
zation/relaxation steps on grids fSl; l = 0; . . . ; Lg of size jSlj = N2

22l
, where N2 is the
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size of the full resolution image. If bi;j � Sl designates a block of sites that should
not be updated simultaneously the number of processors necessary to process grid
Sl is:

N l
P =

N2

22l
�

1

jbi;jj
: (7)

This simple implementation of multigrid methods therefore generally yields a
lack of e�ciency on large size simd architectures. It is indeed generally not possible,
in such schemes, to keep all processors active. If one processor is allocated to each
site of the successive grids, the e�ciency is at most: Nl

P
where P is the number of

processors and Nl is the size of the grid at resolution l. In the drastic case of a coarse
grid of 1� 1 the e�ciency is lower than 1=P .

A way to cope with this lack of e�ciency is to introduce additional levels of pa-
rallelism in the multigrid relaxation methods. Several directions have been explored.
They are described in the next sections.

3.3 A need for additional levels of parallelism

As explained previously, standard data parallelism does not exploit the large com-
puting resources of the available large massively parallel processor arrays when the
image grid to be controlled is small. This is particularly true for multigrid relaxation
algorithms, in which coarse and �ne grids have to be handled sequentially.

In this section, we consider di�erent solutions which enable to make a full use
of the large potential of data parallelism available on 2D processor arrays for the
implementation of non-linear multigrid relaxation methods.

3.3.1 Full parallel multigrid relaxation

Several solutions have been proposed to introduce additional parallelism in multi-
grid relaxation algorithms. One method consists in designing non-linear multigrid
algorithms that are completely parallel over all the resolution levels. In standard
multiresolution algorithms the di�erent levels are processed sequentially. The e�-
ciency of these algorithms may be increased by processing all resolution levels in
parallel (the idea was suggested { but not developed { by Terzopoulos in [42]).
This may also be done as in [27] by extending the spatial neighborhood of a site
by introducing hierarchical cliques to connect adjacent resolution levels in the mul-
tigrid structure. The extension of the neighborhood enables parallel updating of
non-neighboring sites over the whole pyramid. However, this leads to a modi�cation
of the underlying model and to a very signi�cant augmentation of the con�guration
space. As a consequence this technique is very time consuming [27].

Another way to break the sequential nature of multigrid relaxation algorithms is
to develop speci�c parallel inter-level cooperation strategies. In recent studies [1, 19,
22] such relaxation algorithms have been considered. In [22] the parallel relaxation
consists in running cooperative relaxation chains at each level of the pyramid. The
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interactions between levels are based on the periodical exchange of con�gurations
between chains. This strategy enables exploring the original con�guration space at
di�erent resolutions in parallel in order to converge faster towards good solutions.
These algorithmic solutions are close to the one obtained by a sequential coarse to
�ne strategy but are better suited to mimd parallel machines [22].

3.3.2 Concurrent exploration of the con�guration space

Another solution for improving the e�ciency of parallel multigrid relaxation schemes
is to keep the sequential character of the algorithm and to make use of the idle pro-
cessors at the coarse resolutions. In [37], Narayanan and al. suggest a technique
called \replicated data algorithms" to use idle processors in the parallel implementa-
tion of image processing algorithms such as histogramming or convolution on simd

massive parallel machines. This technique consists of a replication, over the array
processor, of the data structure involved in the considered algorithm. The problem
is split up in functional blocks which may be processed simultaneously using address
autonomy capabilities of general purpose simd arrays.

Another solution consists in exploring in parallel the con�guration space of the
original optimization problem. This principle can be implemented very e�ciently
with the \multiscale" algorithm described in [23] since this algorithm may itself
be interpreted as a constrained optimization on di�erent con�guration spaces. We
present in the following sections two parallel algorithms that perform concurrent
relaxation sweeps at a given resolution: the concurrent subspaces multiscale relaxa-
tion and a multi-initialization multiscale relaxation scheme. These two methods
combines two di�erent levels of parallelism: parallel updating of the image sites and
concurrent explorations of the con�guration space of the problem. The cooperation
between these two levels of parallelism proves to be very e�cient and leads to fast
convergence towards quasi-optimal solutions as will be seen on di�erent benchmarks
in Section 4. The convergence speed of these algorithms at coarse resolution levels
is indeed faster than standard parallel relaxation schemes and hence they provide
better initializations for the intermediate and the �nest levels.

