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Abstract

In this paper we present a method for the temporal trackinfuid flows velocity fields. The
technique we propose is formalized within a sequential Bayefiltering framework. The filtering
model combines an Itd diffusion process coming from a sistib formulation of the vorticity-velocity
form of the Navier-Stokes equation and discrete measurengtracted from the image sequence. In
order to handle a state space of reasonable dimension, thennfield is represented as a combination of
adapted basis functions, derived from a discretizatiomeforticity map of the fluid flow velocity field.
The resulting non linear filtering problem is solved with teaticle filter algorithm in continuous time.
An adaptive dimensional reduction method is applied to therifig technique, relying on dynamical
systems theory. The efficiency of the tracking method is destrated on synthetic and real world

sequences.

Index Terms

Motion estimation, tracking, non linear stochastic filibey; fluid flows.

. INTRODUCTION

The analysis and understanding of image sequences ingdivid phenomena has important
real world applications. Let us cite, for instance, the donaf geophysical sciences such as
meteorology and oceanography, where one wants to tracksatmdc systems for weather
forecasting or for surveillance purpose, estimate oceaggaists or monitor the drift of passive
entities such as icebergs or pollutant sheets. The anayggo-physical flows from satellite
images is of particular interest in large regions of the doduch as Africa or the South
hemisphere, which are facing a very sparse network of meltagical stations. A more intensive
use of satellite images might provide these lacking infdroms. Images have also a finer spatial
and temporal resolution than the large scale dynamical maaeed for weather forecasting.
Image data offers then a richer information on small motioales. However, the analysis of
flows quantities is an intricate issue as the sought quastitre only indirectly observed on a 2D
plan through a luminance function. Because of this difficudiatellite images are very poorly
used in forecasting models.

The analysis of fluid flow images is also crucial in experinaéfitid mechanics, in order to
analyze flows around wing tips or vortex shedding from asfoir cylinders. Such an analysis

allows to get dense velocity measurements by the way of nosine sensors. This enables
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fluid mechanicians in particular to have a better understagnof some phenomena occurring in
complex fluid flows, or to settle specific actions in view of fleantrol. This last problem is a
major industrial issue for several application domaingl saach a control is hardly conceivable
without having access to kinematical or dynamical measargmof the flow. Imaging sensors
and motion analysis provide a convenient way to get thesesuneaents.

For the analysis of complex flows interactions like thoseoentered between fluid and
structures, in sea-atmosphere interactions, dispersipalluting agents in seas and rivers, or for
the study of flows involving complex unknown border condigpimage data might be a very
interesting alternative to a pure dynamical modeling ineottd extract quantitative flow features
of interest. To that end, the knowledge developed in the eenpvision for video sequence
analysis, 3D reconstruction, machine learning, or vistuatking, are extremely precious and
unavoidable. However, the direct application of such galneameworks are likely to fail in a
fluid context, mainly because of the highly non linear natfréuid dynamics, which involves
a coupling of a broad range of spatial and temporal scaleeeophenomenon. In this context,
it is necessary to invent techniques allowing the assaciadf a fluid dynamical modeling and
image observations of the flows. The study proposed here rstaaftempt to such an issue.

For all the kinds of aforementioned applications and dosyainis of major interest to track
along time the most accurately as possible representativetgres of the flow. Such a temporal
tracking may be obtained from deterministic integratiorthods, such as the Euler method or
the Runge and Kutta integration technique, from successdependent motion estimates. These
numerical integration approaches rely on a continuousispanporal vector field description
and thus require the use of interpolation schemes over tlwevdpatial and temporal domain
of interest. As a consequence, they are quite sensitivedal kerrors in measurements or to
inaccurate motion estimates. When the images are noisy theiflow velocities are of high
magnitude and chaotic as, for instance, in the case of tembflows, motion estimation tends to
be quite difficult and prone to errors. Another major diffigtih motion estimation is the temporal
consistency between estimates. This problem is inherembteon estimation techniques (see for
instance [3] for an extended review on motion estimatiohnégues). As a matter of fact, most
of the motion estimation approaches use only a small set afj@n (usually two consecutive
images of a sequence) and thus may suffer from a temporahsistency from frame to frame.

The extension of spatial regularizers to spatio-tempargularizers [36] or the introduction of
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simple dynamical constraints in motion segmentation teghes rely mainly on crude dynamic
assumptions or that are related to rigid object motion ofBj.[

Some recent contributions [20], [29], [30], [34] aim at iroping the temporal consistency
and the robustness of the estimations over the whole seguirimducing a physical evolution
law in the estimation process. The dense motion estimatiethoals dedicated to fluid flows,
based on a spatial regularization of the vector fields, haenlextended to integrate temporal
constraints related to the fluid flow evolution [22], [35]3][3These constraints are either derived
from the vorticity-velocity formulation of the Navier-Stes equation [22], [35], or from Stokes
equation [33]. Recent techniques based on variationditrganethods rely on similar dynamical
models [29], [30]. In that case, the temporal tracking iseldasn an optimal control concept.
Successive noisy estimations of the vector fields are thesodrad and corrected according to
the considered conservation law. One advantage of thetioendd tracking method is that the
state vector of the system can be of very high dimension. Mewe restriction is that this
approach relies on a Gaussian assumption, in the same ap@itkalman smoother.

We choose here to formulate the temporal tracking as a stticHdtering problem. The ob-
jective of stochastic filtering (presented in the sectigndto estimate the state of a time-varying
system, indirectly observed through noisy measuremefhis.target of interest is described by
random vector variables, evolving following a state equratiThe state can evolve in discrete or
continuous time. The typical situation in image analysi®idescribe the evolution of a state with
a discrete time model, where the time step corresponds torthge time step. Auto-regressive
models or data-driven dynamic models are the most freques#d, when the information about
the underlying dynamical law is poor or is estimated from ithages.

