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Abstract

In this paper we present a method for the temporal tracking offluid flows velocity fields. The

technique we propose is formalized within a sequential Bayesian filtering framework. The filtering

model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity

form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In

order to handle a state space of reasonable dimension, the motion field is represented as a combination of

adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field.

The resulting non linear filtering problem is solved with theparticle filter algorithm in continuous time.

An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical

systems theory. The efficiency of the tracking method is demonstrated on synthetic and real world

sequences.

Index Terms

Motion estimation, tracking, non linear stochastic filtering, fluid flows.

I. INTRODUCTION

The analysis and understanding of image sequences involving fluid phenomena has important

real world applications. Let us cite, for instance, the domain of geophysical sciences such as

meteorology and oceanography, where one wants to track atmospheric systems for weather

forecasting or for surveillance purpose, estimate ocean streams or monitor the drift of passive

entities such as icebergs or pollutant sheets. The analysisof geo-physical flows from satellite

images is of particular interest in large regions of the world, such as Africa or the South

hemisphere, which are facing a very sparse network of meteorological stations. A more intensive

use of satellite images might provide these lacking informations. Images have also a finer spatial

and temporal resolution than the large scale dynamical models used for weather forecasting.

Image data offers then a richer information on small motion scales. However, the analysis of

flows quantities is an intricate issue as the sought quantities are only indirectly observed on a 2D

plan through a luminance function. Because of this difficulty, satellite images are very poorly

used in forecasting models.

The analysis of fluid flow images is also crucial in experimental fluid mechanics, in order to

analyze flows around wing tips or vortex shedding from airfoils or cylinders. Such an analysis

allows to get dense velocity measurements by the way of non intrusive sensors. This enables

April 28, 2008 DRAFT



3

fluid mechanicians in particular to have a better understanding of some phenomena occurring in

complex fluid flows, or to settle specific actions in view of flowcontrol. This last problem is a

major industrial issue for several application domains, and such a control is hardly conceivable

without having access to kinematical or dynamical measurements of the flow. Imaging sensors

and motion analysis provide a convenient way to get these measurements.

For the analysis of complex flows interactions like those encountered between fluid and

structures, in sea-atmosphere interactions, dispersion of polluting agents in seas and rivers, or for

the study of flows involving complex unknown border conditions, image data might be a very

interesting alternative to a pure dynamical modeling in order to extract quantitative flow features

of interest. To that end, the knowledge developed in the computer vision for video sequence

analysis, 3D reconstruction, machine learning, or visual tracking, are extremely precious and

unavoidable. However, the direct application of such general frameworks are likely to fail in a

fluid context, mainly because of the highly non linear natureof fluid dynamics, which involves

a coupling of a broad range of spatial and temporal scales of the phenomenon. In this context,

it is necessary to invent techniques allowing the association of a fluid dynamical modeling and

image observations of the flows. The study proposed here is a first attempt to such an issue.

For all the kinds of aforementioned applications and domains, it is of major interest to track

along time the most accurately as possible representative structures of the flow. Such a temporal

tracking may be obtained from deterministic integration methods, such as the Euler method or

the Runge and Kutta integration technique, from successiveindependent motion estimates. These

numerical integration approaches rely on a continuous spatio-temporal vector field description

and thus require the use of interpolation schemes over the whole spatial and temporal domain

of interest. As a consequence, they are quite sensitive to local errors in measurements or to

inaccurate motion estimates. When the images are noisy or ifthe flow velocities are of high

magnitude and chaotic as, for instance, in the case of turbulent flows, motion estimation tends to

be quite difficult and prone to errors. Another major difficulty in motion estimation is the temporal

consistency between estimates. This problem is inherent tomotion estimation techniques (see for

instance [3] for an extended review on motion estimation techniques). As a matter of fact, most

of the motion estimation approaches use only a small set of images (usually two consecutive

images of a sequence) and thus may suffer from a temporal inconsistency from frame to frame.

The extension of spatial regularizers to spatio-temporal regularizers [36] or the introduction of
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simple dynamical constraints in motion segmentation techniques rely mainly on crude dynamic

assumptions or that are related to rigid object motion only [19].

Some recent contributions [20], [29], [30], [34] aim at improving the temporal consistency

and the robustness of the estimations over the whole sequence, introducing a physical evolution

law in the estimation process. The dense motion estimation methods dedicated to fluid flows,

based on a spatial regularization of the vector fields, have been extended to integrate temporal

constraints related to the fluid flow evolution [22], [35], [33]. These constraints are either derived

from the vorticity-velocity formulation of the Navier-Stokes equation [22], [35], or from Stokes

equation [33]. Recent techniques based on variational tracking methods rely on similar dynamical

models [29], [30]. In that case, the temporal tracking is based on an optimal control concept.

Successive noisy estimations of the vector fields are then smoothed and corrected according to

the considered conservation law. One advantage of the variational tracking method is that the

state vector of the system can be of very high dimension. However, a restriction is that this

approach relies on a Gaussian assumption, in the same spiritas a Kalman smoother.

We choose here to formulate the temporal tracking as a stochastic filtering problem. The ob-

jective of stochastic filtering (presented in the section II) is to estimate the state of a time-varying

system, indirectly observed through noisy measurements. The target of interest is described by

random vector variables, evolving following a state equation. The state can evolve in discrete or

continuous time. The typical situation in image analysis isto describe the evolution of a state with

a discrete time model, where the time step corresponds to theimage time step. Auto-regressive

models or data-driven dynamic models are the most frequently used, when the information about

the underlying dynamical law is poor or is estimated from theimages.

If the phenomena of interest are continuous by nature, a continuous dynamical model is a more

realistic approach. Such a continuous dynamics describingthe evolution of the state vector of

the interest in the image plane may be derived from physical conservation laws. These laws may

be perfectly reproduced if their expressions are simple, orapproximated up to an uncertainty,

modeled as a noise term. The description of the state model from such a continuous evolution

law is then the better way to reproduce faithfully the natureof the phenomena. Moreover, abrupt

changes can be observed between two distant observations ifthe evolution of the state is very

non linear or chaotic. A continuous dynamical model is more adapted in this case, to take into

account a long interval of time between two measurements. This is the case for fluid flows, as
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they are associated to a highly non linear and continuous evolution law by nature. Note that the

observation process may also be considered as continuous, if the time step between observations

is small enough. However, for observations coming from image sequences, the measurements are

supposed to be given at discrete time instants. In addition,the time step between two observations

can be quite long (in meteorological or oceanographic applications for instance).