3.4 Concurrent subspaces multiscale relaxation

Let us recall that the multiscale scheme consists in computing the label �eld on a
sequence of subspaces 
n � 
n�1 � . . . � 
0 = 
 which correspond to con�gu-
rations of increasing resolution. Subspace 
l is the subspace of the con�gurations
of 
 which are constant on blocks of size 2l � 2l. We may notice that there are
2l � 2l di�erent ways for choosing a block partition over the original grid. Conse-
quently, at each scale l, we can build 2l � 2l di�erent coarse con�guration spaces

l;k; k = 1; . . . ; 2l � 2l. On space 
l;k, the label con�gurations are constrained to
be constant on the corresponding block partition Bl;k

i ; i = 1; . . . ; Nl. The spaces

l;k; k = 1; . . . ; 2l � 2l, are obtained by considering successive shifts of the block
partition along the horizontal and vertical directions (see Fig. 12 for an example at
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level 1). Blocks of variable size have to be introduced at the border of the image, in
order to �t into the �nite image size (Fig. 12).


1;1 
1;2


1;3 
1;4

Figure 12: The four subspaces of con�gurations at level l = 1

Recalling that in the multiscale scheme the optimization on space 
l works to
estimate a label �eld at a reduced scale on a subspace �l, we can de�ne 2l � 2l

subspaces �l;k; k = 1; . . . ; 2l�2l of reduced con�gurations. fSl;k; k = 1; . . . ; 2l�2lg is
the set of coarse grids supporting the con�gurations belonging to �l;k; k = 1; . . . ; 2l�
2l.

It is now possible to de�ne a relaxation scheme in which, at each scale l, the 2l�2l

con�guration spaces �l;k; k = 1; . . . ; 2l � 2l are explored in parallel. The di�erent
energy functions fU l;k; k = 1; . . . ; 2l � 2lg are derived, with the same technique as
for the multiscale scheme, from the initial energy function on space 
.

The relaxation algorithm (Fig. 13) associated to this structure is a coarse to
�ne strategy where at each resolution level, 2l � 2l concurrent relaxations are run
in parallel on subspaces �l;k; k = 1; . . . ; 2l � 2l. The energies of the resulting con�-
gurations are then compared. The con�guration of lowest energy is selected and
projected on all the subspaces �l�1;k ; k = 1; . . . ; 2l�1 � 2l�1 associated with the
next �ner resolution. The projection (P?) carried out is an orthogonal projection
according to the euclidian distance which leads to compute the average of the labels
on the di�erent blocks (see Fig. 14 for an example on vector labels).
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CSMS Relaxation Algorithm

_el;k 2 �l;k : initial con�guration at resolution l on grid Sl;k ;
êl;k 2 �l;k : estimated con�guration at resolution l on grid Sl;k ;
Y l : minimal energy con�guration at resolution l ;
P?
�l�1;k(Y

l) : orthogonal projection of the con�guration Y l on sub-
space �l�1;k ;

Choose a set of initial con�gurations f _eL;1; . . . ; _eL;2
2L

g ;
for l = L (coarse resolution) to l = 0 (�nest resolution)
f para

f
êl;1 = icm( _el;1; U l;1) ;
...
êl;2

l�2l = icm( _el;2
2l

; U l;22l ) ;
g
Y l = arg min

e2fêl;1;...;êl;22lg
(U l;:(el; o)); Y 2 �l;k ;

if l 6= 0
par

f
_el�1;1 = P?

�l�1;1(Y
l) ;

...
_el�1;2

l�1�2l�1 = P?

�l�1;2l�1�2l�1
(Y l) ;

g
g

aparff1; f2; . . . ; fng denotes the parallel execution of functions
f1; f2; . . . ; fn

Figure 13: The concurrent subspaces multiscale (CSMS) relaxation algorithm
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P?�1;m (Y
2)

S1;m

S2;k

S1;m

_e1;m 2 �1;mY 2 2 �2;k

Figure 14: Example of the orthogonal projection of con�guration Y 2 �2;k onto �1;m

At a given resolution level all the relaxations running in parallel are stopped
once any of the concurrent relaxations has reached convergence { i.e. no longer
changes the state of its labels. Other convergence criteria may be used but this one
guarantees that the relaxation will be stopped early enough to yield reduced cpu

times.
The full parallel multiscale scheme developed here provides an elegant way to

combine concurrent relaxation chains on adjacent subspaces. Results concerning the
quality of the energy minimization and computing times are given in section 4.
Before analyzing these results, we present another algorithm which also leads to full
parallelism.

