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Dense Estimation of Fluid Flows

Thomas Corpetti, Etienne Mémin, and Patrick Pérez

Abstract—In this paper, we address the problem of estimating and analyzing the motion of fluids in image sequences. Due to the great
deal of spatial and temporal distortions that intensity patterns exhibit in images of fluids, the standard techniques from Computer
Vision, originally designed for quasi-rigid motions with stable salient features, are not well adapted in this context. We thus investigate
a dedicated minimization-based motion estimator. The cost function to be minimized includes a novel data term relying on an
integrated version of the continuity equation of fluid mechanics, which is compatible with large displacements. This term is associated
with an original second-order div-curl regularization which prevents the washing out of the salient vorticity and divergence structures.
The performance of the resulting fluid flow estimator is demonstrated on meteorological satellite images. In addition, we show how the
sequences of dense motion fields we estimate can be reliably used to reconstruct trajectories and to extract the regions of high vorticity

and divergence.

Index Terms—Fluid motion, continuity equation, div-curl regularization, nonconvex minimization, trajectories, vorticity, and divergence

concentration.

1 INTRODUCTION

IN a number of scientific domains, the analysis of image
sequences involving fluids is of the highest importance.
In environmental sciences such as oceanography, meteor-
ology, and climatology, the sequences of satellite images are
one of the main sources of information. Their analysis
allows, for example, the tracking of fish eggs, pollutants, or
ice floes in oceanography [12], [40] and of depressions or
convective cells in meteorology [30], [36], [37]. In medicine,
tomography sequences are used to monitor blood flow in
which vortices can indicate pathologies [29], [35]. In the
field of fluid mechanics, experimental imaging techniques
now routinely produce various types of videos which
constitute a unique source of information for both applied
and theoretical studies [1], [43], [46].

In all these domains, cameras provide in a versatile and
nonintrusive way huge amounts of spatio-temporal data, as
opposed to in situ measurement techniques (e.g., physical
drifter in oceanography, mechanical anemometry in meteor-
ology, thermal anemometry in fluid mechanics), which are
complex, expensive, and supply only sparse information.
Unfortunately, unlike dedicated probes, images only give
indirect access to the physical quantities of interest. With
videos or image series, one must face the complex task of
extracting these quantities from the intensity patterns
recorded in the successive images. As compared to more
classical motion analysis problems addressed by the compu-
ter vision community, the analysis of fluid motion from
images is particularly challenging due to the great deal of
spatial and temporal distortions that the intensity patterns
exhibit.
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In this specific context, a number of methods have been
proposed to measure dense displacement fields [4], [7],[11], [13],
[14], [15], [18], [21], [28], [33], [36], [40], [47], [48]. The obtained
displacement fields already provide valuable information in
their ownright. They are, for instance, intended to capture the
winds in meteorology applications [36] or they can be used
directly to feed the numerical models of weather prediction
[36], ocean circulation [11], or fluid mechanics [46]. These
motion fields are also useful in deriving other entities of
interest. The numerical derivation of these fields provides
estimates of the divergence and vorticity [43], whereas
numerical integration provides stream functions, velocity
potentials [39], [40], and point trajectories [40]. Based on the
estimated motion fields, the so-called critical points of the
flow can also be recovered and classified [11], [16], [17], [18],
[33], [35]. Whatever the domain of application, these points
are important to understand, predict, and compactly repre-
sent the flows of interest.

Apartfrom a few cases to be discussed later, the techniques
of dense motion estimation used in all these studies are
similar to those classically used in computer vision, where the
motions under consideration are quasi-rigid and stable
salient features are present in the scene. Unfortunately, there
is no such thing as an “object” in most imaged fluid flows.
There are mainly deformable and transient brightness
patterns, as illustrated in Fig. 1 with a sequence of meteor-
ological satellite images. On such sequences, techniques
based on standard computer vision ingredients are thus
intrinsically limited. The design of alternative approaches
dedicated to fluid motion thus remains a widely open domain
of research. Our work is a contribution in that direction.

