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Estimation et segmentation semi-paramétrique du mouvement

apparent

Résumé : Nous introduisons un cadre énergétique complet pour 'estimation et la segmentation du
mouvement apparent. Les fonctions de cotit robustes et les techniques hiérarchiques de minimisation que
nous proposons offrent la possibilité de manipuler conjointement une représentation non-paramétrique
dense, une représentation localement paramétrique avec interactions, et une représentation globale en
régions paramétriques indépendantes. Les comparaisons expérimentales sur des données aussi bien
synthétiques que réelles permettent de mettre en evidence les apports de 'approche, en fonction du
type de séquence. Il est ainsi montré que d’intéressantes estimations denses peuvent étre obtenues dans
le cas de mouvements fluides complexes, ainsi que des estimations-segmentations dans le cas de scénes

3D plus structurées.

Mots clés : Mouvement apparent, estimation robuste, préservation des discontinuités, segmentation

au sens du mouvement, minimisation non-convexe hiérarchique, représentation dense et paramétrique.



I. INTRODUCTION

Among early vision problems, the one dealing with the estimation and the segmentation of apparent
motion from an image sequence is particularly intricate. It is a two-fold problem which lies at the
heart of most issues related to the analysis of image sequences. It is thus a critical part of a number
of computer vision applications such as motion detection in a scene, 3D motion and scene structure
recovery, obstacle avoidance in robotics, etc. (see for example [23] for a recent review on motion analysis
issues).

Stemming either from discrete Markovian framework or from deterministic continuous one, energy-
based models seem very appealing to handle in a versatile way high-dimensional inverse problems, even
when the variables are of very different natures and interact in a non-linear fashion. For motion analysis
purposes, such models have been thoroughly investigated, usually based on the brightness conservation
assumption. An infinitesimal expansion of this constraint leads to the well known optical flow constraint
equation [18]. This equation links the projection of the unknown motion vector on the spatial gradient
of the luminance function to the temporal partial derivative of the luminance function. The model is
equipped with some a priori which is either locally captured by a smoothness term in the cost function
[18], or more globally defined as a parametric representation of the unknown motion [1, 2, 4, 9].

These two types of priors have their own advantages and drawbacks. Opposite to local smoothing
approach, parametric modelization relies on larger (and delimited) spatial supports of estimation. It
is therefore more likely to be reliable and robust, as far as selected parameterization as well as the
notion of motion regions make sense from physical point of view. Local non-parametric models are,
in that sense, more general since they only capture smoothness assumptions on the desire solution.
They are also independent of any partition of the image and local attributes of the motion field such as
discontinuities may be easily handled [8].

Local non-parametric regularization is usually involved in dense motion estimation [8, 12, 14, 24]
whereas parametric representations are more dedicated to motion-based segmentation where areas with
cinematic meanings have to be extracted from the images [2, 4, 9, 26].

The limitations of each approach can be illustrated in the case of images involving fluid phenomena.
In sequences of this nature, like those encountered in meteorology (atmospheric satellite images) or
fluid mechanics (videos of wind tunnel or water tank experiments), it is very common to observe very
low photometric contrasts. Although the optical flow constraint equation could easily be turned into

a more “physical” transport equation [30, 33], it will always be plagued by the absence of consistent
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photometric information to rely on. In that case, parametric approach, with its extended estimation
supports, would seem more appropriate. However, the physics of the scene makes it delicate to apply:
in fluid motions there is no real objects or motion regions with borders, and the involved motions can
be more complex than those usually captured by standard parametric models.

In light of these preliminary remarks, our purpose is to propose methods that allow to mix both kinds
of priors, thus offering a trade-off between local non-parametric smoothing and more global parametric
representation. We are thus looking for what could be called a semi-parametric estimation framework.
We actually present two different (and not exclusive) methods to reach that goal. The first one concerns
a particular constrained minimization technique used with an energy-based dense motion estimation
model. The second method deals with an energy-based model for the joint estimation/segmentation of
the apparent motion. In both approaches (whose cost functions are partly the same), the considered
energy incorporates so-called robust penalty functions. These functions allow in the one hand to deal
with the different kinds of large deviations w.r.t. chosen models, and, in the other hand, they offer
a simple way to eventually couple the different variables of the problem through additional “auxiliary
variables”.

As already mentioned, energetic formulations can be viewed either from a continuous angle or from a
discrete one. Former kind of approaches imply continuous functionals, variational calculus, deterministic
partial differential equations, and discretization schemes (finite differences, finite elements), whereas
the latter type of formalism is often related to Markov random fields and Bayesian inference. The two
viewpoints provide different insights into a given problem, as well as different mathematical tools to
cope with the various issues at hand. Despite their differences, it is known that they often lead to very
similar discrete implementations. Although our presentation relies more on a discrete philosophy, we
shall provide some hints about the connection between the two points of view as concerns the models
themselves, as well as the algorithmic treatment.

The paper is divided into three main parts. It first focuses in Section II on a robust energy-
based model for the incremental dense estimation of the apparent motion field with preservation of
its discontinuities. To cope with the associated minimization we introduce an efficient tailor-made
hierarchical technique which combines different and varying parameterizations of the unknown field.
The compromise between local dense methods and global parametric approaches is thus introduced via
the minimization process. In the second part of the paper (Section III) we show how the former energy

function can be enriched to simultaneously estimate a motion-based segmentation of the scene. The
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resulting joint estimation-segmentation model introduces another mix between local smoothness and
region-wise parameterization. The intricate global minimization one ends up with is performed with a
natural extension of the hierarchical optimization technique developed in the previous part. The last
part (Section IV) is devoted to experimental results. The two approaches are validated qualitatively

and quantitatively on real world sequences involving fluid phenomena or rigid mobile objects.

II. ROBUST ESTIMATION OF DENSE OPTIC FLOW

Dense motion estimation aims at recovering the apparent 2D displacement field w = {ws, s € S} over
the rectangular pixel lattice S, based on luminance function f(t) = {f(s,t),s € S} at two consecutive
instants ¢t and ¢t + 1. Assuming the temporal constancy of the brightness for a physical point between

the two images, standard optic flow estimation relies on the optic flow constraint equation (OFCE):
V(s t+ 1) ws + fis) =0, (1)

where V f stands for the spatial gradient of f and f;(s) = f(s,t+ 1) — f(s,t) denotes the luminance
variation at location s. This equation issues from a linearization of the brightness constancy assumption
fls+ws,t+1) — f(s,t) = 0. Seeing f; as an approximation of the temporal derivative and tacking
spatial gradient at time ¢ instead of ¢ + 1, left hand side of (1) can also be interpreted as the material
derivative z—]; of f (i.e., the rate of change of f as observed when moving with point s).