3.5 Multi-initialization multiscale relaxation

It is well known that the icm relaxation algorithm [4], used at each level in the
multiscale scheme, gets easily stuck in local minima of the energy function. As a
consequence, the choice of the initial con�guration in such deterministic minimiza-
tion methods is often crucial. It is conjectured, [21, 43] that multiresolutional re-
presentations of information (such as in the multiscale scheme) leads to \smoother"
energies at coarse resolutions5. This does not however guarantee that the energy
function has only one minimum. It is therefore appealing to propose di�erent ini-
tializations in parallel at the coarsest resolution. This leads to a di�erent parallel
relaxation strategy on the pyramidal structure.

5A multiresolution representation allows large displacements in the con�guration space. It en-
ables therefore, to remove minima associated to local displacements in that space.
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MIMS Relaxation Algorithm

_el;k 2 �l;k : initial con�guration at resolution l on grid Sl;k ;
êl;k 2 �l;k : estimated con�guration at resolution l on grid Sl;k ;
Y l;i : minimal energy con�guration in the sub-group Gl;i ;
[�l�1]�1 � �l(Y l;i) : projection of the con�guration Y l;i on the subspace �l�1 ;

Choose the set of initial con�gurations f _eL;1; . . . ; _eL;2
L�2Lg

for l = L (coarse resolution) to l = 0 (full resolution)
f par
f
êl;1 = icm( _el;1; U l) ;
...
êl;2

2l

= icm( _el;2
2l

; U l) ;
g
Y l;i = argminêl;k2Gl;i(U l(êl;k; o)); i = 1; . . . ; 22l�2 ;
if l 6= 0
par

f
_el�1;1 = [�l�1]�1 � �l(Y l;1) ;
...
_el�1;2

l�1�2l�1 = [�l�1]�1 � �l(Y l;22l�2 ) ;
g

g

Figure 15: The multiple initialization multiscale relaxation (MIMS) algorithm
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In the case of multiscale relaxation this strategy can be described as follows. At
level l of the multiscale scheme, 2l � 2l relaxation chains may be run on the same
subspace �l with di�erent initial con�gurations. These relaxation chains are run on
2l � 2l replicated grids Sl;k; k = 1; . . . ; 2l � 2l, which all support con�gurations
belonging to �l. At level l� 1, 2l�1� 2l�1 �nal con�gurations must be selected from
the 2l�2l resulting con�gurations at the upper level to initialize the next relaxation
chains. In other words, one con�guration among four must be selected and projected
on resolution level l � 1. To this end, the 2l � 2l con�gurations generated at level
l are clustered in subgroups Gl;i; i = 1; . . . ; 2l�1 � 2l�1 of four con�gurations. The
lower energies con�gurations among all these subgroups are selected and projected
on the next �ner level.

The di�erent steps of the multi-initialization algorithm (initialization, choice of
the best con�guration of a cluster, projection) are iterated up to the �nest resolution.
At full resolution only one chain is running on the whole processor array and one
single solution is produced. The Fig. 15 describes a general summary of the resulting
relaxation algorithm.

The projection used here is the same as in the standard parallel multiscale re-
laxation scheme. As in the previous relaxation scheme the convergence criteria is
satis�ed if one of the relaxation chain reaches convergence.

4 Experimental results

The e�ciency and the generality of the parallel algorithmic framework described in
the previous section is illustrated here on two global optimization problems related
to two di�erent energy functions and applications: optical ow computation and
image restoration.

The new parallel relaxation algorithms are compared to the standard parallel
implementation of the considered relaxation algorithms.

4.1 Optical ow estimation

We have �rst applied the di�erent parallelization methods developed in the previous
section to a model of optical ow measurement. We consider a discrete formulation
of the optical ow measurement problem which has been used in [29]. This model is
known to lead to a complex energy landscape exhibiting numerous local minima [29].
Hence, it is a good benchmark for comparing the performances of global optimization
algorithms.