If the phenomena of interest are continuous by nature, areanis dynamical model is a more
realistic approach. Such a continuous dynamics descrithiagevolution of the state vector of
the interest in the image plane may be derived from physmaservation laws. These laws may
be perfectly reproduced if their expressions are simplegpproximated up to an uncertainty,
modeled as a noise term. The description of the state mool@l uch a continuous evolution
law is then the better way to reproduce faithfully the natfréhe phenomena. Moreover, abrupt
changes can be observed between two distant observatitims @volution of the state is very
non linear or chaotic. A continuous dynamical model is matapded in this case, to take into

account a long interval of time between two measurementss. i§ithe case for fluid flows, as
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they are associated to a highly non linear and continuousigo law by nature. Note that the
observation process may also be considered as contindidhe,time step between observations
is small enough. However, for observations coming from iensgguences, the measurements are
supposed to be given at discrete time instants. In additi@ntime step between two observations
can be quite long (in meteorological or oceanographic appbtins for instance).

The choice of a probabilistic approach enables to cope withren linearity in the evolution
model and to deal with a non linear relation between the statethe measurements extracted
from the images. The general stochastic filtering problessdwt rely on any Gaussian assump-
tion or linearity of the model. However, the filtering protsi@ssociated to such non linear models
does not have any explicit analytical solution and is ugudifficult to implement numerically
for a high dimensional state vector. As a matter of fact, Me@arlo probabilistic tracking
methods as proposed in the literature [17], [23], [31] afieieht only to track objects of reduced
dimension such as points or curves described by severaktisoontrol points. These techniques
are not able to cope with high dimensional features such asedeector fields. In our work, in
order to handle motion fields of reasonable dimension, wearlan original parametrization of
fluid flows [15], [13] relying on adequate basis functionseTised basis functions stem from
Biot-Savart integration of a regularized discretizatidrilee vector field vorticity and divergence
maps [7], [12]. Such a representation enables a reducedejizesentation of a fluid motion. The
second difficulty is related to the continuous nature of thlved dynamic evolution law. The
problem consists thus in the definition of an appropriateisetial Monte-Carlo approximation
of a stochastic filter which combines a continuous dynamiaal expressed as a stochastic
differential equation and discrete measurements exttdoten the image sequence.

The paper is organized as follows. The stochastic filteriraplem is presented in section Il.
In particular, the principle of a continuous non linear filbg with an appropriate continuous
version of the particle filter algorithm is exposed. The ¢argion of the filtering model we
propose to solve the fluid flows velocity fields tracking peshlis presented in the section Ill.
We present then in section IV the application of an adaptiveedsional reduction method to
our high-dimensional tracking problem, relying on dynaahisystems theory. The last section
shows tracking results for synthetic and real exampled) ajiplications in experimental fluid

mechanics and meteorology. This paper extends a previodsrence paper [14].
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[I. STOCHASTIC FILTERING PROBLEM

We present in this section the stochastic filtering problentantinuous time with discrete
observations. The particle filter for the discrete case d¢slled, and its continuous time version

is presented.

A. Filtering model

The random vectok describes the state characteristics and the observatiterdeaoted by
z. The state proces&;);>, evolves in continuous time according to a stochastic difigal
equation. The observatiorisg,, );, >;, are given at time instantg and form a discrete process.
At each timet;, the measurement equation relates the observatiorto the statex;,. The

corresponding state space model is described by:

dx, = f(x)dt + o(x;)dBy, 1)
A 9(x¢,) + v,

where f(x;) is the deterministic drift term of the stochastic diffeiahequation,s(x;) is the

diffusion term relative to the Brownian motidg, andv;, is a given noise. The functionsand

g are non linear in the general case.

B. Optimal filtering

The optimal filtering solution computes the filtering dibtriionp(x,, |z,.,) at each measure-
ment timet,. This distribution can be obtained recursively by the Bayediltering equations.
Indeed, assuming(x;, ,|z:.,_,) iS known, the filtering distributiop(x;, |z, +, ) iS evaluated in
two steps:

e The prediction step evaluates the predicted filtering distributip(x,, |z, ., ,) from

p(xe,_, |ze,4,_,) @and the transition distributiop(x;, |x;, ,):

p(th |Zt1!tk71) = /p(th |th71)p(xtk,1 |Zt1:tk71)dxtk71; (2)

e The correction step integrates the new observatien, through the knowledge of the

likelihood p(z, |x;, ). The filtering distribution is then updated in the followingy:

p(ztk |th )p(th |Zt1:tk71> (3)

P\ X, |2, . = .
( tk‘ n tk) fp(ztk ‘th )p<th ‘Ztl:tkfl)dxtk
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Note that the update step is performed at the measuremerdstfi only. Between two consec-
utive measurement timeg_; andt,, the filtering distribution can be defined by its predicted

form p(x¢|zs, ¢, ,) for tp_1 <t < tx, wherep(x,|z,.4, ,) = fp(Xt|th,1)P(th,l|Zt1:tk,1)dxtk,1-

C. Particle filter

In the case of a linear state model and a linear and Gaussiasumgnent model, the closed-
form solution of the filtering problem is known. The filteripgoblem is solved with the Kalman
filter. For the non linear case, the exact solution of theroatifiltering equations is not available.
For weak non linearities the filtering distributions can Ippraximated by a Gaussian. However,
this approximation is too restrictive for most of the tragkiproblems in vision. A better choice

is to use a Monte-Carlo approximation of the filtering densit
th |Zt1 tk Z wtk 6 ( ) th (4)

whered, ) (x,,) denotes the delta measure centeredxﬁch which means thas, . (x;,) = 1
if x;, = ):,Ez) else0. The weighted set of particles (call&gjectoriesin the rest (;f the paper)
{xgi),wt(,?}i:m can be updated and reweighted recursively with the parfittkxring method,
leading to a recursive Monte-Carlo approximation of thesfitig density.

