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Abstract. In this paper we address the intricate issue of jointly recov-
ering the apparent velocity field between two consecutive frames and its
underlying partition. We design a global cost functional including robust
estimators. These estimators enable to deal with the large deviations oc-
curring in the different energy terms and offer the possibility to introduce
a simple coupling between a dense optical flow field and a segmentation.
This coupling is also reinforced by a parametric likeness term. The re-
sulting estimation-segmentation model thus involves a tight cooperation
between a local estimation process and a global modelization. The mini-
mization of the final cost function is conducted efficiently by a multigrid
optimization algorithm.

1 Introduction

Motion estimation and motion-based segmentation are well known to be two
tightly interwoven processes in motion analysis. It is obvious that a good esti-
mation of the velocity field (or at least a sensible approximation of it) is required
to obtain a good segmentation of the different apparent motions observable in
the scene. At the opposite, a good velocity map cannot be obtained without an
accurate estimation of the frontiers of the different moving objects. It is therefore
natural to consider the resolution of these two motion problems as a whole.
The coupling of motion estimation and segmentation has been considered
in various ways the last decade. Two classes of methods may be indeed distin-
guished. The first class consists in an wunilateral coupling between some motion
cues and a segmentation process. Methods belonging to this class assume that
one of the set of variables is known in order to recover the second one. For in-
stance, in [2] the optical flow is first estimated as a dense field and then fixed
during all the segmentation process. Segmentation based on the normal flow
field relies on the same philosophy [1,3,7,17]. The segmentation problem has
been modeled within a number of frameworks: Markov random field theory [7,
17], statistical mizture estimation framework [3], minimum description length
paradigm [10] or region split and merge methodology [2]. All these methods are
based on a regionwise parametric description of the motion cues (i.e., the op-
tical flow field or the normal flow field). More recently, coupled motion-based
estimation-segmentation methods have been proposed. They involve a tight cou-
pling between a motion field and a motion-based partition. In that case, the
motion field and the associated segmentation map are estimated simultaneously.



This is usually done by using a global energy function that ties both entities.
In that context, different types of interaction have been proposed. In [18] for
instance, the partition frontiers are estimated as a representation of the flow
discontinuities. In [6, 8], the interaction consists in the cooperation between a
dense flow field and a region-wise parametric polynomial flow. The dense opti-
cal flow is only encouraged to have some similarity with a piecewise parametric
motion field associated to the partition map. In this paper, we present a motion
estimation-segmentation method belonging to this latter class. We aim at devel-
opping a tight cooperation between a dense optic-flow estimator and a motion
based segmentation process.

2 Robust estimation of the optical flow

Many standard optical flow estimators are based on the well known optical flow
constraint (OFC) equation [13]. This differential equation, issued from a lineariza-
tion of the brightness constancy assumption, links the spatio-temporal gradients
of the luminance to the unknown velocity vector. In order to recover the two
components of the velocity vector, a smoothness prior on the solution is usually
introduced through an additional regularization term [5, 13].

Due to the differential nature of the OFc, this standard modeling does not
hold for large displacements. To circumvent the problem, it is usual to consider
an incremental estimation of the flow field using a multiresolution setup [5,
11]. This multiresolution framework involving a pyramidal decomposition of the
image data is standard and won’t be emphasized herein. In the following, we
shall assume to be working at a given resolution of this structure. However, one
has to keep in mind that the expressions and computations are meant to be
reproduced at each resolution level according to a coarse-to-fine strategy. Let us
now assume that a rough estimate w = {w,,s € S} of the unknown velocity
field is available (e.g., from an estimation at lower resolution or from a previous
estimation), on the rectangular pixel lattice S. Let f(t) = {f(s,t),s € S} be the
luminance function at time ¢. Under the constancy brightness assumption from
time ¢ to t + 1, a small increment field dw € 2 C (R x R)® can be estimated by

minimizing the functional # = H; + aHy, with [5]:

Hl(dw)éZpl [V f(s+ws, t+1) dws+ fi(s, t,ws)], (1)
sES

Ha(dw) 2 Y po[ll(ws + dw,) = (w, + dw,)|], (2)
<s,r>€C

where a > 0, C is the set of neighboring site pairs lying on grid S equipped
with some neighborhood system v, V f stands for the spatial gradient of f,
fe(s,t,ws) = f(s + ws,t + 1) — f(s,t) is the displaced frame difference, and
functions p; and po are standard robust M -estimators (with hyper-parameters
o1 and o2). Functions p; and ps penalize both the deviations from the data
model (i.e., the OFC) and from the first order smoothing prior.