As a Taylor series expansion, the OFCE also assumes that the unknown displacement w; remains
in the “domain of linearity” of the luminance function at location s. This is particularly unlikely to
hold around sharp edges (where large gradients imply reduced linearity domain), and for large displa-
cements. These limitations are usually circumvented by conducting an incremental estimation through
a multiresolution hierarchy of sequences [6, 15]. Such an incremental multiresolution technique can be
related to non-linear least squares Gauss-Newton method [4, 24]. We, too, stick to that multiresolution
setup involving a pyramidal decomposition of the images. Even if we do not make it explicit, we shall
assume throughout to be working at a given resolution of the multiresolution structure. One has to
keep in mind that all definitions and derivations are thus meant to be reproduced at each resolution

level according to a coarse-to-fine strategy.
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A.  Incremental energy-based model

Incremental estimation assumes that a rough estimate w = {ws,s € S} of the unknown vector field
is available (e.g., from an estimation at lower resolution or from a previous estimation). A refinement
is sought in terms of an increment field dw € Q C (R x R)®. Based on the linearization of constancy

brightness assumption from time ¢ to ¢+ 1 with respect to that increment, refinement estimation consists

dw = arg min[H, (dw; f, w) + aH>(dw; w)], (2)

with [6, 24]:
H(dw; f,w) = Y pi[Vf(s+ws,t +1) dw, + fi(s,w,)], (3)
Hy(dw;w) = :z:cm[(wﬁdws)(wwrdwr)], (4)

where a > 0, C is the set of neighboring site pairs lying on grid S equipped with some neighborhood
system v, fi(s,ws) = f(s +ws,t +1) — f(s,t) is the displaced frame difference, and p; and py are
standard robust M -estimators. They respectively penalize the deviations both from the OFCE and from
the first-order smoothing prior. Unlike the quadratic penalty, these robust functions exhibit a saturating
property (their derivatives are negligible at infinity in front of 2z) in presence of large residuals. From
a practical point of view, these functions, which are often non-convex for improved robustness [13], can
be replaced by a so-called semi-quadratic formulation: under certain simple conditions on p (mainly
concavity of ¢(v) = p(v/v), see [8, 11, 16] for a complete account), there exists an increasing function
1 such that p(z) = min,¢( [T22? + 1(2)], where T £ limy_,04 ¢'(v), ie, p is the inferior envelope
of a family of parabolas continuously indexed by auziliary variable (or weight) z lying in (0,1].! The

minimizer is given by argmin,¢ o 1)[722% + ¥(2)] = % =14/ (2?).

'This function is defined as 1(z) = ¢ o ¢’ '(r2) — 72¢' '(rz) [11, 16, 24]. It is strictly decreasing since ¢'(z) =
—7¢ "M (r2) < 0.
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Using this reformulation result, the minimization of Hy + aH> can be replaced by the minimization

in (dw, d, 3) of augmented cost function H 2 H, + oMy where H, and Ho are respectively:

Ha(dw, 5 f,w) = 3 [r1d, [V (swg, 1+ 1) dwt fils, w,)] e (65)] (5)
s€S
Ha(dw, fw) = 3 [1afurll(ws+duw,) — (a0, +duw,) [P+4pa(Ber)] (6)
(s,ryec

and § = {45, s € S}, B = {Bsr, (s,r) € C} are two sets of auxiliary variables lying within (0,1]. This
new minimization can then be led alternatively with respect to dw and to the weights: energy H is
quadratic w.r.t. dw and the corresponding minimization amounts to a standard weighted least squares
problem; conversely, dw being frozen, the best weights are obtained in closed form [24]. Convergence
of this alternate scheme is guaranteed to a global minimum if p is convex [11], and to a local minimum
otherwise [13].

This robust energy-based modeling provides a generic dense estimator which can be applied to
image sequences of various natures as far as they contain sufficient photometric contrast or texture
and they are not too much noisy. In case neither condition is met within large areas of the image,
the robust smoothness term is not strong enough to propagate the sensible estimates obtained at the
border of these regions toward inner locations where data cannot be exploited. As a by-product of
the hierarchical piece-wise parametric minimization we now introduce, these problems of insufficient or
unreliable information will hopefully be circumvented. Other gains will be obtained in terms of global

quality of estimates and computational load.

B. Piece-wise parametric constraint

Let us assume that the pixel grid is subdivided into a collection of patches. Let 15 = {B,, n=1...N}
be this partition and G* = [{1... N},v*] the associated connectivity graph with N vertices (Fig. 1).2

Piece-wise parametric increment fields for this partition are defined as:

Vn=1...N, Vs€ B,, dws;=2,(0,,s), (7)

2In case B is a regular partition into square patches, G is the N-site rectangular lattice with same neighborhood system
as the original lattice.
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where 8,, is a parameter vector and ®,’s are interpolation functions which can be different from one
patch to another. The whole increment can then be expressed dw = ®(6) with 87 = (87 ...6%) lying
in parameter space I'. The full-rank function @ is the interpolator between the reduced subspace I' and
the original configuration space 2. It is a one-to-one mapping from I' into the constrained configuration

subset Im® C .

I B Bs .

B 4

BS B4 3

Fig. 1. Example of image partition B = {B1, B2, Bs, By, Bs } (with some cliques of C, C13, and Ca4), and associated
adjacency graph G* = [{1...5},v*].

The constrained minimization of H in Im® is equivalent to a new minimization defined on I':

min H(dw,d,5; f,w) = minH(P(6),4,5; f,w).
0ET o

dwelmd

£94+(8,0,6; fw)

New energy function H* is readily derived from the original one (5-6). Denoting C, = {(s,r) € C :
(s,7) C By} the set of neighboring site pairs included in patch By, and Cpm = {(s,7) € C : 5 € By,r €
B,,} the set of neighboring site pairs straddling adjacent patches B, and B,, (see Fig. 1), one can show

that this new energy is similarly composed of two terms, H* = H] + aH5, defined as:

10,6 f,w) =3 S 116, [V (s +ws,t + 1) ®0(81,8) + fols, ws)]* + 1(65), 8)

n seB,
W)=Y Y b ll(ws + 2a(Bn,8) — (W + P (B, )2 + 2 (Bsr)
(n,ym) (s,rYECnm

+Z Z 720 ||(ws 4 ©p (0, 5)) _('wr+(I)n(0n,7"))||2+¢2(ﬁsr)7

n (s,ryeCy,

(9)

where (n,m) denotes neighboring pairs of region vortices in graph G*. Note that the first term in the

definition of H3 is reminiscent of the “skin and bones” model introduced by Ju et al. [20].
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Minimizing H* allows to recover a piece-wise parametric increment field where different paramete-
rizations are combined. Note that, contrary to what is done in parametric segmentation approaches
based on independent region-wise parametric models and in quadtree splines approach of Szeliski et al.
[32]., here, the different parameter vectors 8,’s do interact through the smoothness term that enforces
continuity at patch frontiers.

In the next section we show how this constrained optimization can be easily embedded in a hierar-

chical optimization framework.

C. Hierarchical constrained optimization

We now consider a sequence of partitions. Previous constrained optimization can be successively applied
with each of these partitions, thus providing a hierarchical optimization scheme: the original optimi-
zation problem of H is replaced by a succession of constrained minimizations. Let {B*,¢ = L...0} be
the family of partitions with B = S, and G* = [S%,v!], £ = L...0, the associated connectivity graphs
with Nj-vertex sets S¢. For each patch BY, an interpolator ®¢ is chosen such that the size of Q¢ £ Im®*
decreases as £ increases.® The constrained optimization in Q¢ is equivalent to the minimization of the

new energy function:
H'(6°,6,5; fw) = H(2(89),6.5: f,w),

defined, as concerns the unknown increment field, over a reduced parameter space I'Y, whereas the
weights, the data, and the field to be refined remain the same (i.e., defined on the original grid S).
Based on this family of energy functions, we now define our minimization scheme as a recursive sequence

(from £ = L to £ = 0) of optimization problems of reduced complexity:

6%,6,3) :argonlglin HE(0%,6,8; f,wh) t=L...0, (10)

A A . .
where the field to be refined at level ¢, w’ = w! + ®T1(9 +1), is deduced from estimate at level
¢+1, and initial field w” comes from an estimation at a coarser resolution or from a given initialization.
Hence, the definition of energy at a given £ involves spatial and temporal luminance gradients computed
3 A natural way of building this hierarchy of parametric representations is to consider nested partitions where B¢ is made
up from the subdivision of elements of B‘*!. This nested structure is easily obtained with regular subdivision schemes

(square or triangle subdivision). It is more difficult to design for irregular subdivision strategies. In section IV, we shall
introduce an adaptative way to build square-based nested partitions.
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with the second image being warped according to vector field w’, which changes from one level to the
next one.