1) Discrete time particle filter:We recall briefly the particle filter algorithm [17], [23] for

the particular case of a fully discrete state space modédtefdrm:

X = f(Xp—1) + Wi_1, (5)
zr = 9(Xx) + Vi,
with w;_; and v, denoting independent noises. During the prediction staph d@rajectory is
sampled from an approximation of the unknown posteriorrithstion called the importance
distribution. The correction step consists in a recursivaluation of each weight, using the

measurement likelihood.
e Prediction step (sampling w.r.t. the importance distribution)

X](j) ~ ﬁ(xk|x((f;)k_1,z1;k) i=1:N; (6)

e Correction step and normalization (taking into account the measurement likelihood)

(4)
and @ =

(i) (i) P(Zk|X;(f))p( W1x ) Cwy
( ‘XOk 17zl k) F Z;‘lzl wgi)

=1:N. (7
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Note that a resampling step is usually added in order to atr@ddegeneracy problem of the
set of trajectories. This resampling procedure aims at vamgotrajectories with small weights
and duplicating trajectories with stronger weights. The steps (6) and (7) together with the
resampling of the trajectories form the patrticle filter. Tgeeformance of the algorithm depends
then on the choice of the importance distributim(xk\xéfi_l,zlzk). The optimal importance
function in terms of variance of the weights dgx;|x\/). |, z1.x) = p(xi|x\”,, z;) [17]. This
optimal function is unfortunately only available for a laremeasure equation with Gaussian or
mixture of Gaussian likelihood [1]. When such an optimal artpnce function is not available,
the importance function is often simply set to the preditttensity [23]:7r(xk|x(()’;)k_1,z1:k) =

p(x|x\” ). In that case, the recursive formulation of the weight8 simplifies as:
w,(f) x w,iizlp(zk|x,(€i)). (8)

2) Continuous-discrete time particle filteifhe particle filter algorithm can be extended to a
general continuous model [16]. Indeed, the importanceibigton can be fixed to the transition
denSityp(th|th(Q 1) between two observation times_; andt, (as for the bootstrap particle
filter [23]). For a general continuous model of the form (1¢ fhrediction and correction steps

of the algorithm are then:

e Prediction step
xp) ~ p(xylxi) ) i=1:N; 9)
e Correction step and normalization
)
Z;’l:1 wt(i)

The prediction step consists in sampling trajector{aéi) Dtper <t < tplizin from the

w) ocw) p(zy,x) and @) =

1=1:N. (20)
stochastic differential equation describing the contumievolution of the state:

dx{" = f(x{")dt + o(x{")dBY, (11)

from the initial conditions{xgi)fl}i:m, Where{Bﬁi)}i:LN are independent Brownian motions.
The simulation from the SDE (11) can be done with the Eulereswh or other numerical
simulation methods of stochastic differential equatid®.[ The Euler scheme has the following

form:

xp = x4 At + o(x)(BY,, - BY), (12)
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where the incremenBﬁZAt—BEi) are independent Gaussian noises with zero mean and variance
At. Note that the discretization step of the simulation is msitialler than the time step—1t,_;
between two observations.

The correction step of the filter and the resampling procedwe similar to the discrete case.

[1I. CONSTRUCTION OF THE FILTERING MODEL

This section describes the filtering model of type (1) we rsetded for the fluid flows velocity
fields tracking problem. Considering a dense representéiomotion fields constitutes a state
space of too high dimension for the particle filtering. As ateraof fact, sampling a probability
distribution over such a state space is infeasible in gractihe first task to implement such a
filtering approach consists to define an appropriate low dsimmal representation of the flow
to reduce the complexity of the problem to solve. We descirbsection IlI-A the low order
representation of fluid flows velocity fields on which we raithis work. Then, in section 111-B,
the dynamical evolution law associated to this reducedesagrtation of fluid flows is presented.
The complete state model we propose for this tracking probtethen defined in section IlI-C.
The presentation of the associated measurement modelaslssin section 11I-D. The global

filtering model and the associated continuous particlerfdte detailed in section IlI-E.

A. Low dimensional representation of fluid flows

1) 2D vector fields reminderA two-dimensional vector fieldv is a R?-valued map defined
on a bounded se® of R?. We denote itw(x) = (u(x),v(x))?, wherex = (z,y) andz and
y are the spatial coordinates. The vorticity is definedcky) = curlw(x) = 2% — g—z and the
divergence is defined by(x) = divw(x) = 2 + g—;. The vorticity accounts for the presence
of a rotating motion, while the divergence is related to thespnce ofinksor sourcesin the
flow. A vector field that vanishes at infinity can be decomposgd a sum of anrrotational
component with null vorticity and aolenoidalcomponent with null divergence. This is called
the Helmholtz DecompositiofiL1], [38]. Let us remark that such a decomposition for a dens
motion field can be computed in the Fourier domain [11] or allyespecified as a motion
estimation problem [37], [38] from the image sequence. Wtien null border condition can

not be imposed, &ransportationcomponent, with null vorticity and null divergence, must be
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included. This component can be approximated using the ldathSchunck estimator with a
strong regularization coefficient [10].

Let us note that the tracking method we propose is adaptedetsdlenoidal component of
vector fields. In the rest of the paper, the vector fieldvill then denote the solenoidal part of
the flow. The divergent motions, if any, are not tracked andeha be estimated from successive
pairs of images. Moreover, we assume that the transpartetimponent is known over the whole
sequence.

It is known [11] thatw(x) = V*4¢(x), wherey is a potential function an®~ = (£, — ).
The potential function) is solution of a Poisson equatioiy(x) = £(x), whereA denotes the
Laplacian operator. Let: be the Green’s function associated to the Laplacian openat@D:
G(x) = 5= In(||x]|) [9] . The solutiony is then obtained by convolution:

Y(x) = G *&(x) = [p G(x —u) curl w(u)du .
Finally, w(x) = K *&(x) whereK (x) = V*-G(x) = ﬁ Note that this relation between the
solenoidal componen¥ and the scalar vorticity is known as theBiot-Savart integral9].