Let ft(s) denote the observed intensity function at point s = (x; y); s 2 S, t
denotes the time variable. The velocity vector at point s is denoted ~!(s)(us; vs);
us = dx

dt
(s); vs = dy

dt
(s) and ~! = f~!(s); s 2 Sg. Velocities are de�ned on the

same grid S as the pixels and the velocities are discretized according to a discrete
state space W = (�umax : umax;�vmax : vmax) with step size �. The model is
associated with an 8-neighborhood system (Fig. 1), where only the two element
cliques (doubletons) are considered. The model is speci�ed by the following energy
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function:

U(f; ~!) =
X

s 2 S

f ft(s)� ft+dt(s+ ~!(s):dt) g2

+ � 2
X

(s;r) neighbors

k ~!(s) � ~!(r) k2 (8)

The �rst term in the energy (known as the \displaced frame di�erence") expresses
the constant brightness assumption for a physical point over time. This term is non-
linear and leads to a highly non-convex energy function [23, 29]. The second term can
be interpreted as a regularization term which favors smooth solutions. The parameter
� controls the relative weight of the two terms. This approach to long-range motion
estimation relates to standard methods based on the matching of iconic structures.

The di�erent parallel relaxation schemes described previously have been imple-
mented on a Maspar mp1 parallel computer. The Maspar mp1 parallel computer
is a massively parallel machine of 32 � 32 processors interconnected on a two di-
mensional grid. Each processor is locally connected to its eight neighbors. It is a
load/store arithmetic processing element with its own local memory (16 kbytes of
ram) and sixteen 32 bit registers. The array is controlled by a single ow of instruc-
tion (simd). The array controller (named acu) is a processor with its own memory
and registers. It has a data memory capacity of 128 kbytes and 1 mbytes of ram.

In our experiments, �ve di�erent algorithms have been implemented and com-
pared:

1. a standard parallel implementation of a single-resolution deterministic relaxa-
tion algorithm (the \Iterated Conditional Mode" (icm) algorithm described in
Section 2.2.2);

2. a standard parallel implementation of a single-resolution stochastic relaxation
(sr) algorithm based on the Gibbs sampler (described in Section 2.2.1);

3. a standard parallel implementation of the multiscale relaxation method (ms)
as described in Section 3.2;

4. the parallel concurrent subspaces multiscale relaxation algorithm (csms) des-
cribed in Section 3.4;

5. the parallel multi-initialization multiscale relaxation algorithm (mims) descri-
bed in Section 3.5.

The \standard" parallel implementation corresponds here to a parallel updating
of the image sites relying on a classical coding technique, as described in Section 3.

The temperature schedule used in the stochastic relaxation algorithm was :
T (j) = T0:A

j ; with A = 0:98 and T0 = 1000, where j designates the number
of sweeps on the image. The same parameters were chosen in every case for the
�nest resolution model. Three resolution levels were considered in the multiscale
methods. A discrete label space W = (�4 : +4;�4 : +4) with a step size of � = 1
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has been adopted at the full resolution.

The parallel relaxation algorithms have been compared on di�erent typical image
sequences. A �rst benchmark composed of 41 short sequences of two 64� 64 frames
has been obtained by applying a complex motion �eld (Fig. 16) on di�erent real
images (Fig. 17). The motion �eld includes a translation, a rotation, a dilation and
more complex movements (Fig. 16). This benchmark is a di�cult example since
di�erent moving regions are present simultaneously in the scene.

Figure 16: Synthetic motion �eld applied on the 41 sequences benchmark

The second benchmark is a real-world sequence of 48 frames that shows a tra�c
scene observed from a bridge (Fig. 18). These scenes involve several moving cars
with di�erent apparent velocities and sizes in the image plane.

RR n�2184



26 E. M�emin, F. Heitz and F. Charot

01 02 03 04 05

06 07 08 09 10

Figure 17: First images of the 41 short sequences benchmark

01 04 10 20 35

Figure 18: Non-successive frames of the \Highway" sequence

Inria



Parallel Non-linear Multigrid Relaxation 27

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45

U(MS)
U(�)

Number of sequence

MS �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

MIMS 2

2
222222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2
2

2

22

2

2222

2

2

2

2

2

2

CSMS

ICM �

�

��

�

�
���

�

�

�

�

�

���
�
�

�

�

�

�
�
�

�
�
�

�

��

�

�

�

�

��

��

�

�

�

Figure 19: Ratio of the �nal energy level U(ms) reached by the standard parallel
multiscale implementation to the energy levels U(�) reached by the parallel icm, csms
and mims algorithms - (41 sequences benchmark).
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Figure 20: Ratio of the �nal energy level U(ms) reached by the standard parallel
multiscale implementation to the energy levels U(�) reached by the parallel icm, csms
and mi algorithms - (Highway sequence).

The di�erent parallel algorithms have been run with the same random initia-
lization, in order to evaluate the robustness of the di�erent methods in situations
(which are usual in applications) in which no relevant initialization is available.