Each of these successive minimizations is processed in terms of iteratively reweighted least squares
initialized by 8¢ = 0, yielding increment field dw’ = @E(/B\l). The procedure is repeated until the finest
level £ = 0 is reached, and the motion field finally recovered is w’ + 22: L @f(éf). This incremental
minimization procedure can be viewed as a hierarchical Gauss-Newton minimization of ), p1(f(s +
ws, t+1) — f(s,t) + a2<s,r> pa(llws — w.|).*

In the same way, the incremental multiresolution setup for each single level of which previous hie-
rarchical minimization was designed, can be interpreted as an approzimate hierarchical Gauss-Newton
minimization [4, 24] since successive linearizations concern different energy functions (based on different

data).

D. Linear parameterizations and energy minimization

So far, we let the nature of parameterizations unspecified. In practice, interpolation functions are chosen

linear:
Vn e 8¢, Vs e BY, dw' = P,(s)0, (11)

where P,(s) is 2 by p, matrix. The corresponding parameter spaces are I' = XTJZV £oRPr. Standard
parametric models used in motion analysis correspond to p,=2, 4, 6 or 8 [1, 4]. In this work we
will consider three possible parameterizations: the constant model (2 parameters of translation and
P,(s) = [6 ?]), the simplified affine model based on plane similarity (4 parameters of translation,

scaling, and rotation, and P,(s) = [(1) (1) Ls yss] ); and the affine model (6 parameters and P, (s) =

Ys —T
[(1) 1163 %5 (1) g?s yos] ), where, in previous expressions x5 and ys stand for the coordinates of pixel s.

As reported in section IV, we have investigated different combinations of these three parameterizations.

“When constrained subsets are nested, i.e., 21 C QF, the succession of minimizations can be conducted in a slightly
different way: the final estimate at a given level is not directly integrated in the main field to be refined at the next
level, but simply used as an initialization for the iterative minimization process. More precisely, all w® fields in (10) are
the same, equal to some field w, while 0 '*! is now used to define the initial increment configuration at level ¢, through
(@)~ o @1 (0 ‘') (which makes sense since Im®‘*! C Im®‘). In this version, described in [24], the spatio-temporal
luminance derivatives remain the same, i.e., computed with respect to f(s,t) and f(s+ ws,t+1). In other terms, a single
linearization of the brightness constancy assumption is considered (for a given resolution level), and the coarse-to-fine

minimization turns out to be a standard multigrid scheme [17].
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Introducing linear parameterizations within energies (8-9) yields

’H{(aga 5; fa wl) = Z Z 7—165 |:Vf(5 + wﬁat + I)Tpn(s)afz + ft(sawﬁ)]Z + ¢1(65)7 (12)

neSt seBl

/HE Bl /67 Z Z 7-2/657"

(n,m) (s,ryect, .

+ Z Z T2 Bsr

neSt (s,ryect

FP(5)05) — (w4 Pu(r)0h)| +ba(6)

(13)

Pu(5)0%) — (! + Por)0t)| + ().

The iteratively reweighted least squares minimization applied to this energy function amounts to
alternate updates of weights and parameter vectors. The current parameter estimate 0° being fixed, we

know that the optimal weight values are directly accessible. These values are:

Vi, Vs € B, 6, = [(Vf(s+w§,t+1)Tpn(s)0g+ft(s,wﬁ))Q] , (14)
1
Vi, m), {s,7) € Chyn, for = — [H(zuf; + Pal(s)85) — (wh + Pm<r>0a>\\2] , (15)
2

1
Vi, W{s,r) € Chy Bor = — ) [Hwﬁ —w) + (Pa(s) = Palr)6),

2] . (16)

It is worth noting that according to (16), the discontinuity variables ;. located into patches of
B¢ (ie., (s,r) € C’ for some n € S*) do not depend on the translational components of 6°. In the
piece-wise constant case they therefore depend only on w?, and can be computed right away within the
first iteration at the current grid level. As soon as the values of all weights are computed and frozen,
the energy function H¢(68°,6,5; f,w’) is quadratic with respect to 8. Its minimization (zeroing the
gradient) is equivalent to the resolution of a linear system whose solution is searched with an iterative
Gauss-Seidel scheme. Each update is obtained by solving a linear equation in Of; for the current block
BL. This is detailed in the Appendix A for the three different possible parameterizations on BY.

Before explaining how the model can be enriched to deal with a joint segmentation process, it is
interesting to emphasize the connection between this discrete formalization of the optic flow estimation

problem and its possible continuous counterpart.
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E. Continuous formalization of optic flow estimation

A continuous version of the discrete energy defined by (5-6) corresponds to the functional

J(dw, 6, 3) = (@) [V @) dw(@) + filz)| + i (6(e))de
[[ i @]+ N

2
+ a//s @)V (w(z) + dw(@))|’ + b (6(@))dr,

where w and dw are, momentarily, two C'-vector fields over continuous plane domain S C R?, § and
f two scalar fields on the same domain, and Vf £ Vf(. +w,t+ 1), fi = f(. +w,t + 1) — f(., ¢).
The problem of minimizing this half-quadratic functional J can be addressed in terms of alternate

minimization [14]. For fixed dw, Euler-Lagrange equations provide optimal expression of functions §

and [ (using ¢'(z) = ¢ o gb’_l(Tz) — Tz¢'_1(7z)):

= GV Fdw + fif), and = 4|V (w + dw) ] (18)

The natural discretization of first equation that consists in taking values of 0, ft, and V f at pixel
locations © = s € S, is readily obtained and yields exactly the same update rule as the one stemming
from the minimization of discrete energy H w.r.t. {ds}ses. The same discretization scheme can be
adopted for the second equation (as in [27]). However, if gradients are approximated by finite differences
on the dual grid, it is simpler to have function § discretized on the same edge lattice. The corresponding
discretized update is then the same as the one that minimizes H w.r.t. {Bs }(s,)-

The weight functions ¢ and [ being fixed, one has to deal with the minimization of a quadratic
functional of dw. This can be conducted first by writing down Euler-Lagrange equations as a necessary

condition of optimality:
10V fV fTdw — andiv[]fV (w + dw)] = —70f,V f. (19)

If w, dw, and § are discretized on S, while 8, Vw, and Vdw are discretized on the dual grid, and diver-
gence operator is approximated by first-order central difference on S, this partial differential equation
leads to a linear system that coincides with the one to be solved for minimizing A in dw.

We see that a standard discretization based on finite differences turns the minimization of continuous
functional J into the same problem as the minimization of discrete energy #H. Continuous formalism,

however, allows more flexibility in the choice of discretization scheme since the discretization step is
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delayed compared to discrete energy case: whereas discrete modeling sticks right away to the pixel grid
discretization, variational approaches offer other choices, especially when finite element method is used
(within Euler-Lagrange formalism [12], or apart from it [29]). In many cases, however, discretization of
the original continuous model is made as simple as possible w.r.t. pixel grid, thus yielding in fine the
same discrete problems to be solved as those associated with the minimization of discrete energies.

