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Abstract

In this paper we address the problem of estimating and
analyzing the motion in image sequences that involve fluid
phenomena. In this context standard motion estimation
techniques are not well adapted and more dedicated ap-
proaches have to be designed. In this prospect, we pro-
pose to estimate in a joint and cooperative way a dense
motion field and a peculiar parametric representation of
the flow. The parametric model issues from an extension
of Rankine vortex model and includes a laminar flow field.
Dense and parametric fields are estimated by minimizing a
robust global objective function thanks to a specific alter-
nate scheme. The method has been validated on different
kinds of meteorological image sequences.

1 Background: Fluid Motion Estimation

In a number of domains, image sequences that involve
fluid phenomena, have to be analyzed: In environmental
sciences (oceanography, meteorology, climatology, etc.),
ocean and atmosphere evolutions are observed via satellite
sensors [5, 9]; In medical imaging, blood flow can be mon-
itored by angiography [14]; In the field of fluid mechanics,
aero- and hydro-dynamics experiments now routinely pro-
duce lots of video data [7, 10, 15]. In all these domains of
applications, camera offers in a versatile and non-intrusive
way, huge amounts of spatio-temporal data, as opposed to
in situ measurement techniques that are often complex, very
specific, intrusive, and that only provide with sparse data.
With these latter techniques, however, sought quantities are
directly measured with dedicated probes, whereas, within
image sequences, the relevant information has to be ex-
tracted from the luminance data.

The analysis of motion in such sequences is particularly
challenging due to the great deal of spatial and temporal dis-
tortions that luminance patterns exhibit in imaged fluid phe-

nomena. Standard techniques from Computer Vision, orig-
inally designed for quasi-rigid motions with stable salient
features, are not well adapted in this context. The design
of alternate approaches dedicated to fluid motion thus con-
stitutes a widely open domain of research. Our work is a
contribution in this direction.

As in standard motion analysis, two types of motion in-
formation can be sought. First, dense velocity (or displace-
ment) fields [5, 9] constitute precious sources of information
which can serve either as validation basis, or as input data
for numerical models (e.g., in short-term weather predic-
tion). They are also used for visualization purposes, and al-
low to compute other quantities of interest, such as the vor-
ticity of the flow [15]. Second, some salient structures may
be sought. Vortices [14, 16], and more generally singular
points [5, 7, 10] are kinematic entities of particular interest:
they provide a compact and relevant representation of fluid
flows [7], they retain key information for the understanding
of phenomena (e.g., vortices in study of turbulence [15],
depressions in meteorology [9]), and they provide tokens
for tracking purposes [10]. Such entities can be extracted a
posteriori from estimated velocity fields [5, 7, 14, 16]. They
can also be recovered directly from images [7, 10].

We suggest here that both types of information should
be extracted in a joint and cooperative way. To this end we
introduce, on the basis of a joint estimation segmentation
approach [12], a coupled approach which mixes the optical
flow technique proposed in [13] with an original non-linear
parametric flow modeling based on vortices, sources and
sinks.

2 Dense/Parametric Robust Modeling

Dense motion estimation aims at estimating a velocity
map ���������	��
����� at each point of the rectangular pixel
lattice � , based on brightness function ������� ��� ��� 
�� ��� ��
����� at two consecutive instants � and ����� . Assuming tempo-
ral constancy of the brightness function, standard optic-flow



estimation rely on a differential equation known as optic-
flow constraint equation (OFCE):� ��� 
�� ����� � � � ��� � 
 � ���
where

� � stands for the spatial gradient of � and

����� 
���� � � �� ��� 
�� ��� �	�	� ��� 
�� ��� denotes the finite differ-
ence approximation of the temporal derivative . This equa-
tion issues from a linearization of the brightness constancy
assumption. It may also be seen as the material derivative
of � (i.e., the rate of change of � as observed when moving
with point 
 ).

The OFCE being known to be not valid in general for
large displacements (the linearity domain of the luminance
function is drastically reduced for long range displace-
ments, as well as at sharp edge locations) an incremen-
tal version of this equation is usually considered. This
technique which may be related to non-linear least squares
Gauss-Newton method [1, 11] is generally used in combi-
nation with a standard multiresolution setup [2, 6]. In the
following, we shall assume to work at a given resolution of
such a pyramidal structure. However, one has to keep in
mind that the expressions and computations are meant to be
reproduced at each resolution level according to a coarse-
to-fine strategy.