The global behavior of the di�erent algorithms can be appreciated by considering
the energy plots reported in Fig. 20 and 22 for the Highway sequence, and Fig. 19
and 21 for the 41 synthetic sequences benchmark . The curves in Fig. 19 and 20
represent the ratio of the energy level reached by the standard parallel multiscale
method (ms) to the energy at convergence for the other parallel multiscale schemes
(csms, mims). The plot obtained for the icm algorithm is also reported here for
comparison purposes. A second family of energy plots (Fig. 21 and 22) describes the
behavior of the multiscale schemes in comparison with stochastic relaxation (sr)
which theoretically should lead to the lowest energy6.

6This is true if the annealing schedule is slow enough, i.e. logarithmic, which is not the case here.
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Figure 21: Ratio of the �nal energy level U(sr) reached by the parallel stochastic
relaxation to the energy levels U(�) reached by the parallel multiscale schemes (ms,
csms and mims) - (41 sequences benchmark).
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41 sequences benchmark Highway sequence

sr 7 mn 27 s 7 mn 24 s

ms 5 s 68 4 s 79

csms 4 s 95 4 s 35

mims 4 s 79 4 s 29

icm 4 s 20 4 s 26

Table 1: Everage cpu time for the di�erent parallel algorithms { optical ow com-
putation (Highway sequence and 41 sequences benchmark)
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Figure 22: Ratio of the �nal energy level U(sr) reached by the parallel stochastic
relaxation to the energy levels U(�)reached by the parallel multiscale schemes (ms,
csms and mims) algorithms - (Highway sequence).

As expected the deterministic icm relaxation algorithm gets usually stuck in
high energy minima. The parallel csms and mims algorithms improve signi�cantly
the results of the standard parallel multiscale implementation (ms). In the case of
the 41 sequences benchmark the concurrent subspaces multiscale scheme performs
slightly better in average than the multi-initialization relaxation algorithm (Fig. 19).
The solutions produced by the mims and csms schemes are very close { in term of
energy levels { to those obtained by stochastic relaxation. Let us notice that in some
cases the con�gurations generated by csms and mims are even better { i.e. of lower
energy levels { than those estimated by time consuming stochastic relaxation.

In the case of the Highway sequence the standard multiscale and the multi-
initialization schemes lead to comparable results (Fig. 20), whereas the concurrent
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subspaces scheme improves signi�cantly the quality of the computed solutions. The
icm algorithm { which is one of the most used in mrf applications { yields poor
con�gurations corresponding to local minima associated with high energy values.
The energy levels reached by ms and mims are of the same order as those observed
for stochastic relaxation. It is worth noticing here that the concurrent subspaces
relaxation scheme (csms) leads to even lower energy levels than stochastic relaxation
(sr) ! This is relevant since the annealing schedule used for the sr algorithm is not
optimal. A slower annealing schedule could of course have been introduced for the
stochastic relaxation, but this would have increased the cpu time of this already
time consuming method.

The average cpu times7 (computed over the whole sequence) are given in table 1.
As can be seen, the csms and mims scheme are faster on an average than the standard
multiscale scheme although they have a higher cost per iteration. As expected these
two algorithms show a faster convergence at coarse resolutions that is due to the
competition between several relaxation chains which enable faster convergence to
lower energy solutions. On average, the parallel multiscale relaxation methods lead
to a computational saving on the order of 90, with respect to parallel stochastic
relaxation. This is noteworthy since the �nal solutions are very close, both on a
qualitative and a quantitative point of view (close energy levels).

Examples of computed optical ow �elds are given in Fig. 23 for the 41 synthetic
sequences benchmark. The quality of the di�erent resulting �elds readily shows the
gain obtained by the parallel exploration of the space of solutions in the mims and
csms method.

4.2 Noisy image restoration

To bring additional experimental evidence, the di�erent parallel relaxation algo-
rithms have been applied to a second standard model, used in low-level vision for
noisy image restoration. We consider here a simpli�ed version of a model introduced
by Geman and Reynolds in [17].