As concerns the constrained minimization scheme introduced in section II.A when dealing with
discrete energy H, it can be viewed in continuous framework as a Galerkin technique for solving linear
system arising from the discretization of (19). Denote Adw = b this system. Provided that interpolator
® from I' into € is linear, coarse-to-fine multigrid [17] relies on the resolution in I" of so-called Galerkin
system @7 A®@ = ®T'b. The solution of this equation is obviously the minimizer of quadratic energy
|A®O — b||?. In other terms it corresponds to the minimizer of ||Adw — b||?> within subspace Im®. In
case of simple discretization scheme mentioned earlier, H and ||Adw — b||? coincide up to an additive
term independent from dw, and Galerkin system above provides the minimizer in @ of reduced energy
H*.

Finally, the whole approach to dense optic flow estimation we have introduced in this section could
have been equivalently formulated, at the starting point, in a continuous fashion, as it is done in related
works [12, 14, 29]. However, this does not hold for the augmented estimation-segmentation model to be

presented.

III. JOINT ESTIMATION-SEGMENTATION

In previous section we have described a general hierarchical method to estimate a dense optic flow
field. It allows to mix different parameterizations of the unknown vector field. We shall see with
experimental results that it provides a family of hierarchical motion estimators which give good results on
sequences involving either fluid or rigid motions. Before reporting these experiments, we now introduce
an extension of the model to couple the estimation process with a motion-based partition of the image.

Motion estimation and motion-based segmentation are two tightly interwoven problems: a good
estimation of the motion field (or at least a sensible approximation of it) is required to obtain a good
segmentation of the different apparent motions present in the scene; conversely, a good estimation of
motion field cannot be obtained without an accurate estimation of the frontiers of the different moving

objects. It is therefore natural to consider the resolution of these two problems as a whole.
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This has been considered in a number of different ways and within a variety of methodological frame-
works. Nevertheless, two main classes of estimation-segmentation approaches can be distinguished. The
first one consists in an unilateral coupling between some motion estimates — such as sparse matchings,
estimate of contour motions or dense optic flow estimate — and a segmentation process [1, 2, 9, 19, 26].
In that class of methods, motion cues are first extracted and then considered as data on which the
segmentation is built. The second class of methods implies a real coupling between the estimation of
motion and the extraction of a motion-based partition of the image within a joint procedure. This is
usually achieved using a global energy function depending on both entities. In that context, different
kinds of interactions have been recently proposed. In [31] the partition frontiers are estimated as a
representation of the motion discontinuities. Except for the smoothness prior on the motion field inside
each region, there is no stronger a priori. In [7, 10] the interaction consists in a cooperation between
a dense motion field and a region-wise parametric polynomial flow. The motion is encouraged to have
some similarity with the piece-wise parametric field associated with a segmentation.

The estimation-segmentation coupling we consider here belongs to the latter class. We aim at
building, through a global discrete energy function, a cooperative method allowing to estimate simulta-
neously a dense motion field and a motion-based segmentation. The associated minimization is solved

with an extension of the hierarchical optimization scheme described in section II.

A.  Compound energy

Let R be a partition of S into an unknown number p of connected regions, R = {R;...R,}, and
let G(R) = [{1...p},G] be the associated p-site adjacency graph. We shall call “boundary” between
regions R; and R; the set 0;; S {(s,r) eC:seRyr € R;}. The set OR = U(i,jy0i5, where (i, 7)
denotes all neighboring site pairs of G(R) (i.e., couples of neighboring regions from partition R), stands
therefore for the total frontier of the partition.

The extension of the energy-based optic flow estimation model is obtained by incorporating two
terms to the global energy function H.°> The first one, Eyrior, captures the a priori knowledge about
the segmentation configuration. The second one, Fipteract, sSpecifies the mode of interaction between the
segmentation and the rest of the estimation model (i.e., motion fields, weights and data). The mode
of interaction we designed involves the motion field both at the frontiers and inside the regions: the

SEven though the superscript remains omitted, we still suppose in the coming developments that some resolution level
k is concerned.
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elements of the partition will interact with the estimation process through the discontinuity weights
along the frontiers, and through a parametric goodness-of-fit criterion inside each region.

Energy component Eipteract (dw, R, 3; w) thus exhibits two terms: The first one is proportional to the
sum of [, averages on sets 0;;. It then (a) favors low values (close to zero) of discontinuity weights along
the borders and (b) guides the partition boundaries toward the most significant motion discontinuities.
The second term enforces a polynomial parametric likeness of the dense motion field inside each region,

via a robust penalization of the discrepancies. The global energy of the extended model is:

H(dw, 9, B3; fa w) + Eprior(R) + Eintera.ct(dwa R, B; w)a (20)
1 .
Where, Einteract(dw7Raﬂ;w) é lem Z Bsr +U2Z Z p3(st +d'ws _,wst)7 (21)
() 7 (s,r)eds; i sER;

with some positive parameters p; and po and the function p3 being a robust M-estimator with hyper-
parameter 73. The vector w’ is given by the affine model associated with the six-parameter vector
0; of region R; (i.e., w' 2 P(s)8;, with 2 x 6 matrix P(s) as defined in §I1.D). This affine model is
usually considered as a good trade-off between model complexity and versatility [9], and has thus been

extensively used in motion analysis. The semi-quadratic re-writing yields:

N 1 .
ginteract(dwaR7/6777§w) = NIZ|8—U| Z /Bsr +NZZ Z [7-3775st +dw5 _ngZ "‘1/)3(775)]' (22)
(4,5) (s,ryED;; 1 SER;
The auxiliary variables 1 will be referred to as parametric likeness weights in the remainder.
The segmentation a priori term captures a loose geometric constraint according to standard Mini-

mum Description Length (MDL) principle [22].
Eprior(R) 2 A|OR| for some A > 0. (23)

This energy term favors regions with short and smooth borders.

The whole energy function H S+ Eprior + Einteract has now to be minimized with respect to all the
unknowns. A direct minimization of such function is obviously a very intricate problem. Nevertheless,
it can be efficiently conducted through an extension of the hierarchical minimization strategy used for

the motion estimation problem.
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Fig. 2. A constrained increment field on a 2 x 2 block partition of S and a constrained segmentation into five
regions (left); the associated increment field and partition on reduced grid S* (right).

B. Hierarchical optimization

As in §I1.C, a family of increasing partitions B¢, £ = L...0, is specified and the optimization problem
is decomposed as a recursive sequence of constrained minimizations based on these partitions. At level
¢, the problem is the joint estimation of an increment field which is piece-wise parametric w.r.t. B¢, and
a segmentation made up from the elements of 5.

In this joint model, the use of partitions B¢ with sophisticated variable shapes seems less relevant
than for motion estimation only, since there is now an explicit segmentation beside to the field. Hence, we
chose the simple nested family of 2¢ x 2¢-block partitions along with the piece-wise constancy constraint
on the increment field. At level ¢, segmentation R is also constrained to fit the block partition B.
The corresponding joint configuration subset is denoted Q¢ x Y (see instance of such constrained
configurations on the left of figure 2).

Each constrained configuration of Q¢ is equivalently described by a reduced increment field, dw’ € T,
lying on the grid S¢. The one-to-one mapping from I'* into Q¢ will be denoted @f In the same way
a constrained partition of YT is associated with a partition into connected components of reduced grid
Gt = [SE, I/E]. If A is the set of such partitions, the corresponding mapping from A¢ into Y is denoted

®f, with T! = Im®$ (see Fig. 2).
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Constrained optimization in Qf x Y* is then equivalent to the minimization of the new energy

function:
H (dw’, RY, 4, 8,n; f, w) = H(® (dw"), ®5(RY), 8, B, f, w), (24)

defined over I'! x A?, whereas the auxiliary variables, the data, and the field to be refined are still defined

on the original grid S. We now deal with the cascade of optimization problems of reduced complexity:

min  H(dw’, R%, 6, 8,n; f,w?), L=L...0, (25)
dwl7R[767/6377

with, as in section II.C, w’ being defined according to the minimizer at previous level £ + 1: w’ =

w't ¢ @{(d/l\v ., 6
As with motion estimation alone, the new multigrid function H’ turns out to be composed of four

terms similar to those of H: H = H{ +aH5+ &L

interac

+E°

orior- L he detailed expression of these different

terms is presented in Appendix B.
The overall optimization process consists in an alternate minimization of the different weights (3, 0
and 7)) and of the original variables of interest dw® and RY.