The choice of a probabilistic approach enables to cope with any non linearity in the evolution

model and to deal with a non linear relation between the stateand the measurements extracted

from the images. The general stochastic filtering problem does not rely on any Gaussian assump-

tion or linearity of the model. However, the filtering problem associated to such non linear models

does not have any explicit analytical solution and is usually difficult to implement numerically

for a high dimensional state vector. As a matter of fact, Monte-Carlo probabilistic tracking

methods as proposed in the literature [17], [23], [31] are efficient only to track objects of reduced

dimension such as points or curves described by several discrete control points. These techniques

are not able to cope with high dimensional features such as dense vector fields. In our work, in

order to handle motion fields of reasonable dimension, we rely on an original parametrization of

fluid flows [15], [13] relying on adequate basis functions. The used basis functions stem from

Biot-Savart integration of a regularized discretization of the vector field vorticity and divergence

maps [7], [12]. Such a representation enables a reduced-size representation of a fluid motion. The

second difficulty is related to the continuous nature of the involved dynamic evolution law. The

problem consists thus in the definition of an appropriate sequential Monte-Carlo approximation

of a stochastic filter which combines a continuous dynamicallaw expressed as a stochastic

differential equation and discrete measurements extracted from the image sequence.

The paper is organized as follows. The stochastic filtering problem is presented in section II.

In particular, the principle of a continuous non linear filtering with an appropriate continuous

version of the particle filter algorithm is exposed. The construction of the filtering model we

propose to solve the fluid flows velocity fields tracking problem is presented in the section III.

We present then in section IV the application of an adaptive dimensional reduction method to

our high-dimensional tracking problem, relying on dynamical systems theory. The last section

shows tracking results for synthetic and real examples, with applications in experimental fluid

mechanics and meteorology. This paper extends a previous conference paper [14].
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II. STOCHASTIC FILTERING PROBLEM

We present in this section the stochastic filtering problem in continuous time with discrete

observations. The particle filter for the discrete case is recalled, and its continuous time version

is presented.

A. Filtering model

The random vectorx describes the state characteristics and the observations are denoted by

z. The state process(xt)t≥t0 evolves in continuous time according to a stochastic differential

equation. The observations(ztk)tk≥t1 are given at time instantstk and form a discrete process.

At each timetk, the measurement equation relates the observationztk to the statextk . The

corresponding state space model is described by:




dxt = f(xt)dt+ σ(xt)dBt,

ztk = g(xtk) + vtk ,
(1)

wheref(xt) is the deterministic drift term of the stochastic differential equation,σ(xt) is the

diffusion term relative to the Brownian motionBt andvtk is a given noise. The functionsf and

g are non linear in the general case.

B. Optimal filtering

The optimal filtering solution computes the filtering distributionp(xtk |zt1:tk) at each measure-

ment timetk. This distribution can be obtained recursively by the Bayesian filtering equations.

Indeed, assumingp(xtk−1
|zt1:tk−1

) is known, the filtering distributionp(xtk |zt1:tk) is evaluated in

two steps:

• The prediction step evaluates the predicted filtering distributionp(xtk |zt1:tk−1
) from

p(xtk−1
|zt1:tk−1

) and the transition distributionp(xtk |xtk−1
):

p(xtk |zt1:tk−1
) =

∫
p(xtk |xtk−1

)p(xtk−1
|zt1:tk−1

)dxtk−1
; (2)

• The correction step integrates the new observationztk through the knowledge of the

likelihood p(ztk |xtk). The filtering distribution is then updated in the followingway:

p(xtk |zt1:tk) =
p(ztk |xtk)p(xtk |zt1:tk−1

)∫
p(ztk |xtk)p(xtk |zt1:tk−1

)dxtk

. (3)
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Note that the update step is performed at the measurements timestk only. Between two consec-

utive measurement timestk−1 and tk, the filtering distribution can be defined by its predicted

form p(xt|zt1:tk−1
) for tk−1 < t < tk, wherep(xt|zt1:tk−1

) =
∫
p(xt|xtk−1

)p(xtk−1
|zt1:tk−1

)dxtk−1
.

C. Particle filter

In the case of a linear state model and a linear and Gaussian measurement model, the closed-

form solution of the filtering problem is known. The filteringproblem is solved with the Kalman

filter. For the non linear case, the exact solution of the optimal filtering equations is not available.

For weak non linearities the filtering distributions can be approximated by a Gaussian. However,

this approximation is too restrictive for most of the tracking problems in vision. A better choice

is to use a Monte-Carlo approximation of the filtering density:

p(xtk |zt1:tk) ≈
N∑

i=1

w
(i)
tk
δ
x

(i)
tk

(xtk), (4)

where δ
x

(i)
tk

(xtk) denotes the delta measure centered onx
(i)
tk

, which means thatδ
x

(i)
tk

(xtk) = 1

if xtk = x
(i)
tk

, else0. The weighted set of particles (calledtrajectories in the rest of the paper)

{x(i)
tk
, w

(i)
tk
}i=1:N can be updated and reweighted recursively with the particlefiltering method,

leading to a recursive Monte-Carlo approximation of the filtering density.

1) Discrete time particle filter:We recall briefly the particle filter algorithm [17], [23] for

the particular case of a fully discrete state space model of the form:




xk = f(xk−1) + wk−1,

zk = g(xk) + vk,
(5)

with wk−1 and vk denoting independent noises. During the prediction step, each trajectory is

sampled from an approximation of the unknown posterior distribution called the importance

distribution. The correction step consists in a recursive evaluation of each weight, using the

measurement likelihood.