2 BACKGROUND AND CONTRIBUTION

2.1 Standard Dense Motion Estimation and Its
Limitations

The most accurate techniques to address the generic

problem of estimating the apparent motion from image

sequences are based on the seminal work of Horn and
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Fig. 1. Example of complex imaged fluid flow sequence of four infrared Meteosat images showing a spiraling depression.

Schunck [23]. See for instance [2], [9], [11], [25], [26], [27],
[31], [44], [45] for the description of such state-of-the-art
techniques and [5], [6] for comprehensive comparisons with
completely different approaches.

These techniques are based on the minimization of a
global cost function of the form:

OE(x,t)

[ a]vE@0 o0+ 250 s apwo@oll, 0

where v(z,t) is the unknown velocity at time ¢ and location
z = (z,y) in the image plane , E(z,t) is the image
brightness, « is a positive parameter, and f; and f, are
two penalty functions. The first part of this cost function
relies on the assumption that the visible points conserve
roughly their intensity in the course of a small displace-
ment, that is:
dE 0E

The associated penalty function f; is often the L, norm.
However, better estimates are usually obtained by choosing
a “softer” penalty function [9], [31]. Such functions, arising
from robust statistics [24], limit the impact of the many
locations where the brightness constancy assumption does
not hold, such as on occlusion boundaries.

The second term of the cost function (1) favors smooth
solutions. It leads to a well-posed optimization problem,
while incorporating a sensible prior on the velocity to be
recovered. As with the penalty function in the data term, the
penalty function f, was taken as a quadratic in early studies,
but a softer penalty is now preferred in order not to smooth
out the natural discontinuities of the velocity field [9], [11],
[26], [31].

Q/:revious
| I resolution
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Fig. 2. Incremental multiresolution setting the displacement esti-
mated at a previous image resolution is refined by estimating a
displacement increment at the current resolution.

Based on (1), the estimation of motion presents a major
flaw: Due to its differential nature, the expression (2) of the
brightness conservation is no longer usable when large
displacements occur between consecutive frames of the
sequence. To circumvent this problem, the brightness
conservation must be expressed in an integrated way:

E(x +d(x),t + At) — E(z,t) =~ 0, (3)

where At is the temporal sampling rate and d(z) is the
displacement from time ¢ to t + At of the point located at
position z at time ¢. This new form is highly nonlinear in the
unknown vector field. As a consequence, almost all studies
resort to a succession of linearizations embedded within a
multiresolution scheme. Given a previous estimate d of the
displacement field obtained at a coarser resolution, a first-
order expansion of the first term in (3) is performed around
(z +d(z),t + At), yielding the following cost function:

/ fi {VE(z +d(z),t + At) - Ad(z) + E(z + d(z),
¢ (4)
t+ At) — B(z,t)| + afe[|V(d+ Ad)(z)]]

to be minimized with respect to the displacement increment
Ad = d — d (Fig. 2).

Although motion estimators based on a cost function of
the type in (4) have proven useful for fluids [4], [11], [28],
[33], [43], the two basic assumptions—brightness constancy
and first-order smoothness—seem inappropriate for the
complex deformable motions encountered in this context.
First, the deformable nature of the fluid motions, the
complexity of the imaging processes, and the possible
variations of temperature and pressure of the moving fluid
all contribute to variations of the observed brightness for a
given element of fluid.

In addition to these breakdowns of the brightness
constancy assumption, optical-flow estimators equipped
with a first-order regularization, as in (4), have difficulty
recovering most complex fluid motions. Even with a soft
penalty function f, a smoothing of this type results in
estimated motion fields with low divergence and vorticity
—and these two quantities are known to be large in a
number of locations for most imaged fluid flows. This over-
smoothing is all the more problematic since it occurs
usually around the critical points, which are of primary
importance to describe and understand the whole flow.

2.2 Related Works and Contribution

The classical approaches based on a cost function of the
type in (4) see the weakness of their two underlying
assumptions dramatically exaggerated in the peculiar case
of fluids. We propose here a new minimization-based
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technique where both assumptions and, consequently, both
parts of the cost function are changed to better suit the
specificities of fluid images.