A robust M-estimator p is an increasing cost function which compared to

quadratic function possesses a saturating property (lim,_ o £ 12(;‘) = 0). It allows

to atenuate the influence of large “residual” values [9,12]. It can be shown that
under certain simple conditions (mainly concavity of ¢(v) = p(,/v)), any multi-
dimensional minimization problem of the form “find argmin, >, p[gi(x)]” can be
turned into a dual minimization problem “find argmin, » Y ,[72;gi(z)? + ¢(2;)]”
involving auziliary variables (or weights) z;s continuously lying in (0,1] and 7
is a parameter defined as 7 = lim,_o4 ¢'(v). The function ¢ is a decreasing
function depending on p [9].

The new minimization is then usually led alternatively with respect to x and
to the z;s. If g;s are affine forms, minimization w.r.t. = is a standard weighted
least squares problem. In turn x being frozen, the best weights have the following
closed form:

o) = 500 — o7 ®)

In our case the weights are of two natures: (a) data outliers weights (related
to the dual formulation of H;), and (b) discontinuity weights (provided by the
dual formulation of H») lying on the dual edge grid of S. The first set of weights,
denoted by § = {ds,s € S}, allows to attenuate the effect of data for which
the OFC is violated. The second one, denoted by 8 = {f8s,, <s,r>€ C}, prevents
from over-smoothing in locations exhibiting significant velocity discontinuities.
The estimation is now expressed as the global minimization in (dw, 4, 3) of HE
7—7,1 + a?—Nl,z where:

Hi(dw,8) =3 [10, [V (stw,, t+ ) dwet fils, t,w,) e (0)], (4)
seS

Ho(dw,B) = Y [mBorll(wy+dw,) — (w,+dw,) | *+¢2(Bsr)] (5)

<s,r>€C

More satisfactory robust cost functions being non-convex we end up with a
difficult minimization problem to solved. We tackle it using a multigrid strategy
that will be briefly described in section 4. Let’s first see how this energy function
may be coupled with a segmentation device.

3 Motion estimation and segmentation coupling

We now introduce an extension of the model to couple the estimation process
with a motion-based partition of the image. Let P denotes this partition com-
posed of an unknown number p of connected regions, P = {Rq,... , R4, ... ,Rp}.
The boundary between regions R; and R; will be noted 9; ; and is defined as
the set of edge-sites (i.e., lying on the dual edge grid) between R; and R;:
0ij ={<s,r>€C:s€Ryr e R;} Theset P = Ui=;0;,; stands therefore for
the frontiers of the partition.



The extension of the energy-based optic flow estimation model is obtained by
incorporating two terms to the global energy function H . The first one, Eprior,
captures the a priori knowledge about the segmentation configuration. The sec-
ond one, Ej,ter, specifies the mode of interaction between the segmentation and
the rest of the estimation model (i.e., velocity field, weights and data).

We have chosen an interaction model which allows an interaction with the
velocity field both at the frontiers and inside the regions: the segments will inter-
act with the estimation process through the discontinuity weights, and through
a parametric similarity of the motion profile inside each region.

The corresponding cost function component Einter(P,3,dw) exhibits two
terms: The first one is proportional to the sum of (. mean values over sets
0;,;- It then (a) favors low values (close to zero) of discontinuity weights along
the borders and (b) guides the partition boundaries toward the most significant
flow discontinuities. The second term enforces a polynomial parametric likeness
of the flow field inside each region. The global energy of the extended model is
designed as follows:

H(dw, P, 6, 8) = H(dw,d, B) + Eprior(OP) + Einger(dw, P, 3), (6)

where,

1 )
Einter(dw:p: ﬁ) é,Uflz: m Zﬂsr‘*'lﬂz Z p3(||ws+dws _’w?z ”) (7)
2,)