• Prediction step (sampling w.r.t. the importance distribution)

x
(i)
k ∼ π(xk|x(i)

0:k−1, z1:k) i = 1 : N; (6)

• Correction step and normalization (taking into account the measurement likelihood)

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1, z1:k)
and w̃

(i)
tk

=
w

(i)
tk∑N

j=1w
(j)
tk

i = 1 : N. (7)

April 28, 2008 DRAFT



8

Note that a resampling step is usually added in order to avoidthe degeneracy problem of the

set of trajectories. This resampling procedure aims at removing trajectories with small weights

and duplicating trajectories with stronger weights. The two steps (6) and (7) together with the

resampling of the trajectories form the particle filter. Theperformance of the algorithm depends

then on the choice of the importance distributionπ(xk|x(i)
0:k−1, z1:k). The optimal importance

function in terms of variance of the weights isπ(xk|x(i)
0:k−1, z1:k) = p(xk|x(i)

k−1, zk) [17]. This

optimal function is unfortunately only available for a linear measure equation with Gaussian or

mixture of Gaussian likelihood [1]. When such an optimal importance function is not available,

the importance function is often simply set to the prediction density [23]:π(xk|x(i)
0:k−1, z1:k) =

p(xk|x(i)
k−1). In that case, the recursive formulation of the weightsw

(i)
k simplifies as:

w
(i)
k ∝ w

(i)
k−1p(zk|x(i)

k ). (8)

2) Continuous-discrete time particle filter:The particle filter algorithm can be extended to a

general continuous model [16]. Indeed, the importance distribution can be fixed to the transition

densityp(xtk |xt
(i)
k−1

) between two observation timestk−1 and tk (as for the bootstrap particle

filter [23]). For a general continuous model of the form (1) the prediction and correction steps

of the algorithm are then:

• Prediction step

x
(i)
tk

∼ p(xtk |x
(i)
tk−1

) i = 1 : N; (9)

• Correction step and normalization

w
(i)
tk

∝ w
(i)
tk−1

p(ztk |x
(i)
tk

) and w̃
(i)
tk

=
w

(i)
tk∑N

j=1w
(j)
tk

i = 1 : N. (10)

The prediction step consists in sampling trajectories{x(i)
t : tk−1 ≤ t ≤ tk}i=1:N from the

stochastic differential equation describing the continuous evolution of the state:

dx
(i)
t = f(x

(i)
t )dt+ σ(x

(i)
t )dB

(i)
t , (11)

from the initial conditions{x(i)
tk−1

}i=1:N, where{B(i)
t }i=1:N are independent Brownian motions.

The simulation from the SDE (11) can be done with the Euler scheme or other numerical

simulation methods of stochastic differential equations [24]. The Euler scheme has the following

form:

x
(i)
t+∆t = x

(i)
t + f(x

(i)
t )∆t+ σ(x

(i)
t )(B

(i)
t+∆t −B

(i)
t ), (12)
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where the incrementsB(i)
t+∆t−B

(i)
t are independent Gaussian noises with zero mean and variance

∆t. Note that the discretization step of the simulation is muchsmaller than the time steptk−tk−1

between two observations.

The correction step of the filter and the resampling procedure are similar to the discrete case.

III. CONSTRUCTION OF THE FILTERING MODEL

This section describes the filtering model of type (1) we havesettled for the fluid flows velocity

fields tracking problem. Considering a dense representation for motion fields constitutes a state

space of too high dimension for the particle filtering. As a matter of fact, sampling a probability

distribution over such a state space is infeasible in practice. The first task to implement such a

filtering approach consists to define an appropriate low dimensional representation of the flow

to reduce the complexity of the problem to solve. We describein section III-A the low order

representation of fluid flows velocity fields on which we rely in this work. Then, in section III-B,

the dynamical evolution law associated to this reduced representation of fluid flows is presented.

The complete state model we propose for this tracking problem is then defined in section III-C.

The presentation of the associated measurement model is described in section III-D. The global

filtering model and the associated continuous particle filter are detailed in section III-E.

A. Low dimensional representation of fluid flows

1) 2D vector fields reminder:A two-dimensional vector fieldw is a R
2-valued map defined

on a bounded setΩ of R
2. We denote itw(x) = (u(x), v(x))T , wherex = (x, y) and x and

y are the spatial coordinates. The vorticity is defined byξ(x) = curlw(x) = ∂v
∂x

− ∂u
∂y

and the

divergence is defined byζ(x) = divw(x) = ∂u
∂x

+ ∂v
∂y

. The vorticity accounts for the presence

of a rotating motion, while the divergence is related to the presence ofsinksor sourcesin the

flow. A vector field that vanishes at infinity can be decomposedinto a sum of anirrotational

component with null vorticity and asolenoidalcomponent with null divergence. This is called

the Helmholtz Decomposition[11], [38]. Let us remark that such a decomposition for a dense

motion field can be computed in the Fourier domain [11] or directly specified as a motion

estimation problem [37], [38] from the image sequence. Whenthe null border condition can

not be imposed, atransportationcomponent, with null vorticity and null divergence, must be
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included. This component can be approximated using the Hornand Schunck estimator with a

strong regularization coefficient [10].

Let us note that the tracking method we propose is adapted to the solenoidal component of

vector fields. In the rest of the paper, the vector fieldw will then denote the solenoidal part of

the flow. The divergent motions, if any, are not tracked and have to be estimated from successive

pairs of images. Moreover, we assume that the transportation component is known over the whole

sequence.

It is known [11] thatw(x) = ∇
⊥ψ(x), whereψ is a potential function and∇⊥ = ( ∂

∂y
,− ∂

∂x
).

The potential functionψ is solution of a Poisson equation:∆ψ(x) = ξ(x), where∆ denotes the

Laplacian operator. LetG be the Green’s function associated to the Laplacian operator in 2D:

G(x) = 1
2π

ln(‖x‖) [9] . The solutionψ is then obtained by convolution:

ψ(x) = G ∗ ξ(x) =
∫

R2 G(x − u) curl w(u)du .

Finally, w(x) = K ∗ ξ(x) whereK(x) = ∇
⊥G(x) = x⊥

2π‖x‖2 . Note that this relation between the

solenoidal componentw and the scalar vorticityξ is known as theBiot-Savart integral[9].