Let us now assume that a rough estimate � � ��� � ��
 �
��� of the unknown velocity field is available (e.g., from an
estimation at lower resolution or from a previous estima-
tion). Based on a linearization of the constancy brightness
assumption from time � to ��� � around � , a small increment
field d � ��
�� ��������� can be estimated as:�����	�����

d �
��� � d �! � � � � �#" �%$ � d �! �� � � (1)

with [2, 11]:� � ��'&�)( � *
��+ � ��� 
 � � � � ��� �	� � d � � � ��� � 
�� � � �-, � (2)

� $ �� &. �)/ 0213(54 * $6+87 � � � � d � � �9� � � 0 � d � 0 � 7 , � (3)

where ";: � , < is the set of neighboring site pairs ly-
ing on grid � equipped with some neighborhood system = ,

����� 
���� � � �� ��� 
 � � � � � � � �>����� 
�� ��� is now the displaced
frame difference, and * � and * $ are standard robust ? -
estimators (with hyper-parameters @ � and @ $ ). Such func-
tions penalize the deviations both from the data model (i.e.,
the OFCE) and from the first-order smoothing prior.

The dense estimator (1-3) is general; it is only based on
the assumptions of luminance conservation (first term) and
of spatial smoothness of the velocity (second term). It does
not rely on any prior knowledge about typical fluid flows.

In most situations, it is relevant to consider that fluid
motion is composed of three parts: a smooth laminar com-
ponent, a divergence-free component stemming from a few

Figure 1. Example of vortex ( ACBED�F6GIH ), source ( J�KMLNF6GH ), and translated swirl with shear ( O FQPCR)F-P ACBED FSP JNKTL F andUSVNWYX A F[Z\�] ^8_ Fa`�bcFedSf[g ^ih Fjg�k5F�dSf GlH ).
vortices, and an irrotational component produced by a few
sinks/sources. Vortices correspond to localized concentra-

tions of vorticity rot �
��nmpo � mrq , whereas sinks and

sources are associated to analog concentrations of diver-

gence div �
��smro �ut q .

Extending Rankine vortex model [14], we introduce an
original unified modeling of these entities. Let a vor-
tex/sink/source be located at 
�v � �iw v���x�v � . In a certain
neighborhood of 
yv , the velocity field is approximated by
a linear model. Beyond this neighborhood, the same linear
expression is kept, but scaled by the inverse of the squared
distance to 
zv . Assuming a circular neighborhood { v of ra-
dius | v around 
�v , we thus consider the following parametric
velocity field:

� v � 
 � ��s�%���~} � � | $v7 
 � 
zv 7 $a��� }��i� v� v-� � ��� v���v��v � ve� � w��lw vx � x vS� � ��i� � 
 � �iw ��x � ��� � (4)

One can verify that the divergence and the vorticity of this
field decrease as

7 
 � 
 v 7z� $ beyond { v , and they respec-

tively amount to � ���>v �� � v � � v and � ��� v �� � v � � v within
this disk. Vortices correspond to significantly non-zero val-
ues of � �5� v . Significant positive (resp. negative) values of� ���av correspond to sources (resp. sinks). Both situations
can be combined within swirls. See examples in Figure 1.

If � vortices/sinks/sources are present, the total field
results from the sum of all ��v ’s with some laminar flow
which “transports” them. We make interact these different
modeling ingredients with the dense field through a robust
goodness-of-fit cost function:�%� � d � � �����c� ��� �����E� �y�� � � ��& � * � +27 � � � d � � � � �����Y� � 
 � � �& v�� � � v � 
 ��� 7 , (5)

where � ���Y� denotes the laminar part of the flow and ��v ��
� 
zv � | v � � v�� � v�� � v � � v � � v � � v � � gathers the parameters relative
to the   th vortex/sink/source.



3 Joint Estimation

Due to the classical choice of non-convex robust func-
tions, the overall energy function may be highly non-
convex. Appropriated minimization schemes must be de-
signed to solve this problem. According to a reformulation
of the ? -estimator, the minimization may be easily handled
in an alternate way.