The reduced partition R? and the parametric likeness weights 1 being fixed, one has to solve:

(&\v E, Bv S) = ar d'i;%igé) [H{ + O[Hg + Eignteract]' (26)

Apart from the interaction term, this is the same problem as in section II.C, and one can again resort
to iteratively reweighted least squares, as follows.

Increment field dw’ being fixed, let (s,) be a clique in C and denote by m and n the block numbers
(possibly identical) such that: s € B! and r € BY. From f,’s point of view, the only change with
respect to motion estimation case (15-16) occurs if (s,r) straddles two neighboring regions of ®4(RY).

® As mentioned in section I1.C, this hierarchical Gauss-Newton minimization can be replaced by a multigrid minimization
when constrained configuration subsets are nested, which is the case here (Q“F! x Y1 € Qf x T*): the final estimate at

level £ + 1 is projected at level £ through [®{]7! o ®{T! (resp. [®5]7! o ®57!) and used as an initial configuration at that
level £.
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The optimal value of the discontinuity weights is given by:

~ . _ L, ¢ N, INIE
Vi, Y{(s,r) C Ri, Bsr = - &y ||| (wy + dw,,) — (w, + dw,,) , (27)
p)

. 1 2
i), Wlosrh € 0 B =~ !+ awt) = (b + o)+ ) e
T2 72|6z3|

For a site pair in between two neighboring regions, (28) implies that the optimal value is decreased (since

!\, is decreasing) compared to the “segmentation-free” case encountered in section II. The compound
energy favors low discontinuity weights along the border of current segmentation.

The data weights ¢ are only involved in #;, therefore the update rule directly stems from (14) with

piece-wise constant parameterization:

0 = Til¢’1 [(Vf(s%—wﬁ,t%—l)wag—i-ft(s,wﬁ))Z] . (29)

Considering now that the weights 3 and § are frozen, the energy function Hf is quadratic with
respect to dw’. Its minimization is equivalent to the resolution of a linear system which is very similar
to the one obtained with the hierarchical (with constant model) estimation of motion alone. In case
of Gauss-Seidel iteration, the only change comes from the influence of parametric field to which dense
increment field is related within Eipgeract (see Appendix B).

Minimization of H¢ w.r.t. the unknown partition R’ and the parametric likeness weights 7, is
conducted in the same alternate minimization spirit. First the partition is fixed, and the weights n’s
and the motion parameters 8;’s are estimated using iterated reweighted least squares. For a given region

Rf € RY, the update of the motion parameter vector results from least squares regression
-1
T T (00,0 0
;=D D PP D > nPl(wi+dwy), (30)
neR’t seBf nert seBh
while the parametric likeness weights are updated according to:

1 .
Vn € RE, Vs € B, = —df(lwl + dw), - w?). (31)

Afterwards, the partition R is updated using both local and global deformations. Local updates

consist in moving each point of the border R’ within a small neighborhood in order to lower the
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associated energy terms. Let R’ ‘ be the candidate new segmentation (see Fig. 3). Assuming that the
region-wise motion parameters 6;’s and the adjacency graph of the partition remain the same in this

local deformation, the associated energy variation is:

> Bl +

(s,r>€8’f]

HY(R') — HY(RY) = 22! (|oR"| — |oR") + 3 | & | Z Bor —
(1,3)

| l
)eafj

S Y N mslwl +dwh —wil) = Y Y pa(flwl + dw), — wi)

i | neER\R; s€B, ne€R\R] s€Bf

This local energy variation is easily computed. In practice, a new position is considered for each border
element of the current partition RY. If this position corresponds to an energy decrease it is accepted
and the partition is updated. In our experiments, a border element is allowed to move one site forward
or backward in the direction perpendicular to the border. Let us note that these displacements may
be quite large since they actually correspond to 2¢ pixels. Despite this, motion parameters are not

re-estimated when evaluating energy variations in order to keep computational load reasonable.

0i; a..

ik

Fig. 3. Example of local deformation of a partition R = ®4(RY) into R’ = ®4(R'"), with ¢ = 2.

Beside local deformations, global updates allow to change at once a whole region as well as the
topology of the partition (number and connectivity of regions). In this work we only consider global
transformations based on creation of new regions and merging of adjacent regions.

The merging of two adjacent regions consists in removing their common boundary, when this yields
a global energy decrease. R’ being the current block partition, the energy variation associated with
the merging of two regions 7 and j is derived as for local deformation (except that one has to compute
the new parametric model associated with Rf U Rﬁ to determine the actual energy of potential new
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partition). This is done for each pair of adjacent regions. The boundary leading to the greatest energy
decrease is removed and the corresponding regions are merged. This process is repeated until a complete
stability is reached.

The inclusion of a new region is based on a classification of the parametric likeness weights n =
{ns,s € S} within two classes. The first class gathers the outliers to the parametric likeness model
whereas the second one groups points where the affine model fits well the non-parametric vector field.
A classic model for supervised image classification is specified through the following energy minimization

problem:

it e {o, 1}\5[\ = arg rrélln{ Z Z 202;(%) [m(wﬁ) - 775]2 +logo(zh) + Z 1(zf, 25)}, (33)
nest seBt (n,m)

where 1(z,y) = 1 if x = y and 1(x,y) = 0 otherwise. The parameters ¢(0) and m(0) (respectively o(1)
and m(1)) stand for the standard deviation and the mean of the outlier class (respectively the inlier
class). In all experiments these parameters were set to m(0) = 0.2, m(1) = 0.98, and 0(0) = o(1) = 0.1.
The minimizer is searched with deterministic IcCM algorithm [5]. If a sufficiently large region of connected

outliers is eventually recovered, it is incorporated as a new region in the partition.
Global deformations obviously involve far more expensive computations than local deformations.
In practice, we only use them at the beginning of each level £. Recall that the whole procedure is
multiresolution (based on a pyramid of images), and hierarchical within each resolution. As concerns
the initialization at the coarser resolution, the initial motion field is set to zero and associated with a

partition composed of a unique region (the whole image).

C. Continuous point of view

Contrary to what we did for motion estimation, it is not easy to express the estimation-segmentation
model within continuous formalism. The reason is twofold.

First, it is a complicated issue just to specify what a partition of the image plane is, in this frame-
work. General definition implies the use of an unknown number of pieces of Jordan curves, connected
at junction points [25]. This seems very delicate to be manipulated in practice. Hence, there is unfor-
tunately no continuous counterpart to the simple definition of a discrete partition by a labeling of the

discrete pixel grid into different connected components.
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However, continuous formalization of the segmentation has been extensively used in the particular
cases where only independent closed regions have to be extracted from the “background”: the border of
each region can then be defined either explicitly as a closed curve (as in “snakes” and “active contours”
approaches [21]), or implicitly (as in level set techniques [28]). In these specific situations, continuous
formalism constitutes an alternative to discrete models, and the interaction mechanism we introduced
between segmentation border and discontinuity weights can be translated. Let v : [0,1] — S be a closed

curve indexed by u, and v* the region of S with border . An interaction term analog to (22) could be:

1
[ B [ @) + duwe) - w @)1 e

Euler-Lagrange equation of the compound functional provides conditions on functions 8 and n which are
the continuous counterpart of discrete update rules (27-28) and (31). Besides, with standard smoothing
priors, evolution of +y is the one of a “snake” driven by external energy fol B(y(w))du. The interaction
mechanism based on discontinuity auxiliary variables we propose could as well be considered in case
region borders are implicitly defined in terms of level sets. This mechanism thus offers a new way to
deal with generic issue of joint anisotropic diffusion and extraction of regions, in both discrete and
continuous frameworks.