2) Vorticity approximation with vortex particles:The idea of vortex particles methods [7],

[25] consists in representing the vorticity distribution of a field by a set of discrete amounts of

vorticity. A discretization of the vorticity into a limitednumber of elements enables to evaluate

the velocity field directly from the Biot-Savart integral. The vorticity is represented by a sum

of smoothed Dirac measures, in order to remove the singularities induced by the Green kernel

gradient K. The smoothing function is calledcutt-off or blob function and is generally a radially

symmetric function scaled by a parameterǫ: fǫ(x) = 1
ǫ2
f(x

ǫ
). A vortex particles representation

of the vorticity map reads then:

ξ(x) ≈
q∑

j=1

γjfǫj
(x − xj), (13)

wherexj denotes the center of each basis functionfǫj
, the coefficientγj is the strength associated

to the particle, andǫj represents its influence domain. These parameters are free to vary from

a function to another. Replacing the vorticity by its approximation (13) into the Biot-Savart

integral leads to:

w(x) ≈
q∑

j=1

γjKǫj
(x − xj), (14)
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whereKǫj
is the smoothed kernelKǫj

= K ∗ fǫj
. For some well chosen cutt-off functions, an

analytical expression forw may be obtained [12], [13]. With a Gaussian function for instance,

the motion field writes:

wsol(x) ≈
q∑

j=1

γj

(x − xj)
⊥

2π‖x − xj‖2

(
1 − exp

(
−‖x − xj‖2

ǫj2

))
. (15)

Note that a similar orthogonal expression can be obtained for the irrotational component, with

source particles[13].

Let us note that in the context of fluid flows, other approachescan be considered to reduce

the number of state variables describing the model. For instance, it is possible to rely on the

global knowledge of the flow in order to construct a reduced representation of it. The flow can

then be described by its spectral modes [6] or by spatial basis functions in case of the POD

(proper orthogonal decomposition [4]). These methods are widely used for the simulation of fluid

flows. For flows exhibiting a repetitive behavior, the POD offers a very efficient representation.

Such a decomposition is computed from series of experimental measures, and a singular value

decomposition of the autocorrelation function. The reduced dynamical model is then obtained

by a Galerkin projection of the most energetic modes on the Navier-Stokes equation. However,

such a representation is dedicated to given experimental configuration and can not be used in

a different context. For geophysical applications (meteorology, oceanography, glaciology), it is

difficult to obtain such a basis of realizations of the same phenomenon. These methods are thus

not adapted. At the opposite, the vortex particles allow to construct a reduced representation of

the flow without anya priori knowledge on the flow. Note that in the same spirit, a wavelet

decomposition can also be proposed [18]. However, one advantage of the vortex particles is that

the flow dynamics is described by a set of elements which have adirect physical interpretation.

The approximation is indeed based on the vortices of the flow.Finally, the temporal evolution

of the flow can be described on the basis of these elements, from the Navier-Stokes equation.

This will be detailed in the next section.
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B. Vortex particles dynamics

The temporal evolution of an incompressible fluid flow (with null divergence) is described in

2D by the Navier-Stokes equation:

∂w

∂t
+ (w · ∇)w = −1

ρ
∇p+ ν∆w, (16)

wherep is the pressure,ρ is the fluid density andν is the viscosity coefficient of the fluid. The

equivalent velocity-vorticity formulation writes:

∂ξ

∂t
+ (w · ∇)ξ = ν△ξ. (17)

In this last formulation, the evolution of the flow is described through the variation of the vorticity,

without pressure term. The vorticity is transported by the velocity w, and diffuses following the

viscosity coefficient. This equation can be solved numerically in two distinct steps: the transport

and the diffusion steps [7]. The transportation of the vorticity without the diffusion effects is

first described by:
∂ξ

∂t
+ (w · ∇)ξ = 0, (18)

then the vorticity diffusion (related to the viscosity of the fluid) is described by the heat equation:

∂ξ

∂t
= ν∆ξ. (19)

1) Vorticity transportation: This step is implicitly solved by the Lagrangian nature of the

vortex particles. Indeed, the centerxl of each vortex particle is simply moved by its own velocity

w(xl). The displacement of one centerxl is described by:

dxl

dt
= w(xl), (20)

wherew(xl) is evaluated from all the other positions following equation (14):

w(xl) =

q∑

j=1

γjKǫj
(xl − xj). (21)

In practice a Gaussian smoothing function is used to computethe kernelKǫj
, as written in

equation (15).

We recall that when the null border conditions for the velocity field can not be imposed, it

is necessary to take the global transportation component (denotedwtra) into account. This

component is supposed to be known and can be added to the displacement (21):

w(xl) =

q∑

j=1

γjKǫj
(xl − xj) + wtra(xl). (22)
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2) Vorticity diffusion: The diffusion part can be solved by Chorin’srandom walk method[7].

This method is stochastic and relies on the relation betweendiffusion and Brownian motion.

There is indeed a correspondence between the distribution of particles undergoing a random

walk and the solution of the heat equation [9]. The method then consists in applying a Gaussian

perturbation to each vortex particle’s center. For a time step ∆t, the perturbation has zero mean

and variance2ν∆t. This random displacement is added to the transportation (22).

Note that the diffusion can be simulated by other deterministic methods [12]. However, one

advantage of the stochastic approach is that it allows a complete probabilistic interpretation of

the 2D incompressible Navier-Stokes equation. In fact, thevorticity-velocity formulation of the

Navier-Stokes equation belongs to the class of MacKean-Vlasov equations. It has then a rigorous

interpretation in terms of stochastic interacting particles systems [5], [26], [27].

3) Interacting particles system:The evolution of theq vortex particles is finally described by

the following system:

dxl,t =

q∑

j=1

γjKǫj
(xl,t − xj,t)dt+

√
2νdBl,t, 1 ≤ l ≤ q, (23)

whereBl,t is a Brownian motion of dimension 2. The system can be rewritten in a compact

form, definingx = (x1, . . . ,xq)
T andw(x) = (w(x1), . . . ,w(xq))

T :

dxt = w(xt)dt+
√

2νdBt, (24)

whereBt is a standard Brownian motion of dimension2q with independent components. Note

that in this model, contrary to the general model defined in (1), the diffusion part does not

depend on the statext but is only related to the viscosityν of the fluid.