0;,; EOP <s,7>€0;; Ri€EP s€ER;

with some positive parameters p; and p» and the function p3 being a robust M-
estimator with hyper-parameter o3. The vector w9 is the parametric motion
model associated to region R;. In this work, we will consider only the standard
six parameter affine model: © = [a,b, c,d, e, f]* with w® = P,0;, where P, =

lzsys00 0
(0 0 01zsys
model complexity and model efficiency [7]. It has been extensively used in motion

analysis. This model conjectures that a given motion region is a projection of
a 3D planar patch of surface whose motion is confined to rotations around the
optical axis and to translations in its facet plan. According to §2 the interaction
term may be rewritten in its dual form as:

). This model is usually considered as a good trade-off between

Einter(P; /37 dw; 77) =1 Z L Z ﬁsr +

0;,; €OP |C81]| <s,>€0; ; (8)
H2 Z Z T31sl|ws + dws — w?i 12+ 3(15).-
Ri:€P s€R;

The variables n are auxiliary variables that we will refer to as parametric likeness
weights throughout the paper. The resulting global energy is H(dw, P, d, 3,7).

! Even though the superscript remains omitted, we still suppose in the coming devel-
opments that some resolution level is concerned.



The segmentation a priori term corresponds to a loose geometric constraint
in terms of a classical Minimum Description Length (MDL) prior [14].

Eprior(OP) = A\|AP| for some A > 0. 9)

This energy term favors region with short and smooth border.

The whole energy function has now to be minimized with respect to all the
unknowns. A direct minimization of such function is obviously a very intricate
problem. As we shall see in the coming section, the optimization may be effi-
ciently conducted through a multigrid minimization strategy.

4 Multigrid optimization

To efficiently cope with the optimization problem w.r.t. dw and P, we design a
joint hierarchical “constrained” exploration of the increment configuration space
{2 and of the partition configuration space 7.

The overall optimization is led through a sequence of nested joint configura-
tion subspaces:

(RExTH) c (" xrtY oo c (2P x T C (2 xT).

The subspace 2¢ is defined as the set of increment fields dw which are piecewise
constant according to a 2¢ x 2-block partition of grid $2. Denote B! = {B!, n =
1...N;} this partition, the number of blocks being N, = |S|/4°.

Each constrained configuration of £2¢ is “equivalent” to a reduced increment
field dw® lying on the grid S¢ = {1,...,N;} associated with B¢. Let I'* be the
set of such reduced configurations and let &{ be the point-to-point mapping from
I't into 02°.

In the same way, the partition configuration subspace 1¢ is the set of “con-
strained” partition P lying on the grid S (i.e., defined on a 2¢ x 2¢-block parti-
tion). Following the same methodology, a point-to-point mapping from a reduced
partition configuration space A° into 7 may be easily constructed. Let &4 denote
this function.

Constrained optimization in 2¢ x T¢ is then equivalent to the minimization
of the new energy function:

H (dw', P!, 8, 8,n) = H(P (dw'), B(P*), 6, 8,1) (10)

defined over I'* x A, whereas the auxiliary variables, the data, and the field to
be refined remain the same (i.e., defined on the original grid S).

At each resolution, we now have a cascade of optimization problems of re-
duced complexity:

arg min Hfﬂl(dwi,PZ,(i,,B,n), {=L...0, (11)
dw®,P¢,5,8,n

2 Others linear constraints may be also considered [16].



where dw’ € I't and P! € A’ are defined on the reduced grid S¢, and auxiliary
variables are attached to S, whatever the grid level.

This cascade of minimization problems is processed in terms of iteratively
reweighted least squares within a multigrid coarse-to-fine strategy: the final es-
timates at level £+ 1 have a natural image at level £ (through [#{]~! o ™! and
[®5]~" o #LT1), which are used as an initial configuration at level £.