2) Vorticity approximation with vortex particlesThe idea of vortex particles methods [7],
[25] consists in representing the vorticity distributiohaofield by a set of discrete amounts of
vorticity. A discretization of the vorticity into a limitedumber of elements enables to evaluate
the velocity field directly from the Biot-Savart integralhd@ vorticity is represented by a sum
of smoothed Dirac measures, in order to remove the singelainduced by the Green kernel
gradient K. The smoothing function is calledtt-off or blob function and is generally a radially
symmetric function scaled by a parameterf.(x) = }2 f(%). A vortex particles representation

of the vorticity map reads then:
q
() Y e (x = X)), (13)
j=1

wherex; denotes the center of each basis functfonthe coefficienty; is the strength associated
to the particle, and; represents its influence domain. These parameters areofre@yt from
a function to another. Replacing the vorticity by its appneation (13) into the Biot-Savart

integral leads to:
q
w(x) ~ Y K (x — %), (14)
j=1
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where K, is the smoothed kernek,, = K * f.,. For some well chosen cutt-off functions, an
analytical expression fow may be obtained [12], [13]. With a Gaussian function for amste,
the motion field writes:

W) 3y B (4 (X (15)
"2mx = [ > )/

Note that a similar orthogonal expression can be obtainedhf® irrotational component, with

source particleq13].

Let us note that in the context of fluid flows, other approaatess be considered to reduce
the number of state variables describing the model. Foamts, it is possible to rely on the
global knowledge of the flow in order to construct a reducqumegentation of it. The flow can
then be described by its spectral modes [6] or by spatialsbfasictions in case of the POD
(proper orthogonal decomposition [4]). These methods alelwused for the simulation of fluid
flows. For flows exhibiting a repetitive behavior, the PODeddf a very efficient representation.
Such a decomposition is computed from series of experirhemasures, and a singular value
decomposition of the autocorrelation function. The redudgnamical model is then obtained
by a Galerkin projection of the most energetic modes on thaex&tokes equation. However,
such a representation is dedicated to given experimentdigtmation and can not be used in
a different context. For geophysical applications (meikmy, oceanography, glaciology), it is
difficult to obtain such a basis of realizations of the samengmenon. These methods are thus
not adapted. At the opposite, the vortex particles allowdostruct a reduced representation of
the flow without anya priori knowledge on the flow. Note that in the same spirit, a wavelet
decomposition can also be proposed [18]. However, one éalyarof the vortex particles is that
the flow dynamics is described by a set of elements which haliesat physical interpretation.
The approximation is indeed based on the vortices of the ffomally, the temporal evolution
of the flow can be described on the basis of these elements, thie Navier-Stokes equation.

This will be detailed in the next section.
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B. Vortex particles dynamics

The temporal evolution of an incompressible fluid flow (withilrdivergence) is described in

2D by the Navier-Stokes equation:
80—‘: +(w-V)w = —%Vp +vAw, (16)

wherep is the pressurey is the fluid density and is the viscosity coefficient of the fluid. The

equivalent velocity-vorticity formulation writes:

% + (w-V)§ =vAL. (7)

In this last formulation, the evolution of the flow is deserlthrough the variation of the vorticity,
without pressure term. The vorticity is transported by te®eity w, and diffuses following the
viscosity coefficient. This equation can be solved numéyiéa two distinct steps: the transport
and the diffusion steps [7]. The transportation of the wisti without the diffusion effects is

first described by:
23

g +(w-V)E=0, (18)
then the vorticity diffusion (related to the viscosity ottHuid) is described by the heat equation:
¢
5= VAE. (19)

1) Vorticity transportation: This step is implicitly solved by the Lagrangian nature o th
vortex particles. Indeed, the centegrof each vortex particle is simply moved by its own velocity

w(x;). The displacement of one centeyis described by:

dx
= W), (20)
wherew (x;) is evaluated from all the other positions following equat{d4):
q
w(x;) = Z%Kej (x; — %;). (21)
j=1

In practice a Gaussian smoothing function is used to comthéekernel K, as written in

equation (15).

We recall that when the null border conditions for the vdlpdield can not be imposed, it
is necessary to take the global transportation componestofddw,,,) into account. This

component is supposed to be known and can be added to thaatispnt (21):

w(x;) = Z%ng (x; — X;5) + Wera(X)). (22)
j=1
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2) Vorticity diffusion: The diffusion part can be solved by Chorimandom walk methodi7].
This method is stochastic and relies on the relation betwh#asion and Brownian motion.
There is indeed a correspondence between the distribufigrarticles undergoing a random
walk and the solution of the heat equation [9]. The method ttensists in applying a Gaussian
perturbation to each vortex particle’s center. For a tinep i, the perturbation has zero mean
and varianc&vrAt. This random displacement is added to the transportatigh (2
Note that the diffusion can be simulated by other determimisiethods [12]. However, one
advantage of the stochastic approach is that it allows a mprobabilistic interpretation of
the 2D incompressible Navier-Stokes equation. In factvibréicity-velocity formulation of the
Navier-Stokes equation belongs to the class of MacKeasevlaquations. It has then a rigorous
interpretation in terms of stochastic interacting pagsctystems [5], [26], [27].

3) Interacting particles systemrhe evolution of the; vortex particles is finally described by

the following system:

q
dx;; = Z%’Ksj (X1 — xj)dt +V2vdBy,, 1<1<q, (23)
j=1
where B, ; is a Brownian motion of dimension 2. The system can be reswrith a compact
form, definingx = (x4, ...,x,)" andw(x) = (w(x1),...,w(x,))’:
dXt = W(Xt)dt + v 21/dBt, (24)

whereB; is a standard Brownian motion of dimensidq with independent components. Note
that in this model, contrary to the general model defined i {ie diffusion part does not

depend on the state, but is only related to the viscosity of the fluid.