C. State model for the filtering approach

In our filtering model, the state vectorx = (x1, . . . ,xq)
T is composed of theq centers of

vortex particles used to represent the flow. We also recall that the random part of the model (24)

expresses the vorticity diffusion. This describes a physical phenomenon but does not include

the model uncertainties. These uncertainties may come fromvarious sources:(a) Non-adequacy

of the 2D model to the image sequence (because we observe 3D phenomena through apparent

velocities in the image plane);(b) Error in the approximation of the vorticity by a weak number of

vortex particles (smoothing of some scales);(c) Bad knowledge of model parameters (strengths
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and influence domains of vortex particles). In order to include these noise factors into the filtering

model, we add an artificial random termη to the state model:

dxt = w(xt)dt+ σsdBt, whereσs =
√

2ν + η. (25)

D. Measurement model

We recall first that the dense velocity fieldwt can be reconstructed at each timet from the

knowledge of the vectorxt = (x1,t, . . . ,xq,t)
T and the model parameters. The displacement is

given by:

wt(x) =

q∑

j=1

γjKǫj
(x − xj,t) ∀x ∈ Ω. (26)

A regionRj is fixed around each centerxj , corresponding to the influence domain of the basis

function, and characterized by the parameterǫj . DenotingR = ∪q
j=1Rj, the observation vector

is then defined at timetk by:

ztk = (Itk(x))x∈R, (27)

whereItk(x) is the intensity of the pointx in the image observed at timetk. The measurement

model is based on a brightness consistency assumption:

Itk(x) = Itk+1
(x + wtk(x)) + utk , (28)

defined up to a Gaussian noiseutk ∼ N (0, σ2
m). The parameterσm controls the uncertainty in

the measurement model. This term traduces the uncertainty in the observations, if the quality

of observed images is bad for instance. Besides, this uncertainty term allows to deal with an

eventual non validity of the brightness consistency assumption. Let us note that this general

brightness consistency model can be adapted to specific situations [2], [20], [22], [21].

Assuming thatItk(x) and Itk+1
(x′) are independent conditionally toxtk ∀(x,x′) ∈ R, the

likelihood of the vector of observationsztk reads:

p(ztk |xtk) =
∏

x∈R

p(Itk(x)|xtk), (29)

and consequently:

p(ztk |xtk) ∝ exp

(
−
∫

R

(Itk(x) − Itk+1
(x + wtk(x)))2

2σ2
m

dx

)
. (30)

Note that the construction of the likelihood at timetk relies on the assumption that the image

Itk+1
is available. The dependence graph of our filtering model is then described by the figure

1.
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Fig. 1. Dependence graph of the filtering model.

E. Filtering scheme for velocity fields tracking

The complete filtering model is finally defined by the state model (25) and the likelihood (30):




dxt = w(xt)dt+ σsdBt,

p(ztk |xtk).
(31)

As both the evolution model and the measurement model are nonlinear, a non linear filtering

technique must be used to solve the filtering problem. The particle filter for a continuous-discrete

model, as presented in section II-C, is adapted to such a highly non linear problem. The overall

velocity fields tracking method is finally composed of the following steps:

• tk = t0 : Initialization of the state vectorxt0 = (x1,t0 , . . . ,xq,t0)
T composed ofq vortex

particles positions and their associated strength and influence parameters{γj, ǫj}j=1:q. Note

that the influence parameters are initialized so that vortexparticles overlap. The initial

vorticity distribution is then estimated from the first pairof images. The corresponding

parameters estimation problem is constructed from the representation (15), incorporated

within a spatio-temporal variation model of the luminance function. This estimation method

has been described in previous papers [15], [13].

• tk = t1, t2, . . . :

◦ Prediction of vortex particles trajectories: Simulation ofN trajectories{x(i)
t : tk−1 <

t ≤ tk}i=1:N from the initial conditions{x(i)
tk−1

}i=1:N with the Euler scheme:

x
(i)
t+∆t = x

(i)
t + w(x

(i)
t )∆t+ σs

√
∆tη

(i)
t , where η

(i)
t ∼ N (0, I2q); (32)

◦ Correction and normalization of trajectories weights:

w
(i)
tk

∝ w
(i)
tk−1

p(ztk |x
(i)
tk

) and w̃
(i)
tk

=
w

(i)
tk∑N

j=1w
(j)
tk

i = 1 : N; (33)

◦ Estimation:
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∗ Estimated filtering distribution:

p̂(xtk |zt1:tk) =
N∑

i=1

w̃
(i)
tk
δ
x

(i)
tk

(xtk); (34)

∗ Estimated state:

x̂tk = (x̂1,tk , . . . , x̂q,tk)
T =

N∑

i=1

w̃
(i)
tk

x
(i)
tk

; (35)

∗ Estimated velocity field:

ŵtk(x) =

q∑

j=1

γjKǫj
(x − x̂j,tk) ∀x ∈ Ω. (36)

Note that the filtering distribution̂p(xtk |zt1:tk) is estimated at observations timestk only. How-

ever, it can be defined between two measurement timestk−1 and tk by its predicted form:

p(xt|zt1:tk−1
) for tk−1 < t < tk. (37)

This distribution can be approximated on the set of trajectories {x(i)
t }i=1:N, simulated according

to the scheme (32) and weighted by the weights evaluated attk−1:

p̂(xt|zt1:tk−1
) =

N∑

i=1

w̃
(i)
tk−1

δ
x

(i)
t

(xt), (38)

leading to:

x̂t = (x̂1,t, . . . , x̂q,t)
T =

N∑

i=1

w̃
(i)
tk−1

x
(i)
t . (39)

The velocity fields can then be estimated for allt between two instants of measurements:

ŵt(x) =

q∑

j=1

γjKǫj
(x − x̂j,t) ∀x ∈ Ω. (40)

IV. D IMENSIONAL REDUCTION OF THE FILTERING PROBLEM

When the dimension of the state space is high, the implementation of filtering techniques is

problematic. The difficulty is related to the handling of estimated error covariance matrices for

the Kalman filter and its extensions, and to the number of sampled trajectories for Monte-

Carlo filtering techniques. A first way to reduce the size of the problem is to construct a

reduced representation of the state. The vortex particles decomposition is such a reduced size

representation for the dense velocity fields tracking problem. However, when the phenomenon is

too complex, the size of this representation remains high. Asecond approach consists in relying
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on the analysis of stable and unstable directions of a dynamical system. This idea has been used

for the Kalman filtering techniques, in order to approximatethe estimated covariance matrix

by a reduced rank one [28], [32]. For the continuous-discrete particle filter, a method has been

proposed by Chorin [8]. The idea is to concentrate the sampling effort over unstable directions

of the dynamics, defined adaptively along the sequential estimation process.