4.1 Multigrid energy derivation

We now go into deeper details about the new multigrid fgnctionj—v]lf which is
obviously composed of four terms similar to those of H: H® = H{ + aH§ +

e e
Einter + Eprior'
Data model adequation term: For any n € S*, denote sy,...,s, the sites of

block BY, and define the following blockwise expressions:

A

6f1, é [631 e 684Z]T7 !‘pll(éfz) = ZsEBﬁ wl (68)7 Afz, dia‘g(dﬂ:' .. 76844)7
Finw) £ [fi(s1,w4,) -+ fulsae, ws,, )T,V (n,w) 2 [ fh(n,w) Fi(n,w)]
ff(na'w) = [f.(Sl +ws17t+ ]-) o 'f0(84‘3 +w84eat+ 1)]T7 for e =z or Y,

A
JAN

Also, we will denote (X|Y), = XTALY for any two 4‘-row matrices or

vectors, and || X||2 = (X|X), for any 4‘-component column vector. It is then
easy to get the following compact expression:

H(dw',5) = 3 [V, w)dw, + Fin,w) 2+ 265)] (12
nes*t

which is very similar to the one of the “parent” energy ﬁl (4). For each block,
one gets a blockwise optical flow constraint expression involving aggregated ob-
servations.

Smoothing term: Let C! = {<s,r>€ C :<s,r>C B} be the set of neighboring
site pairs included in block B and C¢,, = {<s,r>€ C : s € B.,r € BY,} the
set of neighboring site pairs straddling blocks B¢, and BY,. These sets {C’} and
{Ct,.} form a partition of C and reduced grid S¢ turns out to be equipped with
the same neighborhood system as S (i.e., first- or second-order neighborhood
system). The corresponding set of neighboring pairs will be denoted by C¢. The

smoothing term of H! is:

ﬁg (d'w[, 6):’7'2 Z Z ﬁsr”ws - 'u]T‘”2

neSt <s,r>eCt

+3 Y Ball(ws+dwy) - (we+dwy,) 1P| + D ¢a(8sr) (13)

<n,m>€eC’ <s,r>eCt . <s,r>€C



which reduces to:

Ha(0,8) 472 [Bhulldwl, —dwt, |2+ 2(dwf, —dw!,) 3,5, |, (14)
<n,m>€eCt

. N ¢ a
with ﬁfzm :Z<s,r>ecflmﬁsr and AWy, :Z<s,r>€CﬁmﬁS7‘(wS - wr)'

Parametric likeness term: Let us denote P! the border of partition P¢ and let
81-{]- =1 (03,j) be the set of cliques straddling the frontiers resulting from the
projection on S of the edge 0; ; C OP* defined on S*. We have:

~ 1
Eiznter(dw7tpla/37n) =M1 Z aT Z 657‘ +

9:;€E0PL | ’FJ" <s,1>€0f

2 Z Z Z nsllws + d'wa - 'w?iHZ +¥3(ns),

Ri€PE nER: s€BY

(15)

which, like previously, reduces to:
Efec(0,P 80 + 2 Y D [ldwy [’ Z) + 2(dwy) " 3w, (0:),  (16)
R;ePt neER;
where Z£ = Zsesﬁ 7s and mﬁ(@i) = ZseBﬁ ns(ws — w?i).
Partition a priori term: The corresponding expression of this term is straight-
forward. It is:

Bl ior(OPY) = 2! Epuior (OP') = X2°0P". (17)

4.2 Energy minimization

In this section we describe how the minimization of the total energy function
is led. Due to the nature of the global function, we can devise an iteratively
reweighted least squares minimization. The overall optimization process consists
in an alternate minimization of the different weights and of the original variables
of interest (namely dw® and P! and the weights 3, §, and 7).

Let us first consider that the partition P* and the parametric likeness weights
are given.

Minimization w.r.t. the motion field and associated weights: We have
thus to solve:

— s ~ ~ o~
(dw ,3,6) = argmin HS + aHS + EL ... (18)

This optimization is led in terms of iteratively reweighted least squares. The
weights and the motion field are successively estimated in a recursive process



until convergence. For a given set of weights the incremental field is computed
from a weighted least squares estimation. The field being fixed the weights are
then directly updated according to (3). To get a deeper insight in the considered
minimization let us see exactly what are the updating rules under concern.