C. State model for the filtering approach

In our filtering model, the state vecter = (x,,...,x,)" is composed of the centers of
vortex particles used to represent the flow. We also recatlttie random part of the model (24)
expresses the vorticity diffusion. This describes a phatsphenomenon but does not include
the model uncertainties. These uncertainties may come ¥anous sourcesia) Non-adequacy
of the 2D model to the image sequence (because we observe &idmplena through apparent
velocities in the image plane(b) Error in the approximation of the vorticity by a weak numbér o

vortex particles (smoothing of some scalgg); Bad knowledge of model parameters (strengths
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and influence domains of vortex particles). In order to idelthese noise factors into the filtering

model, we add an artificial random temmto the state model:

dx; = w(x;)dt + 0,dB,;, whereo, = Vo + 7. (25)

D. Measurement model

We recall first that the dense velocity field, can be reconstructed at each tim&om the
knowledge of the vectox;, = (xi,,...,%,,)” and the model parameters. The displacement is
given by: ,

X) = Z%—ng (x—x,;) Vxe. (26)
=1

A region R; is fixed around each centet;, corresponding to the influence domain of the basis
function, and characterized by the parameterDenoting R = U7_, R;, the observation vector
is then defined at time, by:

zy, = (11, (X))xer, (27)
where; (x) is the intensity of the poink in the image observed at tintg. The measurement

model is based on a brightness consistency assumption:
Itk (X) = Itk+1 (X + Wi, (X)) + Uty (28)

defined up to a Gaussian noisg ~ N(0,02,). The parametes,, controls the uncertainty in
the measurement model. This term traduces the uncertaintyei observations, if the quality
of observed images is bad for instance. Besides, this wogrtterm allows to deal with an
eventual non validity of the brightness consistency assiomplLet us note that this general
brightness consistency model can be adapted to specifatisits [2], [20], [22], [21].
Assuming that/,, (x) and I;,,,(x’) are independent conditionally te,, V(x,x’) € R, the

likelihood of the vector of observations, reads:

Ztk|th Hp ]tk ‘th (29)
XER
and consequently:
I -1 2
p(ztk|xtk) x exp (_/ ( tk(X) tkgl(;(“‘wtk(x))) dX) . (30)
R Om

Note that the construction of the likelihood at timerelies on the assumption that the image
I, ., is available. The dependence graph of our filtering modehés tdescribed by the figure
1.
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Xo — » X1 5 o X o Xy

Z, Ziy Zy
I, I, T I

Fig. 1. Dependence graph of the filtering model.

E. Filtering scheme for velocity fields tracking
The complete filtering model is finally defined by the state ei¢@5) and the likelihood (30):

dx, = w(x;)dt + 05dBy, (31)
p(2e, [%4,).
As both the evolution model and the measurement model ardimear, a non linear filtering
technique must be used to solve the filtering problem. Thegbafilter for a continuous-discrete
model, as presented in section II-C, is adapted to such dyhigim linear problem. The overall
velocity fields tracking method is finally composed of thddwaling steps:

e t, =to : Initialization of the state vectok,, = (X14,,---,X44,) composed of; vortex
particles positions and their associated strength andeiméle: parametersy;, €, };—1.,. Note
that the influence parameters are initialized so that vopasticles overlap. The initial
vorticity distribution is then estimated from the first paif images. The corresponding
parameters estimation problem is constructed from theesgmtation (15), incorporated
within a spatio-temporal variation model of the luminangedtion. This estimation method
has been described in previous papers [15], [13].

o ty =t te...:

o Prediction of vortex particlestrajectories. Simulation ofN trajectories{xgi) Tt <

t < tg}i=1.v from the initial conditions;{xﬁ?ﬂ}i:kN with the Euler scheme:
XE?N = xﬁ") + W(xgi))At + oV Atny), where nt(i) ~ N(0,Iy,); (32)
o Correction and normalization of trajectories weights:

, . , ‘ (i)
W 0w plzy x7) and @ = U 1N, @3

b N ()
Zj:l Wy,

w

o Estimation:
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« Estimated filtering distribution:

D(xe, |Zt,:1,.) Zw 0 <) (x¢,); (34)
« Estimated state: .
Ko, = (Kigr - Kge) = D WX (35)
=1
x Estimated velocity field:
wy, (x) = i%KEj (x —Xjy,) Vxe (36)
=1

Note that the filtering distributiop(x;, |z,.,) iS estimated at observations timgsonly. How-

ever, it can be defined between two measurement tigngsandi, by its predicted form:
p(Xt|Zt1:tk,1) fOI’ tk—l <t < tk (37)
This distribution can be approximated on the set of trajm:foc{xf)}i:m, simulated according

to the scheme (32) and weighted by the weights evaluateg at

Xt|zt1 th_ 1 Zwtk 15 @ Xt (38)

leading to:
)A(t = (il,ta e ,)A(qt Z ﬁ;t(:; 1Xt . (39)

The velocity fields can then be estimated for tabletween two instants of measurements:

q
X) = g VK (x —%;,) Vx €. (40)
=1

V. DIMENSIONAL REDUCTION OF THE FILTERING PROBLEM

When the dimension of the state space is high, the implermentef filtering techniques is
problematic. The difficulty is related to the handling ofiestted error covariance matrices for
the Kalman filter and its extensions, and to the number of &uinfrajectories for Monte-
Carlo filtering techniques. A first way to reduce the size of @roblem is to construct a
reduced representation of the state. The vortex parti@desrdposition is such a reduced size
representation for the dense velocity fields tracking pwblHowever, when the phenomenon is

too complex, the size of this representation remains higeeéond approach consists in relying
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on the analysis of stable and unstable directions of a dycamystem. This idea has been used
for the Kalman filtering techniques, in order to approxim#te estimated covariance matrix
by a reduced rank one [28], [32]. For the continuous-discpetrticle filter, a method has been
proposed by Chorin [8]. The idea is to concentrate the sangmifort over unstable directions
of the dynamics, defined adaptively along the sequentiahatibn process.