The second reason for which it seemed more natural to let our estimation-segmentation approach
within the discrete realm is related to the choice of the minimization technique. Using partitions of
the discrete pixel grid enables us to extend in a very simple way the efficient hierarchical minimization

scheme previously introduced for the estimation alone.

IV. EXPERIMENTAL RESULTS

In this section we present results obtained for the dense optic flow estimator and for the joint estimation-
segmentation approach. The first approach has been applied to sequences that seem not to admit any
simple region-wise parametric description. The compromise between local dense representation and
more global parametric one offered by the hierarchical minimization allows to get interesting results on
fluid sequences for instance. At the opposite, the parametric description used in the joint estimation-
segmentation approach is more appropriate to scenes involving rigid objects.

Note that in both approaches we selected Leclerc estimator for the different robust functions (p(z) =

1 —exp(—71?)) [22].
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A.  Results on optic flow estimation

The experiments have been carried out both on synthetic image — for which a ground truth is known
and comparative quantitative comparisons can be reported [3] — and on real world sequences. The
synthetic sequence is the well known Yosemite sequence used in comparative benchmark of Barron et
al. [3]. The two other sequences for which results are presented here involve fluid phenomena. The first
one, named Smoke, shows smoke diffusing in front of a camera under tough lighting conditions (Fig.
6a). The second one, named Depression (Fig. 4a), is a meteorological video sequence involving large
displacements. It includes a through of low pressure and different moving clouds. Parameter values
used for the three sequences are reported in Table I.

As for hierarchical constrained minimization, both reqular and adaptative partitions into square
patches have been considered. In regular case, partition B’ is constituted of 2¢ x 2¢ square blocks and
associated adjacency graph G¢ = [S¢ 1/] is a regular lattice with same neighborhood system as the
original grid G =[S, v]. In adaptative case, partition B~! is determined on-line, based on the previous
partition B¢ and on the associated final estimate (d/l\v ¢ E ¢ 25\4). It is obtained by dividing some of the
elements of B¢ according to a certain criterion. It seems natural to base this division criterion upon
the agreement of the current motion estimate with the luminance conservation assumption, measured
on block BY by >osene[f(s+ wt + dw Lt 41) — f(s,1)]? (sum of squared registration errors), or, in
linearized form: 7 5 [V f(s + wh t+ I)Td/z\ug + fi(s, wh)]?, where &\ug = Pn(s)af;. Instead of using
this quantity which has to be computed, we use final data weights 5’8 (which are function of the squares
in previous sum, according to (14).). Experimental evidences indicated that it is more appropriate to
consider how uniform (instead of how good) is the quality of the agreement within considered patch.
A block is thus divided into four sub-blocks if the standard deviation of {6 ¢, s € BL} exceeds a given
threshold. In [12] another subdivision strategy is proposed (within a finite elements method), based on
the so-called normal flow —ﬁ. It thus does not depend on the current estimate and can be computed

a priori from the data. In between latter work and what we propose, an on-line adaptative strategy

f(stwitdw Lt 1)—f(s,t)
IV f(s+wl t+1)]]

As mentioned in §I1.D, three different parameterizations (corresponding respectively to 2, 4, and 6

based on residual normal flow is proposed in [32].

parameters) are considered. We use them within six different combinations denoted Mg, My, My, Mgy,
Mg, and Mgy, where subscripts indicate allowed parameterizations. Models Mg, M4 and My deal with
a single type of parameterization. In these three cases the hierarchical procedure is stopped when a
certain minimal size (8 x 8, 4 x 4, and 1 x 1 resp.) is reached by the smallest patches of the current
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TABLE I
PARAMETER VALUES FOR OPTIC FLOW ESTIMATION EXPERIMENTS.

Yosemite Smoke Depression

number of resolution levels 2 2 3

patch size of the coarser partition 16 32 16

smoothing parameter a 300 300 200

parameters 71 tuning p; 0.03 0.03 0.02

parameters 7o tuning po 2 0.25 4
TABLE II

RESULTS ON YOSEMITE.

Regular partition Adaptative partition
Model I o cpu 7 o cpu
Mg 5.07° 7.20° 34s 5.09° 7.20°  28s
My 5.56° 9.20° T72s 6.57° 9.20°  58s
Mo 4.97° 7.64° 64s 6.53° 7.64°  42s
Mgy 5.01° 7.23° 58s 5.17° 7.62°  44s
Mega 4.69° 6.89° 78s 5.25% T7.87°  T2s
Mggo  4.75° 6.89° 92s 5.31° 7.86°  73s

partition. In contrast, models Mgy, Mgo, and Mggo mix different parameterizations in the following way:
in the three cases affine model is used for each patch at least as large as 8 x 8. In Mgq and Mgyo, patches
of size 4 x 4 are equipped with the simplified affine model (and no smaller patches are considered in
Mgy). In Mgo (resp. Mgyz) constant model is used for blocks of size 4 x 4 (resp. 2 x 2) and less.

Following [3], quantitative comparative results on Yosemite are provided for different algorithms.
For each estimate, angular deviations with respect to the real flow are computed at “reliable” locations
(the percentage of such locations is the “density” of the estimate; it is 100% in our case). Table II
lists, for the different versions of our model, the mean angular error (1) and the associated standard
deviation (o). The CPU times, measured on a SUN ULTRA SPARC (200 Mhz), are also reported in there.

In comparison, Table III recalls some of the results presented by Barron et al. (see corresponding
references therein). They concern an adaptation of Horn and Schunck’s algorithm, the best full-density
algorithm (Uras et al.) and the two algorithms yielding the best results, but with reduced densities
(Lucas and Kanade, Fleet and Jepson).” The results obtained by the multigrid method we introduced
in [24] are also included.

"Results on a sequence where the sky is removed are also reported by other authors [6, 20, 24]. We believe that the

resulting motion is probably too simple to allow significant comparisons between the different state-of-the-art motion
estimators.
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TABLE III
COMPARATIVE RESULTS ON Y OSEMITE

Technique I o density

Horn and Schunck (original)  31.69° 31.18°  100%
Horn and Schunck (modified) 9.78°  16.19° 100%

Uras et al 8.94° 15.61° 100%
Lucas and Kanade 4.28°  11.41° 35.1%
Fleet and Jepson 4.63° 13.42° 34.1%
Mémin and Pérez [24] 5.37°  8.19° 100%

On Yosemite sequence hierarchical methods associated with regular grids provide a dense estimate
almost as good as those obtained with the best (non-dense) mentioned methods, and slightly better
that the ones obtained with multigrid minimization. Besides, except in the case of the simplified affine
model, the standard deviation are significantly lowered. The best results are obtained for multiple
parameterization models on regular grids. This is particularly noticeable when the three parametric
models are associated (Mg42) or when the six-parameter affine model is coupled with the constant model
(Mg2). The Mg model on adaptative grids gives the lowest computation times. Compared to the other
models on irregular grids, it also yields the best results.