Following Chorin’s paper, we present in this section a way tocharacterize the stable and

unstable directions of a dynamical system. The reduced version of the continuous-discrete particle

filter is then applied to our model.

A. Stable and unstable directions of a dynamical system

1) General case:We consider the following differential equation, describing the evolution of

a system without noise:
dxt

dt
= f(xt). (41)

Let [tj−1, tj ] be a time interval of finite length. Letxtj−1
be the state vector of the system at

time tj−1, andxtj−1
+ δxtj−1

a small perturbation ofxtj−1
. The temporal evolution ofδx(t) can

be approximated by the linear equation:

dδxt

dt
= J(t)δxt, (42)

whereJ(t) = ∂f

∂x
(x(t)) is the Jacobian matrix off , evaluated atx(t). The solution of this linear

system is given at timetj by:

δx(tj) = Mtj−1,tjδx(tj−1), (43)

whereMtj−1,tj is called the resolvant matrix of the system, defined throughmatrix exponential

as:

Mtj−1,tj = exp

(∫ tj

tj−1

J(s) ds

)
. (44)

Observing that:

< δx(tj), δx(tj) > = < Mtj−1,tjδx(tj−1),Mtj−1,tjδx(tj−1) > (45)

= < δx(tj−1),M
T
tj−1,tj

Mtj−1,tjδx(tj−1) >, (46)

where<,> denotes the Euclidean scalar product, it follows that the directions of highest growth

of the perturbation over an interval[tj−1, tj ] can be characterized by the eigenvectors of the
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matrixMT
tj−1,tj

Mtj−1,tj . The eigenvectors associated to the eigenvalues greater than 1 correspond

to theunstabledirections, while the remaining eigenvectors correspond to thestableones.

2) Vortex particles model:The state evolution model of the vortex particles (25) without the

noise component is given by:
dxt

dt
= w(xt), (47)

where we recall thatx = (x1, . . . ,xq)
T andw(x) = (w(x1), . . . ,w(xq))

T . The Jacobian matrix

J(t) = ∂w

∂x
(x(t)) of size (2q, 2q) is first constructed from the velocity expression (15). The

resolvant matrix is then computed from (44).

B. Reduced continuous-discrete particle filter

Let us first note that if the time interval[tk−1, tk] between two observations is long, the interval

is first divided as follows:[tk−1, tk] = ∪j [tj−1, tj]. The stable and unstable directions are then

computed with more precision over successive sub-intervals. Over a given sub-interval[tj−1, tj],

the stable and unstable directions of the system (47) are specified from a deterministic test

trajectory denoted̃x(t). This trajectory is obtained by propagation of the estimated statex̂tj−1

from time tj−1 to time tj, integrating the model (47) with a standard Euler scheme of time step

∆t:

xt+∆t = xt + w(xt)∆t. (48)

The matrixMtj−1,tj is evaluated along the test trajectory using (44). We denoteby Q the matrix

composed of the eigenvectors ofMT
tj−1,tj

Mtj−1,tj . The change of variablesy = Qx leads to the

following reformulation of our state evolution model (25):

dyt = Qw(QTyt)dt+QΣsdBt, whereΣs = σsI2q. (49)

The continuous-discrete particle filter is then modified as follows:

• tk = t1, t2, . . . :

◦ Adaptive prediction of trajectories:

Over all sub-intervals[tj−1, tj ] such that∪j [tj−1, tj ] = [tk−1, tk],

∗ Characterization of them unstable and2q−m stable components of the system (see

section IV-A);
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∗ Simulation of N trajectories{y(i)
t : tj−1 < t ≤ tj}i=1:N from the initial conditions

{y(i)
tj−1

}i=1:N, handling differently the unstable and stable components:

· Unstable components: Simulated from the model (49);

· Stable components: Replaced by the corresponding components of the test trajec-

tory ỹ = Qx̃;

◦ Correction and estimation: After change of variablex = RTy, use of equations (33)

to (36).

The dimensional reduction acts over the prediction step of the filtering algorithm. For each

trajectory, them unstable components are randomly sampled, while the2q−m stable components

are fixed to the deterministic test trajectory components. The sampling problem associated to

the prediction step is then reduced to a state space of sizem.

V. EXPERIMENTAL VALIDATION

This section shows a set of experiments designed to validatethe tracking method we propose.

The non linear filtering technique is first tested on synthetic image sequences. The first sequence

has been synthesized from a reduced model of vortex particles. The second sequence comes

from a numerical simulation of a bidimensional turbulent flow. Results on real world sequences

are then presented. The first sequence is related to experimental fluid mechanics, whereas the

second one is an infrared meteorological sequence.

A. Synthetic image sequence of vortex particles

We present in this section the tracking results on a synthetic image sequence simulated from

a reduced model of vortex particles. The model has been constructed from 5 vortex particles.

Their initial positions{xj,t0}j=1:5 and associated parameters{γj, ǫj}j=1:5 have been fixed. The

state of the model is defined as the set of the positions of the 5particles, and its evolution is

characterized by the model (25), forp = 5. Vortex particles trajectories can be simulated from

the state model, with a discretization scheme of Euler type.We show in figure 2 an example

of two realizations, obtained from the same initial conditions. The temporal evolution of each

coordinate of the state vector can be seen in figure 2 for 100 time steps. It can be noticed that

the trajectories simulated from the stochastic differential equation can differ a lot.
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Fig. 2. Example of two realizations obtained by simulation of the model constructed from 5 vortex particles.Temporal trajectories

of the 10 coordinates of the 5 vortex particles (the realization corresponding to the ground truth is plotted in red).