Following Chorin’s paper, we present in this section a waycharacterize the stable and
unstable directions of a dynamical system. The reducedoreos the continuous-discrete particle

filter is then applied to our model.

A. Stable and unstable directions of a dynamical system

1) General caseWe consider the following differential equation, desandpithe evolution of
a system without noise:
dXt

dt = (Xt)- (41)

Let [t;_1,¢;] be a time interval of finite length. Let, , be the state vector of the system at
time¢;_,, andx,, , +x,,_, a small perturbation of;,_,. The temporal evolution ofx(t) can

be approximated by the linear equation:

dox
dtt = J(t)6x,, (42)
where J(t) = g—x(x(t)) is the Jacobian matrix of, evaluated ak(¢). The solution of this linear
system is given at time; by:
5X(tj) = Mtj—l,tj(sx(tj_l)7 (43)

where M;,_, ;. is called the resolvant matrix of the system, defined thromglrix exponential

My, 4, = exp (/tJ J(s) ds) : (44)

< 5X(tj),6X(tj) > = < Mtj717tj6X(tj_1),Mtj717tj(SX(tj_1) > (45)

as:

Observing that:

= < 5X(tj_1), Mtj;il’tthj—l,tj(SX(tj_l) >, (46)

where<, > denotes the Euclidean scalar product, it follows that tiheations of highest growth

of the perturbation over an interval,_,,¢,;] can be characterized by the eigenvectors of the
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matrix Mtf o My . The eigenvectors associated to the eigenvalues greatrerthorrespond

j—1:t;
to the unstabledirections, while the remaining eigenvectors correspanthé stableones.
2) Vortex particles modelThe state evolution model of the vortex particles (25) withihe

noise component is given by:
dXt

dt

where we recall that = (xi,...,x,)" andw(x) = (w(xy),...,w(x,))?. The Jacobian matrix

= w(xy), 47

J(t) = 2¥(x(t)) of size (2¢,2q) is first constructed from the velocity expression (15). The

resolvant matrix is then computed from (44).

B. Reduced continuous-discrete particle filter

Let us first note that if the time intervél, 1, t;] between two observations is long, the interval
is first divided as follows{t;_1,tx] = U,[t;_1,t;]. The stable and unstable directions are then
computed with more precision over successive sub-interé@ver a given sub-intervad;_, ],
the stable and unstable directions of the system (47) areifigoefrom a deterministic test
trajectory denotec(t). This trajectory is obtained by propagation of the estitiaatex;, ,
from time¢;_; to timet;, integrating the model (47) with a standard Euler scheménod step
At:

Xerar = X + wW(xg) At. (48)

The matrixM,,_, ,, is evaluated along the test trajectory using (44). We debpt@ the matrix

composed of the eigenvectors Mtffl,tth . The change of variableg = (x leads to the

i=1:t

following reformulation of our state evolution model (25):
dy: = Qw(Q"y,)dt + Q%,dB;, whereY, = o,l,,. (49)

The continuous-discrete patrticle filter is then modified @bkoivs:
o ty =t ts...:
o Adaptive prediction of trajectories:
Over all sub-intervalst;_;,¢;] such thatJ;[t;_1,t;] = [tx_1, tk],
x Characterization of the: unstable an@q — m stable components of the system (see

section IV-A);
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* Simulation ofN trajectories{yt(i) tti1 < t < t;}i=1n from the initial conditions
{yﬁjll}izlzN, handling differently the unstable and stable components:
- Unstable components: Simulated from the model (49);

- Stable components: Replaced by the corresponding comfsookthe test trajec-

tory y = Qx;
o Correction and estimation: After change of variable = RTy, use of equations (33)
to (36).

The dimensional reduction acts over the prediction stephef fiitering algorithm. For each
trajectory, then unstable components are randomly sampled, whil@ghen stable components
are fixed to the deterministic test trajectory componentse $ampling problem associated to

the prediction step is then reduced to a state space ofsize

V. EXPERIMENTAL VALIDATION

This section shows a set of experiments designed to valilateacking method we propose.
The non linear filtering technique is first tested on synthietiage sequences. The first sequence
has been synthesized from a reduced model of vortex patidlee second sequence comes
from a numerical simulation of a bidimensional turbulentfl&kesults on real world sequences
are then presented. The first sequence is related to expeahfiid mechanics, whereas the

second one is an infrared meteorological sequence.

A. Synthetic image sequence of vortex particles

We present in this section the tracking results on a syrmthetage sequence simulated from
a reduced model of vortex particles. The model has been rcmtast from 5 vortex particles.
Their initial positions{x;,, };—1.5 and associated parameters;, ¢; };—1.; have been fixed. The
state of the model is defined as the set of the positions of tharticles, and its evolution is
characterized by the model (25), fpr= 5. Vortex particles trajectories can be simulated from
the state model, with a discretization scheme of Euler tyjge.show in figure 2 an example
of two realizations, obtained from the same initial coratis. The temporal evolution of each
coordinate of the state vector can be seen in figure 2 for 108 steps. It can be noticed that

the trajectories simulated from the stochastic diffeedrgquation can differ a lot.
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Fig. 2. Example of two realizations obtained by simulation of theleh@onstructed from 5 vortex particleEemporal trajectories

of the 10 coordinates of the 5 vortex particles (the reatimatorresponding to the ground truth is plotted in red).