Based on these comparisons, multi-parametric models do not seem of much interest compared to
mono-parametric ones, at least regarding the average angular discrepancy criterion. We shall see that
it is actually of interest in real cases. Note also that the global criterion of the final estimate quality
should be considered with caution. It is for instance not able to assess the ability of a method to preserve
discontinuities of the motion field.

Note that in the case of My associated with a regular subdivision, results are slightly improved
compared to the pure top-down multigrid method [24]. Hierarchical Gauss-Newton with its successive
inter-level warping seems to perform better on this particular example.

To complete our comparisons, we show results obtained on real world sequences involving fluid
phenomena. Figure 4 presents for Depression the final motion fields respectively estimated by My with
regular division and Mg with the adaptative division. The two vector fields are displayed the same way,
namely subsampled by 6 and magnified by 4. We can notice that with the constant constraint, the
flow is drastically under-estimated and over-smoothed compared to the one produced with the affine
constraint. As a consequence on Depression, local features of interest such as the depression center in
the left upper corner of the image are concealed. This is not the case with affine modeling where the

depression center is visible and may be easily identified in an automatic way.
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Fig. 4. Results on Depression (256 x 256): (a) one frame, (b) motion field estimated with M, and regular
partitioning (cpu time: 105s), (c) motion field estimated with Mg and adaptative partitioning (cpu time: 24s).

Smoke sequence constitutes a difficult example with large motion amplitude (up to 20 pixels) and low
photometric gradients. The various versions of our model have provided quite different results (see Mo,
Mg and Mg estimates in Fig. 5). Visually, estimates obtained with Mg seemed the more compliant with
the apparent motion in the scene. This was confirmed by reconstruction errors |f(s+ws, t+1) — f (s, t)]
(see samples in Fig. 5). Means of this squared error are respectively 75, 98, and 50 for My, Mg, and
Mgz, for error images showed in Fig. 5: in this example Mgy out-performs Mg and My within as much
cpu time as My (around 700s for these 512 x 512 images). As expected, Mg, which does not use blocks
smaller than 8 x 8, is much faster (around 200s), but provides poorest results. The final estimation
partition obtained with Mgo for one image of the sequence is given in Fig. 6b along with four consecutive
motion fields estimated from the sequence.

Finally, note the whole multiresolution/hierarchical algorithm converges quickly, since only ten or
so low cost iterations are required at each grid level. Furthermore, as demonstrated in [24] for the
constant model associated with a multigrid minimization, the resulting motion estimator exhibits a low

sensitiveness to parameter values.

B. Results on joint estimation-segmentation

In the case of the joint estimation-segmentation approach, we report experiments on Yosemite synthetic
sequence (for comparison purpose) and on two real-world sequences. These two sequences involve rigid
moving objects. The first sequence is a Parking lot sequence which involves two cars moving in the

foreground while the camera pans the scene. (Fig. 8). The second one, named Calendar includes several
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Fig. 5. Comparison of My, Mg and Mgy on Smoke (512 x 512): (a-b-c) final flow recovered with the adaptative
Ms, Mg and Mgs, (d-e-f) corresponding reconstruction error images.

e

moving objects (a calendar moving vertically and a toy train pushing a ball) and a horizontal panning
of the camera (Fig. 9).

As for the parameter values, the number of resolution levels was respectively 2 for Calendar and
Yosemite and 1 for Parking lot. The number of grid levels was fixed to 6 for Calendar and to 5 for the
two others. The other parameters were tuned according to the amplitude of motion present in each
sequence: a = 100, 7 = 0.02, p; = 50, and A = 5 for the three sequences; whereas 9 = 3, 73 = 3 and
o = 25 for Calendar and Yosemite, they are 75 = 10, 73 = 5, and e = 5 for Parking lot.

In Table IV results of the dense estimation alone (for hierarchical Gauss-Newton version, and multi-
grid version, resp.) are compared with those obtained on Yosemite within joint estimation-segmentation.
Both parametric and dense motion fields provided by the latter method slightly improve mean angular
error, while providing compact information on the scene within the final motion-based partition of the

image plane (Fig. 7) and the associated parameter vectors.
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Fig. 6. Results on Smoke (512 x 512): (a) one frame, (b) final constraint partition, (c-d-e-f) four consecutive
motion fields estimated with Mg along with adaptative partitioning.

TABLE IV
RESULTS ON YOSEMITE
Model 7 o
Estimation-segmentation
parametric estimate 4.54°  8.37°
dense estimate 4.91°  8.46°

Dense estimation only
hierarchical Gauss-Newton 4.97° 7.64°
multigrid [24] 5.37°  8.19°

The parametric field is actually a good approximation of the dense estimated flow field. This nice
behavior of the method is confirmed by the results obtained on Calendar and Parking lot. For instance,
in Calendar some difficult regions (such as the roof of the wagon or the space between the locomotive and
the wagon) are fairly well recovered (Fig. 9). These remarks hold also in the Parking lot case where the
method retrieves an interesting “structural approximation” of the front car (Fig. 8). Otherwise, as may

be seen on the three sequences, the method has the ability to fit correctly the motion discontinuities.
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Fig. 7. Results on Yosemite (224 x 288): (a) segmentation initialization at the coarsest level £ = 4, (b-c-d) final
partitions (¢ = 4,2,0), (e) dense optic flow, (f) parametric flow (cpu time ~ 8mn).

See for example the mountain crest in Yosemite, the front car in Parking lot, and the engine and the
rolling ball in Calendar.

We should also outline that the method is not very sensitive to the initialization. More precisely,
the method is able to recover meaningful partitions of the flow field from quite “distant” initializations
(see for instance Fig. 9 and Fig. 7).

Rough estimates of the computation times (code not hand-optimized) obtained on a Sun Ultra Sparc

are also given in the captions of figures 7, 8 and 9.

V. CONCLUSION

In this paper, we have presented a comprehensive energy-based framework for the incremental esti-
mation, and the segmentation of the optic flow. Using robust cost functions, a dense discontinuity-
preserving motion estimator has first been introduced, and a special care has been dedicated to its algo-
rithmic implementation: a hierarchical constrained minimization framework is proposed which allows to
mix different parameterizations with respect to a regular or an adaptative partitioning of the image. The
ability of resulting estimator to recover intricate non rigid motions has been especially demonstrated

on sequences involving moving fluids. For situations where motion-based segmentation of the sequence
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Fig. 8. Results on Parking lot (224 x224): (a) segmentation initialization at level £ = 4, (b-c-d) final segmentations

(¢ =3,2,0), (e) dense optic flow, (f) parametric flow (cpu time ~ 4mn).

makes sense and is of interest, the previous model has been extended to simultaneously handle both
issues. Dense estimation and region-wise parametric representation of same flow can thus be jointly
recovered in an alternate cooperative way within hierarchical minimization. Of particular interest here,
we propose a simple mechanism of interaction between a dense discontinuity-preserving estimator and a
segmentation process, through auxiliary variables appearing in the half-quadratic formulation of robust
cost functions. This mechanism could be used elsewhere (e.g., simultaneous restoration-segmentation of
still images), and could probably be considered (and theoretically studied) from the anisotropic diffusion
continuous point of view.