Assuming certain simple conditions (mainly concav-

ity of � ��t � �� * ��� t � , see [3, 4, 8] for a com-
plete account), any multidimensional minimization prob-
lem of the form “find �����6�%��� o�� v * ��� v �iw ��� ” can be
turned into a “semi”-quadratic minimization problem “find�5�)� ����� o�/ ��� v + 	�
 v � v �iw � $ �� � 
 v �S, ” involving auxiliary
variables (or weights)


 v ’s continuously lying in � � � ��, .
� is an increasing function, depending on * , and

	 ��� ����������� ��� �it � . Function � may be easily computed from* but it is never used in practice. The new minimization is
usually led alternatively with respect to w and to the


 v ’s.
The expression being quadratic w.r.t. w if the � v ’s are lin-
ear, the corresponding minimization is conducted through
a standard weighted least squares minimization. In turn w
being frozen, the best weights are given by the following
closed form [4, 8]:

�
 v ��w � � * � + � v �iw �-,� 	 w � �	 � � + � v �iw � $ , � (6)

The overall alternate procedure constitutes an iteratively
reweighted least squares estimation.

Applying, these reformulations to our energy function� � � " �%$ ��� �%� (with � being some positive parameter)

leads to the new global energy function � �� � � �u"�� $ �
��� � where:

� � �� &�)( �
 � + � ��� 
 � � � � ��� � �C� d � � � ����� 
���� � �S, $ �!� � �  � � �

� $ ���&. �)/ 081[(54" �S0 7 � � � � d � � �9� � � 0 � d � 0 � 7 $ �#� $ � " �S0 � �
� � ��'&�)( � $ � 7 � � � d � � � � � ���Y� � 
 � � �& v�� � � v � 
 � � 7 $ �%� � � $ � � �
The appearing auxiliary variables

 � ’s and
$ � ’s ly within

� � � �c, . They are attached to the image grid and they re-
spectively account for the data model violations and for the
“likeness” degree of the estimated dense field to its para-
metric representation.The other variables

" �S0 ’s are attached
to the dual edge grid; they capture the spatial discontinuities
of velocity between adjacent sites.

Assuming that � and � ���Y� are available in some way,
the estimation of d � , � , � � �E��� � � , and the different

weights is conducted in an alternate way. For a fixed in-
crement field and parametric representation, the minimiza-
tion of � with respect to the auxiliary variables is explicitly
given by equation (6).

In turn, considering given weights and parametric repre-
sentation of the velocity field, the minimization with respect
to d � amounts to solving a standard weighted least squares
problem. This is conducted here by extending an efficient
multi-parametric adaptive multigrid technique introduced in
[13].

As for the parametric model estimation, we have to es-
timate the number of sink/sources/vortices, the size of the
disks supporting the linear models of the flow and the affine
model assigned to each of them. For a given dense field
from which laminar component is removed � � d � �� ���Y� � � m � t � � , sinks, sources and vortices should be sin-
gular points which can be extracted in different ways. As
in [5], we use winding numbers. The winding number (or
index) of a closed curve in a vector field amounts to the
number of turns,

�$'&)( � � � �5� � � m+* t � , that the field under-
goes along the curve. Its value is +1 iff the considered Jor-
dan curve surrounds a vortex/sink/source. Such an index
is computed around each pixel using a small closed curve.
Around each vortex/sink/source, a small blob (whose size
depends on the size of used curve) of � � -index pixels is ob-
tained. The number of blobs is � , and the center of the   th
blob provides 
�v .

At this stage it remains to estimate radii | v , and pa-
rameters � � v ����� � v � for each   . For a given radius | v , the
minimization of

� �
w.r.t. � � v ���E� � v � is a non-linear least-

squares problem that can be readily solved using iteratively
reweighted least-squares. Minimization of

� �
w.r.t. radius| v is more involved. Gradient descent techniques could be

used to this end. Instead, we designed a simpler heuris-
tic. It is reminiscent to the approach in [10] where one
tries to find a compromise between the most robust linear
regression (using a large neighborhood) and the less biased
regression (not using a neighborhood larger that the actual
“linearity” domain). Starting from a small value of | v , we
make it grow. For each new value of | v , the associated pa-
rameters � � v ����� � v � are computed. If the corresponding sin-
gular point :

� w�,x , � � � w vx v-� � � � v � v��v � v�� �
� � � v� v-�

remains within the concerned blob of � � -index pixels, the
estimation is considered as reliable, and we proceed. If not
the procedure is stopped and the previous value of | v is se-
lected. The � parametric models defined through the �Nv ’s
interact via � � . Using a block Gauss-Seidel minimization



we update them iteratively according to:

�yv ���p&
�)(���� $ � ��� v � 
 �C��� v � 
 � �
	 � � &� (���� $ � � v � 
 ��� � � � � d � � ���

� ���Y� � 
 � � & ��� v �  � 
 � � ��� � (7)

where � v � 
 � �� � � � w�� w v x � x v � �� � � � w��lw v x � x vi� ,

for 
 � �iw ��x � .
So far, laminar component � ���Y� , and dense field to be

refined � were assumed as given. As usual in incremental
multiresolution techniques, the latter one is provided, via
simple interpolation, by the dense field finally estimated at
previous resolution. As for the laminar component, it could
simply be considered as a global translation to be estimated
in some way [14]. We tried to be less restrictive. The lami-
nar field is taken as the velocity field estimated at the coars-
est resolution with the coarsest estimation grid of the multi-
grid technique proposed in [13]. This very smooth field is
then properly interpolated on the current resolution.

4 Experiments

We report here experiments on the three different kinds
of Meteosat images: the infrared channel, the visible chan-
nel and the water vapor channel (Fig. 2 and 3). In these
experiments we used the same robust function in the three
energy terms (namely * ��w � � � ������� � o��� � ). As for the pa-
rameter values we used the same ones in all the experiments
(except for the visible image sequence where we imposed a
higher regularization term). In the three cases the velocity
fields seem physically plausible; they are also in accordance
with what can be expected based on simple visual inspec-
tion of the sequences.

Let us notice the essential role played by the laminar
flow. Indeed, in situations where there is a large global
motion (such as in the water vapor sequence Fig. 2a), tak-
ing this “transport” field into consideration allows to re-
cover accurately the location of depressions despite the dis-
placement of their centers, and to extract secondary vortices
which would be lost in the whole flow otherwise (see the
vortex in the lower right corner of the water vapor image in
Fig 2a).

The combination of the different flow representations
provides very interesting results. The parametric field al-
lows to get a physical interpretation of the flow. For exam-
ple, the main swirls (corresponding to depressions), as well
as counter-vortices are well captured. A sink and a source
can also be seen in the right lower corner of the infrared

Figure 4. Flow computed with the generic model
[13] on the visible image (similar set of parameter)

sequence (Fig. 3). Beside these structures of interest cap-
tured by the parametric field, complex and less structured
information is carried by the laminar component and the es-
timated dense velocity field.

It is also interesting to point out the benefit of the para-
metric modeling in areas with low photometric gradient. In-
deed, in these areas (as well as in regions with many data
outliers) velocity fields estimated by the way of generic mo-
tion estimator (equ. 1) are poorly constrained and the non-
linear smoothness term tends to introduce inexistent discon-
tinuities around and within these regions (see Fig. 4). By
contrast, the parametric prior introduced here circumvents
in an elegant way this problem: In such areas, the field is
not only dependent on the spatial context, it is also guided
toward a smooth solution having much more physical sense
(see Fig. 2b).

5 Conclusion

In this paper we have proposed a method to estimate fluid
flows. This method relies on the extension of a generic ro-
bust motion estimator. This extension consists in consider-
ing in a coupled way the estimation of the velocity field
and of some structures of interest which are explanatory
to the unknown flow. The method has been tested on the
three kinds of Meteosat satellite images. The recovered
flows seems to be in accordance with the underlying phe-
nomena. Compared to classical (first-order regularization
based) optical-flow estimators, this method allows a more
robust estimation in large areas of low photometric contrast
and a better extraction of highly diverging or swirling mo-
tions. Finally, the method provides simultaneously a dense
estimation of the flow and a structured parametric represen-
tation which is believed to retain relevant physical informa-
tion.



a �

� ���Y� � � $v�� � ��v � $v�� � ��v � ���Y�

b �

� ���c� � ���v�� � � v ���v�� � � v � ���Y�
Figure 2. Result sample on satellite Meteosat images: (a) water vapor images and (b) visible images; extracted
vortices/sinks/sources ( � 
 v � | v � �v�� � ), with � � �

, resp. 5; estimated dense fields � ; estimated parametric and laminar
fields � ���Y� � � �v�� � � v ; parametric field alone � �v�� � � v ; laminar field alone � ���Y� .



Figure 3. Results on infrared satellite Meteosat images; extracted vortices/sinks/sources ( � 
 v � | v � �v�� � ), with � ��� ;
estimated dense fields � ; estimated parametric and laminar fields � ���Y� � � �v�� � ��v .
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