In order to test the tracking method, we have first selectexl afrthe trajectories simulated
from the model as a reference. The realization we have chedbe one plotted in red in figure
2. From this reference trajectory, a sequence of velocilgsiras been obtained using expression
(15). A sequence of synthetic images has then been corestrbgt warping. A pair(1y, , Iy, , )
of synthetic images is then available at each observatioa #i. The motion described by this
pair corresponds to the displacement at timef the ground truth. The images we have used
to create the synthetic sequence correspond to images dfgmicles transported by the flow,
similar to the ones used by PIV (Particle Image Velocimetgghniques (see figure 6 for an
illustration of such images).

We have tested the tracking method on this synthetic imageesee, withh = 500 trajec-
tories. The result is presented in figure 3. In order to evalule robustness of the particle
filtering method against its stochasticity, we have represka mean result over 50 filterings
and the dispersion around this result. The results showthieatmethod is able to recover the
test trajectory. The estimated trajectories of the 5 vopaticles coincide with the trajectories
associated to the ground truth (see figure 3). The dispemsionnd the estimation of each
coordinate of the state vector is very weak, highlighting tbbustness of the tracking method.
In order to demonstrate the interest of a continuous moglaedih our filtering problem, the

tracking method has been tested on the same image sequemnder b state space model in
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Fig. 3. Tracking result obtained with the non linear filtering methwe propose, averaged over 50 filteringg&emporal

trajectories of the 10 coordinates of the 5 vortex parti¢tee ground truth is plotted in red, the mean result of thekiray in

blue, the dispersion of the estimations around their meangeaen).

discrete time. In that case, the discretization step of oéuon model corresponds to the time

step between two images. The evolution equation writes #sefollows:
th+1 = Xy, + W(th) + Vi (50)

wherev,, is a Gaussian noise. The corresponding filtering result ésgmted in figure 4. The
result corresponds to a mean over 50 filterings. We can ntitetethe estimated trajectories of
the vortices do not recover the true trajectories. Moreabher figure 4 shows that the dispersion
around the estimates is quite high. This experiment higkdighe importance of a continuous
modeling in case of a vorticity-velocity dynamics.

The last experiment on this synthetic sequence concerndinfensional reduction presented
in section IV. The tracking result obtained with the redugedticle filter has been compared
to the result we have presented in figure 3, for the same nupflteajectories i = 500). The
comparison has been done in terms of mean absolute vomisiimation error at each time. The
result is presented in figure 5. The numberof unstable components is equal to 5, so that the
reduction we have obtained is of factor 2. Surprisinglys taictor 2 is repeated over the whole
sequence. For a reduction of factor 2, note that the gain mpctational cost was negligible,
due to the computational cost associated with the detetimimaf the eigenvalues. However,

it can be observed in figure 5 that the tracking results obthwith or without dimensional
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Fig. 4. Tracking result obtained with a discrete model, averageer &0 filterings.Temporal trajectories of the 10 coordinates of
the 5 vortex particles (the ground truth is plotted in re@, miean result of the tracking in blue, the dispersion of ttienasions

around their means in green).

reduction are close. This shows that the random samplingoeadone in a space of reduced

size without loss of quality, if this reduced space is defipeaperly.
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Fig. 5. Comparison of the tracking results by filtering with and witlh dimensional reductioriThe mean vorticity estimation
error associated to the dimensional reduction is plottepink, the error associated to the result presented in figusep®tted

in blue. The black curve represents the difference.

B. Synthetic image sequence of 2D turbulence

We present a second synthetic example showing the temparaition of a 2D turbulent flow.
This image sequence of 100 frames has been obtained by sionutd the 2D incompressible
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Navier-Stokes equation with a DNS methbdThe sequence is partly reproduced in figure 6.

Fig. 6. Image sequence obtained by Direct Numerical Simulatiohef2D incompressible Navier-Stokes equation.

A sequence of vorticity maps corresponding to the simutadibthe flow is represented in figure
7. The filtering model has been initialized on the first pair&ges with the estimation method
proposed in [13]. The state vector is composed of 100 vortekigbes. It is then of size 200,
leading to a more difficult problem than the previous examplewever, as we are limited in
practice by the computational resources, we have restritie number of sampled trajectories
to N = 1000. The figure 7 displays the temporal evolution of the vonicitaps corresponding
to the numerical simulation and the evolution of the mapsmeded by the tracking method.
The estimated initial vorticity distribution can be comgarto the true initial vorticity in figure
7, at timet, = 0. We can observe that the reduced model allows to recoveratiye kcales of
vorticity, while the smaller scales of the flow tend to be sthed. For that reason, the filtering
method is not able to track the fine structures of vorticitpwidver, we can notice that the main
vortices of the flow are tracked correctly. For instance, tém@aporal evolution of the vortex
located in the bottom right corner of the image at time= 0 can be observed. Its trajectory
is well tracked over the whole sequence. The correspondioigomfields can be compared in
figure 8.

A guantitative analysis of the tracking result is presentedigure 9. This figure displays the
temporal evolution of the absolute vorticity error betwdba true vorticity and the estimated
vorticity, averaged over the image. This error can be coeth&r the temporal evolution of the
error obtained with a simple propagation in time of the motbet us note that the mean absolute
error of the tracking method is not negligible in comparisorthe mean absolute vorticity over

this sequence. However, we can note that the tracking leads dignificant improvement in

1The image sequence has been provided by the CEMAGREF Reritiés the framework of the European FLUID project
“Fluid Image Analysis and Description” http:/fluid.iriga
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=50 t,=60 t,=70 t,=80 t,=90

Fig. 7. Result for 2D turbulence tracking: comparison of the vatyienaps.The ground truth is presented in the first line, the

tracking result in the second line.

comparison with a simple prediction of the model.

C. Experimental fluid mechanics application

The tracking method has been tested on a real image sequemiegcfrom an application
in experimental fluid mechanics. The sequence shows thetewolof a vortex generated at the

tip of an airplane wing. The sequence, composed of 160 frames, is partly reprododéglire

2The sequence has been provided by the ONERA (Office Natididudes et de Recherches Aérospatiales).
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Fig. 8. Result for 2D turbulence tracking: comparison of the
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Fig. 9. Temporal evolution of the absolute vorticity error, avezdgover the image domaihe estimation error caused by
a simple propagation of the evolution model is plotted inegrethe estimation error of the tracking method is plottedlire.