Let X = fxs; s 2 Sg denotes the intensity �eld of the noise-free image. The
observed noisy image Y = fys; s 2 Sg, is such that Y = X + N where N is a 2D
white Gaussian noise, independent of X , with zero mean and variance �2. Under
this assumption the adequate energy function is easily derived [17]:

U(x; y) =
1

2�2

X

s2S

(xs � ys)
2 �

X

fs;rg2C

1

1 + jxs � xrj
(9)

The �rst component of the energy function de�nes a quadratic distance between
the the unknown (noise-free) image X and the noisy observations image Y . The
second term speci�es the a priori properties of the desired solution. This term favors

7A sequential implementation of the rs, icm and ms relaxation methods described in [23] on a
Sparc ss1 station has led to the following average cpu times : 184 mn 11 s for sr, 7 mn 25 s for icm
and 3 mn 13 s for ms.
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a) image 1, sequence 38 b)sr

c)icm d)ms

c)mims d)csme

Figure 23: Computed optical ow �elds (sequence 38 of the benchmark)
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piecewise smooth solutions and enables to take into account intensity discontinuities
without introducing auxiliary variables to model edges (i.e. line process) [18, 21].

As done previously, the di�erent parallel relaxation algorithms have been run on
the Maspar mp1 parallel computer on a benchmark composed of 30 images of size
64 � 64. This benchmark has been obtained by adding a white Gaussian noise to
di�erent original images with a SNR of 5 dB (see Fig. 24).

01 02 03 04

05 06 07 08

Figure 24: First image of the noisy images benchmark

The di�erent parallel relaxation algorithms have been run with the same pa-
rameter (2�2 = 1000). The other parameters were the same as in the previous
experiment.

Figure 25 shows the ratio of the �nal energies reached by the parallel multiscale
relaxation algorithms (ms, csms, mims) and the parallel icm algorithm, to the energy
reached by parallel stochastic relaxation sr (notice that the �nal energies are here
negative).

As in the case of the optical ow estimation model, the mims and csms relaxation
algorithms have nearly the same behavior. These two algorithms reach energy levels
that are of the same order as those obtained by stochastic relaxation at a reduced cpu
cost (see table 2). On average, the gain here is on the order of a factor of 20 for similar
(and even better) qualitative and quantitative results. The icm algorithm leads in all
the cases to results of lower quality. An example of restored images obtained by the
di�erent relaxation algorithms is presented in Fig. 26. The qualitative enhancement
is, as can be seen on this �gure, closely related to the energy levels reached by the
algorithms. High energies correspond to poor solutions (this is the case for the icm
algorithm). The low energies levels reached by stochastic relaxation and parallel
multiscale relaxation are related to restorations of better quality.
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Figure 25: Ratio of the �nal energy level U(�) reached by the parallel multiscale
schemes (ms, csms, mims) and the icm algorithm to the energy reached by stochastic
relaxation U(sr). - (Noisy images benchmark).

sr ms icm csms mims

11 mn 37 s 39 s 70 34 s 08 33 s 39 32 s 60

Table 2: Everage cpu time for the di�erent algorithms { image restoration
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X Y

icm SR

MS CSMS MIMS

Figure 26: Results produced by the di�erent algorithms on image 1 of the benchmark
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5 Conclusion

In this paper, the parallel implementation of several general non-linear relaxation
algorithms, widely used in low-level vision applications, has been considered. Re-
laxation algorithms, based on the modeling of local interactions between variables in
the image plane, have locality and regularity properties that make them good candi-
dates for implementation on bi-dimensional simdmassively parallel processor arrays.
Particular attention has been paid here to recently developed non-linear multigrid
relaxation algorithms [23] which have shown very attractive convergence properties
(fast convergence towards quasi-optimal solutions). These algorithms are however
sequential by nature, each grid having to be processed in turn. As a consequence, at
coarse scales (corresponding to small image grids), standard data parallelism does
not exploit the large computing resources of large massively parallel processor array.

A new algorithmic framework that enables exploiting all the computing resources
of large 2D simd processor arrays has been proposed. Di�erent levels of parallelism
have been considered to avoid idle processors at coarse scales in the multigrid pro-
cessing. This technique yields a full e�ciency of the array and signi�cantly improves
the performances (convergence speed and quality of the solution) of the relaxation
process. Gains of up to two orders of magnitudes in the convergence speed with
respect to parallel stochastic relaxation have been observed with these new parallel
multigrid algorithms. The �nal solutions are close (and sometimes better) in quality
to those obtained using time-consuming stochastic relaxation algorithms.

As a conclusion, we have shown that an e�cient (full) utilization of 2D pro-
cessor arrays enables the development of new parallel algorithms that not only
provide speed-up but also better and more robust solutions than their sequential
counterparts. The contribution of parallelism in image processing should therefore
be considered both from the point of view of algorithmic improvement and cpu-time
reduction.
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