In order to test the tracking method, we have first selected one of the trajectories simulated

from the model as a reference. The realization we have chosenis the one plotted in red in figure

2. From this reference trajectory, a sequence of velocity fields has been obtained using expression

(15). A sequence of synthetic images has then been constructed by warping. A pair(Itk , Itk+1
)

of synthetic images is then available at each observation time tk. The motion described by this

pair corresponds to the displacement at timetk of the ground truth. The images we have used

to create the synthetic sequence correspond to images of small particles transported by the flow,

similar to the ones used by PIV (Particle Image Velocimetry)techniques (see figure 6 for an

illustration of such images).

We have tested the tracking method on this synthetic image sequence, withN = 500 trajec-

tories. The result is presented in figure 3. In order to evaluate the robustness of the particle

filtering method against its stochasticity, we have represented a mean result over 50 filterings

and the dispersion around this result. The results show thatthe method is able to recover the

test trajectory. The estimated trajectories of the 5 vortexparticles coincide with the trajectories

associated to the ground truth (see figure 3). The dispersionaround the estimation of each

coordinate of the state vector is very weak, highlighting the robustness of the tracking method.

In order to demonstrate the interest of a continuous modeling of our filtering problem, the

tracking method has been tested on the same image sequence, but for a state space model in
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Fig. 3. Tracking result obtained with the non linear filtering method we propose, averaged over 50 filterings.Temporal

trajectories of the 10 coordinates of the 5 vortex particles(the ground truth is plotted in red, the mean result of the tracking in

blue, the dispersion of the estimations around their means in green).

discrete time. In that case, the discretization step of the evolution model corresponds to the time

step between two images. The evolution equation writes thenas follows:

xtk+1
= xtk + w(xtk) + vtk , (50)

wherevtk is a Gaussian noise. The corresponding filtering result is presented in figure 4. The

result corresponds to a mean over 50 filterings. We can noticethat the estimated trajectories of

the vortices do not recover the true trajectories. Moreover, the figure 4 shows that the dispersion

around the estimates is quite high. This experiment highlights the importance of a continuous

modeling in case of a vorticity-velocity dynamics.

The last experiment on this synthetic sequence concerns thedimensional reduction presented

in section IV. The tracking result obtained with the reducedparticle filter has been compared

to the result we have presented in figure 3, for the same numberof trajectories (N = 500). The

comparison has been done in terms of mean absolute vorticityestimation error at each time. The

result is presented in figure 5. The numberm of unstable components is equal to 5, so that the

reduction we have obtained is of factor 2. Surprisingly, this factor 2 is repeated over the whole

sequence. For a reduction of factor 2, note that the gain in computational cost was negligible,

due to the computational cost associated with the determination of the eigenvalues. However,

it can be observed in figure 5 that the tracking results obtained with or without dimensional
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Fig. 4. Tracking result obtained with a discrete model, averaged over 50 filterings.Temporal trajectories of the 10 coordinates of

the 5 vortex particles (the ground truth is plotted in red, the mean result of the tracking in blue, the dispersion of the estimations

around their means in green).

reduction are close. This shows that the random sampling canbe done in a space of reduced

size without loss of quality, if this reduced space is definedproperly.
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Fig. 5. Comparison of the tracking results by filtering with and without dimensional reduction.The mean vorticity estimation

error associated to the dimensional reduction is plotted inpink, the error associated to the result presented in figure 3is plotted

in blue. The black curve represents the difference.

B. Synthetic image sequence of 2D turbulence

We present a second synthetic example showing the temporal evolution of a 2D turbulent flow.

This image sequence of 100 frames has been obtained by simulation of the 2D incompressible
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Navier-Stokes equation with a DNS method1. The sequence is partly reproduced in figure 6.

Fig. 6. Image sequence obtained by Direct Numerical Simulation of the 2D incompressible Navier-Stokes equation.

A sequence of vorticity maps corresponding to the simulation of the flow is represented in figure

7. The filtering model has been initialized on the first pair ofimages with the estimation method

proposed in [13]. The state vector is composed of 100 vortex particles. It is then of size 200,

leading to a more difficult problem than the previous example. However, as we are limited in

practice by the computational resources, we have restricted the number of sampled trajectories

to N = 1000. The figure 7 displays the temporal evolution of the vorticity maps corresponding

to the numerical simulation and the evolution of the maps estimated by the tracking method.

The estimated initial vorticity distribution can be compared to the true initial vorticity in figure

7, at timetk = 0. We can observe that the reduced model allows to recover the large scales of

vorticity, while the smaller scales of the flow tend to be smoothed. For that reason, the filtering

method is not able to track the fine structures of vorticity. However, we can notice that the main

vortices of the flow are tracked correctly. For instance, thetemporal evolution of the vortex

located in the bottom right corner of the image at timetk = 0 can be observed. Its trajectory

is well tracked over the whole sequence. The corresponding motion fields can be compared in

figure 8.

A quantitative analysis of the tracking result is presentedin figure 9. This figure displays the

temporal evolution of the absolute vorticity error betweenthe true vorticity and the estimated

vorticity, averaged over the image. This error can be compared to the temporal evolution of the

error obtained with a simple propagation in time of the model. Let us note that the mean absolute

error of the tracking method is not negligible in comparisonto the mean absolute vorticity over

this sequence. However, we can note that the tracking leads to a significant improvement in

1The image sequence has been provided by the CEMAGREF Rennes within the framework of the European FLUID project

“Fluid Image Analysis and Description” http://fluid.irisa.fr.
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tk=0 tk=10 tk=20 tk=30 tk=40

tk=50 tk=60 tk=70 tk=80 tk=90

Fig. 7. Result for 2D turbulence tracking: comparison of the vorticity maps.The ground truth is presented in the first line, the

tracking result in the second line.

comparison with a simple prediction of the model.