As for the dense estimation alone, we now investigate the introduction in our generic multi-parametric
framework of representations which would be explicitly devoted to fluid dynamics. Concerning the joint
estimation-segmentation issue, more sophisticated or complete interaction mechanisms should be in-
vestigated (e.g., to take into account photometric discontinuities as a useful information, or to handle

explicitly the problem of occlusions at borders of motion regions).
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Fig. 9. Results on Calendar (256 x 256): (a) partition initialization at level ¢ = 4, (b-c-d) final segmentations
(¢ =4,2,0), (e) dense optic flow, (f) parametric flow. (cpu time ~ 8mn).
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A  PARAMETRIC GAUSS-SEIDEL ITERATION

For the sake of concision, we shall denote Vf(s) = Vf(s + w t + 1) the spatial gradient in the
second image, displaced according to w’, and fi(s) = fi(s,w’) the displaced frame difference. S is
partitioned according to B¢ = {B} ... va[}, the associated adjacency graph being G¢ = [S¢,v!]. Let B
be the current block in the iterative visit process implied by Gauss-Seidel method. One has simply to
minimize H* with respect to Bfl, the total field outside B¢ being frozen. The fraction of energy actually

concerned is:

HE(04,0,6: fw) 2n Y 0 [V ()T Pul)6h + fulo)]”

seBt
2
+ ary Z Bor lwh + Py (5)0% — w, (34)
(s,ryecs,
2
tary Y B ||(wh + Pa(s)85) — (wh + P(r)8l) |,
(s,ryect

where C§, = Ume,,z(n)Cf;m is the set of cliques of C straddling the border of BY. The increment field in
the neighborhood of B is a mix of various parameterizations relative to different parts of the (possibly)
irregular grid S*: for m € v¥(n) and (s,7) € Cpm, dwt = P,,(r)8",. However, the only thing of actual
interest when updating 8%, is the total field w, = w! + P,,(r)8%,. As a consequence, in the following
computations, the neighboring parameterizations do not appear explicitly in the regularization part of

the update. Their are simply hidden within the total field on the neighboring patches. Writing that
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the partial derivative of this piece of energy vanishes, one gets:

£+ (Pa(s) — Pu(r))8| = 0.

A compact vectorial formulation of this equation can be achieved by introducing the following matrices

and vectors indexed respectively by the sites of block B¢, the cliques inside the block, and the cliques
straddling the border of the block:

seBL

, Bn = diag(---, ferly, e Nsryect
(s,m)ecy

) and Ban é dla‘g( B /857“1[27

e )<s,r)€C§m’
(s,r>€C§n

where I, = [0 ?], as well as the following block-wise and border-wise averages:

— 1 .
0871 = b_ Z ﬁsrPn(S)T(wr - w§)7 with bay, = Z Bsr
o (s ryecs, (s.r)ect,
=0 1 .
6, = - Bor(Pu(s) — Pu(r)" (wf — wt), withb, = > B
" (sryect (s,ryect
Linear equation (35) then reads:

(1AL AR A, + arsCh BonCon + at3CL B, C,,] 67,

—TIAZATLF” + om'gb@nagn + OéTgbnEf; (36)
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The direct resolution of this linear system provides the updated value of parameter vector Hfl. In
this equation, matrices A,,, C,, and Cp,,, and vectors ﬁfl and ﬁf;n depend on the type of parameterization
associated with block BY. Let us give their expressions (when simplified forms are available) for the
three different parameterization.

For constant model P, = I, yielding AL = [-.- V f(s)- sent s cl =[-I--],C,=0,0, =0,

and Egn = ﬁ (sryect By (w, — wt). Equation (36) simplifies as follows:

(36) & (nATALA, + arbonly) 04 = —1 ATALF,, + arybo, 0,

1 1
-~ <—A£AnAn + H2> Ofl = Ogn — _AgAnFn, with v 4 aTaban
Y v

1

o ol —9' _ YAT A, (A8, + Fy) + detA, 8, + comA, AT A, F,
no Ton v(y + traceA,,) + det A, ’

with A, = ATA,A,.

For simplified affine model P,(s) = [Iy p(s)] with p(s) = [Z: _yis}, yielding:

I p(s)
ChuBonCon = Y., Bar .
(S,T>€an p(s) (xs + ys)HQ

CT'B,C, = by,diag(0,0,1,1)
o 1 0 0 1
bn0, = Z Bsr (wf - wﬁ) + Z Bsr ('wf - wﬁ)a
oech@m [V 1 (sryeches)  [1 0
where C%(3) (resp. CL(ss)) contains cliques of C lying along the z-direction (resp. y-direction).
For affine model P,(s) = I, ® e(s)”, with e(s)T 2 [1 z y,], yielding the following expressions for

the matrices and vectors involved in equation (36):

ALA A, = 5 (VIEVIE)T) @ (e()els))

sEBY
OgnBancan = e Z ﬁsre(s)e(S)T
(s,r)ECén
CanCn = b® Z /Bsr(e(s)_e(T))(e(s)_e(T))T
(s,ryect

= Ledag|0, >, B, Y, Ba

(s;r)€CL(3) (s,r)€CL (o)
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ATAF, = ) 0 fi(s)V f(s) @e(s)

seBt

b@nﬁgn = Z Bsr(wr - wﬁ) ® 6(5)

(s,ryecs,

b8, = Y Ba(wl—w)® (e(s) - e(r))

(s,ryect

= Y Bawi-whep10"+ > Be(wi-whe001]"
(s;r)EC(3) (s,r)€CE (o)

B CONSTRAINED ESTIMATION-SEGMENTATION AT LEVEL /

Data term: Using same block-wise notations as in Appendix A, it is easy to get the following compact

expression:

Hi(dw',5; f,w’) = Y | mi(Andw), + Fo) " Ap(Andwl, + Fo) + Y 4h1(5,) | - (38)
nest seBL

For each site of S¢, one gets a sort of block-wise optical flow constraint expression involving aggregated
observations.
Smoothing term: Considering the piece-wise constant constraint on the increment field, the prior

energy may be written as [24]:

Hy(dw', B w’) = Ha(0, Bw) + 12 Y. | Bumlldw, — duof | + 2(dwf, — dwl,) 5w, ], (39)
(n,m)ect

. A — A
with /Bnm = Z(s,r>ecémﬁsr and AW,y = Z(&’")Ecﬁm /Bsr(wg - 'LUf.)
Parametric likeness term: RY € A’ being the current partition of S*, we denote R = ®»(RY) the
associated constrained partition of S and J;; the pieces of frontiers between adjacent regions R; and R;

of R. We have:

Z 551""";“’22 Z Z TYsHU’ +dw _wsHQ—i_z/)?)(nS)]

4 l { vt § :
ginteract (dw ) R ) /67 n;,w )
(Z>J> 5 T)Eau ( TLER[ SGBI

(40)
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which, like previously, reduces to:

gilnteract (d'wga RE, B, UK wﬁ) = gilnteract (07 Rla B, Uk wl) + :U'QZ Z [zn||dwfz||2 + 2(dw£L)Tm£L(07/)]7 (41)
i NER;

where z, = > sent Ns and aw, (6;) = > seBt ns(wh — wt).

Partition a priori term: The reduced expression of this term is:
Egrior(RZ) = Eprior(q)g (Re)) = >‘2€|8R€|- (42)

Gauss-Seidel iteration w.r.t. dw’: Setting to zero the derivative of H’ w.r.t. to dw?

n, one gets

the same update equation as in (37) (with dw!, = Ofl, for it is the constant model), but with slightly
modified definitions:

> (Bumdwh, - 5wl ) - 2w, (6)
mev(n) b

= A
0871, =

A Tobyp + p2Tszn

273 Y )
bon + /flﬁ Zn T1

(43)

where now appears the parametric field of the region R; to whom block n belongs. For n = 0 (which
implies z, = 0 and mﬁ(ai) = 0), the expression coincides with (37), as expected, since this amounts

to removing parametric fitness energy term.
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