Consider that the motion dw’ is given. Let < s, > be a clique in C and
denote by m and n block numbers such that: s € BS and r € BY,. The optimal
value of the discontinuity weights fs,. is given respectively by:

— if the site pair is inside region R; (<s,r>C R;):
Q 1 / £ 12
ur = 0% [ A, ] (19)

where, Aw!, = (w,+dw) — (w,+dw’,) as a notational convenience.
— if the site pair straddles the “border” between regions R; and R; (<s,r>€
9i5):

A L, [aa!
= Aw’ || } 20
Bsr T2¢2 | Aweg, || +72|am~| (20)

The data weights § are only involved in ﬁl, therefore according to equation
(3) and to the definition (1) of H;, the update rule is:

s = Oh[V f(s+ws, t+1)Tdw’ + fi (s, t, w,)] (21)
Considering now that the weights 8 and ¢ are frozen, the energy function H

is quadratic with respect to dw’. Its minimization is equivalent to the resolution
of a linear system:

[(VF(n,0)T|VF (1, w))n + AI2] dwy, + (Vf(n,0)T| (0, w))n — 7], = 0

(22)

with

QT
& e o 122 R
Z ﬂz + EZZ 1 T1
nm an n méev(n)
mev(n)

(23)

The solution of this linear system is searched using Gauss-Seidel relaxation
method. Until convergence, every site n of the grid S’ is iteratively updated
according to:

d/ﬂJlZ =wt — (V| Vf a, + ff)ﬂ + detAw¢, + COmA(quff)n
o (v + traceA) + detA

(24)



with

L2 l ¥4
Aév KTAZV £ _ ||fz||n <fm|fy>n ,
I an¥E = 70, I

and “detA”, “traceA”, “comA” stand respectively for the determinant, the trace
and the cofactor matrix of A. Note that in the above expressions, ff;, 2, ff
vectors, and Vf¢ matrices as well, are displayed without (n,w) for the sake of
concision.

Minimization w.r.t. the partition and associated weights: Once the in-
cremental motion field dw’ and its associated weights are fixed, one has then to
minimize H w.r.t. the unknown partition P and the parametric likeness weights
n, respectively. This optimization is conducted in the same alternate minimiza-
tion spirit.

First the partition being fixed, the parametric weights and the motion param-
eters (0;) are estimated through an iterated reweighted least squares estimation.
For a given region R; € P!, the update of the motion parameter vector is:

Oi=1|> > n(FIP)| Y Y nPl(w,+dwl),  (25)

nER; seBf nER; seBl

while the parametric likeness updating rule is:
. 1 .
s = 65 (lws + dw), - wl|). (26)

Afterwards, the partition Pf has to be estimated. This estimation is done in
two distinct steps: a local deformation step and a global deformation step. The
first one consists in moving each point of the border 0P within a small neigh-
borhood in order to lower the associated energy terms. The second one consists
in considering global transformations of the partition P such as appearance of
new regions or merging of two adjacent regions. Let us carefully describe these
two stages.

Local deformations: Iterative local deformations of the regions will be obtained
by “moving” border sites of P. This yields a new segmentation P’. Figure 4.2
shows an example of such deformations and settles the notational convention
used in the following.

Let us compute the energy difference between two partitions P and P’. Let
us denote AGP' = P’ — OP the set of boundary pieces of partition P’ that
were not included in &P and AP = P — P’ the set of border elements
that have disappeared. Furthermore let us introduce the set composed of new
portions of region created: AP' = {AR), i =1...N} (where AR, = R, — R;)
and the dual set of removed region portions AP = {AR;, i = 1...N} (where



AR,

AR,

Fig. 1. Example of local deformations of the partition

AR; = R;—R}). Assuming that region-wise motion parameters remain the same
(since the deformation is only local) we have:

~ o ¢ [
HE(P') ~HY(PY) = Eprior(AIP") = Eprior (AP + Y | T | > Ber—
OnmEADPIE T

Yo et XYY e+ dul—w) -

1
On,m EAIP! ”’m| <s,r>€0dl .. ARLEAPEn€AR] seBL

o> Y pslllws +dwh, — wi)). (27)

AR;EAPE MEAR; seBE,

<s,r>€df .,

The energy variation corresponding to a local deformation of the partition bor-
ders involves only local descriptors and is easily incrementally computed. In
practice, a new position is considered for each border element of the current
partition P¢. If this position corresponds to an energy decrease it is accepted
and the partition is updated. In all of our experiences, a border element is al-
lowed to move one site forward or backward in the direction perpendicular to
the border. Let us note that these displacements may be quite large (2¢ sites) at
coarse grid levels. However, we will suppose that our constancy assumption on
motion parameters is still valid. This provides large computation time savings
since the motion parameters do not have to be re-estimated.