The mean absolute vorticity corresponding to the grounth tiw plotted in red.

10.

Fig. 10. Image sequence showing the evolution of a vortex generdtétedip of an airplane wing.

The initialization of the model has been obtained from thet firair of images of the sequence.
The initial vorticity distribution is described by a set & %ortex particles. This vorticity map and
the corresponding displacement field can be seen in figurerk] £ 0. Figure 11 illustrates the
results obtained by a simple propagation of the model. Weotserve that a simple simulation
of the dynamical model does not enable to track the vortex te whole sequence. Indeed,
from timet, = 20, the shape of the vortex is not well reconstructed. The ptedidisplacement

fields deviate significantly from the center of the vortextdrain the sequence, the predicted
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displacement fields present deformations that do not quoresto the observed phenomenon.

In the final part of the sequence, the trajectory of the voitexompletely lost.

t=0 =20 =40 t,.=60 t,=80

t,=100 t,=120 t,=140 t,=160

Fig. 11. Vortex tracking result on the ONERA sequence by simple patjn of the evolution model.

The figure 12 shows the solution given by the tracking metliodN = 1000 trajectories in
the filtering algorithm. The motion of the vortex is well rexstructed at each time, and its
trajectory is well tracked until the end of the sequence. artipular, we can observe that the

diffusion of the vortex in the second half of the sequenceali represented by the displacement
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fields. The deformation of the estimated rotating motiotofes the photometric contours of the
image. Secondary counter-vortices rotating around thecjpal vortex are well represented. The
evolution of the associated vorticity maps shows a spaitffalsion of the positions of the vortex

particles. The diffusion of the vortex is described by thet fhat the associated vorticity area

becomes less concentrated in space.

t=0 =20 =40 t,.=60 t,=80

L
» . - »
e N - " »
t,=100 t.=120 t.=140 t.=160

Fig. 12. Vortex tracking result on the ONERA sequence with the peghasethod.

For these real examples, the actual displacement fieldsoadenown. However, an indication
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about the quality of the results can be given by the mean stagtion error over the image
domain, from the estimated displacement fields. This esatefined at each observation time
ty by |L, (x4 Wy, (x)) — I, (x)| Vx € Q. The mean error evolution is represented in figure
13. An indication about the quality of the result given by rediction can be compared to
the result of the tracking method we have proposed. The ighgorhas been run 20 times in
order to test the robustness of the method. The mean resuthardispersion of the estimations
around this mean are displayed at each time in the figure. Weltserve that the reconstruction
error related to the prediction is highly decreased by theduction of the observations in the
filtering model. This remark confirms the qualitative comgan we have done from figures 11
and 12.

Reconstruction error

L L L L L L L
20 40 60 80 100 120 140 160

Fig. 13. Temporal evolution of the mean reconstruction error on thdERA sequencelhe error associated to a simple
prediction of the model is plotted in black, the mean erraregponding to the filtering method is plotted in blue, thepdrsion

around the mean in green.

D. Meteorology application

We present in this section a result obtained on a sequenceragfes provided by the infrared
channel of Meteosat The sequence displays the trajectory of a cyclone overrttiam Ocean.

The sequence is partly represented in figure 14.

3The sequence has been provided by the LMD (Laboratoire dedviglogie Dynamique) within the framework of the Europea

FLUID project “Fluid Image Analysis and Description” htifftuid.irisa.fr.
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Fig. 14. Image sequence displaying the evolution of a cyclone innldeah Ocean.

The tracking result with the filtering method is presentedfigure 15. The initialization is
described by the displacement field and the vorticity distion estimated at timg, = 0 from
the first pair of images, with a set of 15 vortex particles. To&ting motion described by the
cyclone is well reconstructed and its trajectory is welcked until the end of the sequence.

The temporal evolution of the mean reconstruction errodastgd in figure 16.
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Fig. 15. Cyclone tracking result with the proposed method.
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450

Reconstruction error

3.5r

Fig. 16. Temporal evolution of the mean reconstruction error for thyelone sequencelhe error associated to a simple
prediction of the model is plotted in black, the mean erraregponding to the filtering method is plotted in blue, thepdrsion

around this mean is plotted in green color.

VI. CONCLUSION

In this paper we have proposed a non linear stochastic fitkethie tracking of fluid flows
velocity fields from image sequences. In order to improve nblsustness and the temporal
consistency of the successive estimates, a physical kdgelabout the fluid evolution law has
been introduced into the filtering model. The evolution lavwhe filtering model is based on the
vorticity-velocity form of the Navier-Stokes equation.d Hiscretization of the vorticity over a set
of basis functions (called vortex particles) allows to didsecthe dynamical model by a stochastic
differential equation. This equation is constructed fromeduced number of vortex particles,
consequently it is only an approximation of the Navier-8®kquation. However, this continuous
evolution model brings a very usefalpriori information about the fluid flow evolution, which is
then corrected by the discrete observations extractedtihernmage sequence. A continuous form
of the particle filter algorithm has been applied to solvertba linear filtering problem. Because
the patrticle filter is not adapted to state spaces of high i@, a dimensional reduction method
has been used, based on the study of the instabilities ofytera. The results show that the
tracking method gives good results on synthetic and realdnggquences, when the flow can
be described by a reduced number of vortex particles. Foptaflows, results are promising
since the evolution of the large scales components of the demvbe recovered. Finally, let us
note that a necessary extension of this work is to focus ompanameters estimation problem in

the filtering model. As a matter of fact, the vortex partickegameters (strength and size) are
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fixed in our model, but a better approach would be to let theoivevin time. The associated
filtering problem would then consist in solving the jointigstion of the state and parameters

of the model at each time step.
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