C. Experimental fluid mechanics application

The tracking method has been tested on a real image sequence coming from an application

in experimental fluid mechanics. The sequence shows the evolution of a vortex generated at the

tip of an airplane wing2. The sequence, composed of 160 frames, is partly reproducedin figure

2The sequence has been provided by the ONERA (Office National d’ Études et de Recherches Aérospatiales).
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tk=0

tk=20

tk=40

tk=60

tk=90

Fig. 8. Result for 2D turbulence tracking: comparison of the displacement fields.The ground truth is presented in the first

column, the tracking result in the second column.
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Fig. 9. Temporal evolution of the absolute vorticity error, averaged over the image domain.The estimation error caused by

a simple propagation of the evolution model is plotted in green, the estimation error of the tracking method is plotted inblue.

The mean absolute vorticity corresponding to the ground truth is plotted in red.

10.

Fig. 10. Image sequence showing the evolution of a vortex generated at the tip of an airplane wing.

The initialization of the model has been obtained from the first pair of images of the sequence.

The initial vorticity distribution is described by a set of 15 vortex particles. This vorticity map and

the corresponding displacement field can be seen in figure 11 for tk = 0. Figure 11 illustrates the

results obtained by a simple propagation of the model. We canobserve that a simple simulation

of the dynamical model does not enable to track the vortex over the whole sequence. Indeed,

from time tk = 20, the shape of the vortex is not well reconstructed. The predicted displacement

fields deviate significantly from the center of the vortex. Later in the sequence, the predicted
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displacement fields present deformations that do not correspond to the observed phenomenon.

In the final part of the sequence, the trajectory of the vortexis completely lost.

tk=0 tk=20 tk=40 tk=60 tk=80

tk=100 tk=120 tk=140 tk=160

Fig. 11. Vortex tracking result on the ONERA sequence by simple propagation of the evolution model.

The figure 12 shows the solution given by the tracking method,for N = 1000 trajectories in

the filtering algorithm. The motion of the vortex is well reconstructed at each time, and its

trajectory is well tracked until the end of the sequence. In particular, we can observe that the

diffusion of the vortex in the second half of the sequence is well represented by the displacement
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fields. The deformation of the estimated rotating motion follows the photometric contours of the

image. Secondary counter-vortices rotating around the principal vortex are well represented. The

evolution of the associated vorticity maps shows a spatial diffusion of the positions of the vortex

particles. The diffusion of the vortex is described by the fact that the associated vorticity area

becomes less concentrated in space.

tk=0 tk=20 tk=40 tk=60 tk=80

tk=100 tk=120 tk=140 tk=160

Fig. 12. Vortex tracking result on the ONERA sequence with the proposed method.

For these real examples, the actual displacement fields are not known. However, an indication
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about the quality of the results can be given by the mean reconstruction error over the image

domain, from the estimated displacement fields. This error is defined at each observation time

tk by |Itk+1
(x + ŵtk(x)) − Itk(x)| ∀x ∈ Ω. The mean error evolution is represented in figure

13. An indication about the quality of the result given by theprediction can be compared to

the result of the tracking method we have proposed. The algorithm has been run 20 times in

order to test the robustness of the method. The mean result and the dispersion of the estimations

around this mean are displayed at each time in the figure. We can observe that the reconstruction

error related to the prediction is highly decreased by the introduction of the observations in the

filtering model. This remark confirms the qualitative comparison we have done from figures 11

and 12.
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Fig. 13. Temporal evolution of the mean reconstruction error on the ONERA sequence.The error associated to a simple

prediction of the model is plotted in black, the mean error corresponding to the filtering method is plotted in blue, the dispersion

around the mean in green.

D. Meteorology application

We present in this section a result obtained on a sequence of images provided by the infrared

channel of Meteosat3. The sequence displays the trajectory of a cyclone over the Indian Ocean.

The sequence is partly represented in figure 14.

3The sequence has been provided by the LMD (Laboratoire de Météorologie Dynamique) within the framework of the European

FLUID project “Fluid Image Analysis and Description” http://fluid.irisa.fr.
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Fig. 14. Image sequence displaying the evolution of a cyclone in the Indian Ocean.

The tracking result with the filtering method is presented infigure 15. The initialization is

described by the displacement field and the vorticity distribution estimated at timetk = 0 from

the first pair of images, with a set of 15 vortex particles. Therotating motion described by the

cyclone is well reconstructed and its trajectory is well tracked until the end of the sequence.

The temporal evolution of the mean reconstruction error is plotted in figure 16.
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tk=0

tk=10

tk=20

tk=30

tk=40

Fig. 15. Cyclone tracking result with the proposed method.
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Fig. 16. Temporal evolution of the mean reconstruction error for thecyclone sequence.The error associated to a simple

prediction of the model is plotted in black, the mean error corresponding to the filtering method is plotted in blue, the dispersion

around this mean is plotted in green color.

VI. CONCLUSION

In this paper we have proposed a non linear stochastic filter for the tracking of fluid flows

velocity fields from image sequences. In order to improve therobustness and the temporal

consistency of the successive estimates, a physical knowledge about the fluid evolution law has

been introduced into the filtering model. The evolution law of the filtering model is based on the

vorticity-velocity form of the Navier-Stokes equation. The discretization of the vorticity over a set

of basis functions (called vortex particles) allows to describe the dynamical model by a stochastic

differential equation. This equation is constructed from areduced number of vortex particles,

consequently it is only an approximation of the Navier-Stokes equation. However, this continuous

evolution model brings a very usefula priori information about the fluid flow evolution, which is

then corrected by the discrete observations extracted fromthe image sequence. A continuous form

of the particle filter algorithm has been applied to solve thenon linear filtering problem. Because

the particle filter is not adapted to state spaces of high dimension, a dimensional reduction method

has been used, based on the study of the instabilities of the system. The results show that the

tracking method gives good results on synthetic and real world sequences, when the flow can

be described by a reduced number of vortex particles. For complex flows, results are promising

since the evolution of the large scales components of the flowcan be recovered. Finally, let us

note that a necessary extension of this work is to focus on theparameters estimation problem in

the filtering model. As a matter of fact, the vortex particlesparameters (strength and size) are
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fixed in our model, but a better approach would be to let them evolve in time. The associated

filtering problem would then consist in solving the joint estimation of the state and parameters

of the model at each time step.
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[1] E. Arnaud and E. Mémin. Partial linear Gaussian models for tracking in image sequences using sequential Monte Carlo

methods.IJCV, 74(1):75–102, 2007.
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