Global deformations: The global deformations concern situations where the
topology of the partition map is changed. This includes for example the ap-
pearing of new regions or the merging of adjacent regions. Other kinds of global
transformations (e.g., rotations, scalings) could be also considered. In this work,
only merges and appearance of new regions is considered.

The merging of two adjacent regions consists in removing their common
boundary, when this yields a global energy decrease. Let P’ = P — {Ri,R;} U
{R; UR,} be obtained from P by the merging of R; and R;. The difference of



energy is Hf(P) — HE(P'):

) D Bar |+

<s, r>€8e

M1
> |G, van i 2 o

r>E0! k|

R
G(Ri) NG(R;)

>3 D slllws+dwl—wE s )= pa s +dwf, - ||w@k||>] Bprior (1),

ke{i,j} n€Rk seB’,
(28)

where G(R;) denotes the set of adjacent regions of R; — with R; & G(R;). This
expression is evaluated for each pair of adjacent regions. The boundary leading
to the greatest energy decrease is removed from the partition boundaries set and
the corresponding regions are merged. This process is repeated until a complete
stability is reached. Let us note that the motion parameter ©; ; corresponding to
region R; UR; has to be estimated only once (by iterated weighted least squares
Equ. (25) and (26)), the first time the merging of the pair is evaluated.

The inclusion of a new region is evaluated according to a Markovian classi-
fication of the parametric likeness weights into two classes: ¢ € {0,1}. The first
class gathers the outliers to the parametric likeness model whereas the second
one groups points where the affine model fits well the dense velocity. A stan-
dard Markov random field model for supervised image classification is specified
through the following energy (formulated here directly in the multigrid formal-
ism):

xf—argmlnz Z 02 m(z*) —n;] +21H'1 1A Zl zt) (29)

nest seBY <n,m>€eCf .

where 1(z,y) = 1 if z = y and 1(z,y) = 0 otherwise. The parameters o (0)
and m(0) (respectively o(1) and m(1)) stand for the standard deviation and the
mean of the outlier class (respectively the inlier class). In all the experiences
these parameters have been fixed to the same set of values. If a sufficiently large
region of outliers is detected by the classification process then it is included as
a new region in the partition.

Global deformations obviously involve far more expensive computations than
local deformations. Therefore, in practice, they will be only considered at the
beginning of each grid level.

A sketchy synopsis of the overall method is presented in Fig. 2 within the
multiresolution setup. In this figure, the subscript k£ represents the resolution
level. At the coarser resolution, the flow field is initialized to a null field associated
to a partition composed of an unique region (the whole image). At that level,
the partition is frozen in order to have a first crude estimate of the optical
flow. At finer resolutions, the partition is initialized by a projection of previous
segmentation on which global deformation process is run right away.



@ initialization of the partition and the flow

A global segmentation update
%classiﬁca.tion of likeness weights and merging)

O iterative deterministic algo. with local
segmentation update (and fixed optical flow)

O iteratively reweighted least squares estimation
of the optical flow (with fixed segmentation)

g alternate use of O and O

final estimation/segmentation

Fig. 2. Schematic synopsis of the complete estimation/segmentation method
5 Experimental results

The experiences have been carried out on synthetic sequence (for which a ground
truth on the flow field to recover exists) and two real-world sequences. The first
sequence is the well known Yosemite synthetic sequence (Fig. 3). The second
test sequence is a Parking lot sequence which involves two cars moving in the
foreground while the camera pans the scene. (Fig. 4). The last sequence, named
Calendar includes several moving objects (a calendar moving vertically and a toy
train pushing a ball) and an horizontal panning of the camera (Fig. 5).

As for the robust estimator, we choose the Leclerc’s estimator [14]: p(z) =
1-— exp(i—z). Let us note that for each sequence, the same set of parameter values
have been kept along the multiresolution setup and the multigrid structure. The
number of resolution levels was respectively 2 for Calendar and Yosemite and 1
for Parking lot. The number of grid levels were fixed to 6 for Calendar and to 5
for the two others. The other parameters were tuned according to the amplitude
of motion present in each sequence.

[Flow | i [ o | density] [Technique | & | o [density]
Parametric flow([4.54°[8.37° 100%| [H. and S. (original) |31.69°[31.18°] 100%
Dense flow 4.91°|8.46° 100%| [H. and S. (modified)| 9.78° [16.19°| 100%
A Estimation/segmentation method A [Uras et al. 8.94° [15.61°] 100%
[Dense flow [15] [5.37°[8.19]  100%]| |Lucas and Kanade |4.28” [11.41°[ 35.1%

A Optic-flow estimation alone A Fleet and Jepson 4.63% [13.42°] 34.1%

Table 1. Comparative results on Yosemite

Following [4], we provide quantitative comparative results on Yosemite. Angu-
lar deviations with respect to the actual flow field have been computed. Tables
above list the mean angular error () and the associated standard deviation
(0). They gather some of the results presented in [4] and those obtained by the
estimation-segmentation method. In the latter case, we report the results for the
parametric likeness flow and for the dense flow. Results obtained by the robust
multigrid optical flow estimation method [15] without the segmentation coupling
are also given.



As may be seen from this table, our method provides almost as good results
as those obtained with the best non-dense method. Compared with a single es-
timation of the optical flow the estimation-segmentation we propose improves
the mean of the angular error. Furthermore, through the partition estimation we
now have access to a global representation of the scene structure. Indeed, the ob-
tained partition suggests a sensible planar patch representation of the underlying
scene (Fig. 3). The parametric likeness field is actually a good approximation

(O o " s .,
I ' W o N
Fig. 3. Results on Yosemite (224 x 288): (a

L =4, (b, c, d) final partitions (£ =4,2,0
(cpu-time~8mn.)

partition initialization at the coarsest level
, (e) dense optic flow, (f) parametric flow.

T e

of the dense estimated flow field. This nice behavior of the method is confirmed
by the results obtained on Calendar and Parking lot. For instance, in Calendar
some difficult regions (such as the roof of the wagon or the space between the
locomotive and the wagon) are fairly well recovered (Fig. 5). These remarks hold
also in the Parking lot case where the method retrieves an interesting “structural
approximation” of the front car (Fig. 4). We should also outline that the method
is not very sensitive to the initialization. More precisely, the method is able to
recover meaningful partitions of the flow field from quite “distant” initializations
(see for instance Fig. 5 and Fig. 3).

Rough estimates of the computation times (code not hand-optimized) ob-
tained on a Sun Ultra Sparc (200 Mhz) are also given in the captions of figures
3, 4 and 5.

6 Conclusion

In this paper we have presented a method which relies on bilateral coupling
between a dense optical flow estimator and a segmentation process. This ap-
proach is based on a global energy function where the interaction between the
two processes lies both at the borders, through analog line process, and within
each region through a parametric modeling of velocities.

The minimization of the global energy function is done using an efficient
multigrid approach over both configuration spaces (dense velocity fields and



Fig. 4. Results on Parking lot (224 x 224): (a) partition initialization at level £ = 4,
(b, ¢, d) final partitions (£ = 3,2,0), (e) dense optic flow, (f) parametric flow. (CpU-
TIME~/mn 30s.)
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Fig.5. Results on Calendar (256 x 256): (a) partition initialization at level £ = 4,
(b,c,d) final partitions (£ = 5,3,0), (e) dense optic flow, (f) parametric flow. (CPU-
TIME~8mn.)



image partitions). The overall minimization involving only incremental compu-
tation is computationally reasonable.

We have experimentally demonstrated that this coupling between a dense
optical flow estimator and a segmentation process () improves the global quality
of the recovered dense flow field and (7) provides a structural description of the
entire motion field, and consequently of the underlying scene.
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