Following several authors, we first suggest to base the
data term on a continuity equation applied to image bright-
ness. This idea was originally suggested by Schunck [38] for
general motion estimation. Since then, it has been acknowl-
edged as an especially appealing alternative to the bright-
ness constancy assumption in the context of moving fluids
[3], [7], [13], [14], [15], [47], [48]. The recorded image
intensity is indeed related, to a degree of complexity that
depends on the type of imagery, either to the density of the
fluid, or to the concentration of a passive marker trans-
ported by it. The rationale is then that the continuity
equation, which these physical quantities obey for the
tridimensional velocity field (at least in absence of matter/
marker creation or disappearance), can be applied to the
image brightness itself for the apparent two-dimensional
velocity. Although more physically-grounded, this remains
an ad-hoc constraint on the image brightness (except in
specific cases [14], [47]) since the precise relationship
between the brightness and the observed physical quan-
tities is beyond reach in most cases, including satellite
images. Due to this limitation, we will adopt a robust
formulation, in contrast to all other studies making use of
the continuity equation.

As we shall see, the resulting brightness constraint is
similar to (2), relying on the apparent velocity. It is thus not
directly applicable to large displacements. We address its
limitation by deriving an integrated continuity equation,
resulting in the novel term that is presented in Section 3.

Beside this new data term, we investigate a new
regularization approach that is presented in Section 4. In
order to better preserve the concentrations of both diver-
gence and vorticity, which are smoothed out by a standard
regularization, we resort to an original second-order “div-
curl” regularization. The “div-curl” regularization has been
used by Suter [41] and Gupta and Prince [20] for the
estimation of motion. We depart from these earlier studies
in two ways. First we turn the second-order div-curl
regularization into two interleaved first-order regulariza-
tions based on two auxiliary scalar fields which approx-
imate the divergence and the vorticity of the flow. This
reduces the complexity of the associated minimization
problem. From a modeling point of view, this also offers the
opportunity to incorporate physical priors directly on the
divergence and the vorticity, as well as to assimilate
physical measurements of these quantities. Second, we
make use of soft penalty functions in this regularizer for an
even better preservation of the divergence and vorticity
structures of the flow.

The problem of minimizing the resulting nonconvex cost
function is addressed in Section 5. Comparative results of
motion field estimation are reported and discussed in
Section 6. Finally, based on two different uses of dense fluid
motion fields, namely the reconstruction of long individual
trajectories and the extraction of vorticity/divergence
structures, we demonstrate in Section 7 that the motion
fields provided by our approach constitute reliable inputs
for further computations of real interest.

367

3 INTEGRATED CONTINUITY EQUATION

In most image sequences, the classic assumption of bright-
ness constancy along the motion trajectories is known to be
violated in a number of locations in the image plane. For
example, brightness constancy does not apply at occluding
contours, where pieces of background appear or disappear
at each time step. When an explicit modeling of patholo-
gical situations is not possible, their impact on the rest of the
motion estimation can be limited by using nonquadratic
penalty functions stemming from robust statistics.

In fluid imagery, the brightness constancy assumption is,
unfortunately, even less appropriate. Indeed, image
sequences involving fluids often exhibit dramatic temporal
changes of brightness. A number of factors, depending on
the imaging technology and on the nature of the flow, can
be responsible for such a behavior. First of all, imaged
flows, like those in meteorology, might be compressible. In
this case, the fluids experience changes of volume during
displacement, which is incompatible with the brightness
constancy assumption.

Often, the recorded irradiance either corresponds to a
slice of the flow (like in particle velocimetry experiments
using a laser sheet, [1], [46]) or results from an integration
process over a certain layer of the flow (like in tomography
[13], [29], angiography [35] or transmittance imagery [14],
[47]). In the former case, tridimensional motions nonparallel
to the visualization plane cause fluid elements to enter or
exit the imaged slice. In the latter case, the integration
process might result in apparent displacements for which
the brightness constancy assumption is not valid even if
there is an actual Lagrangian invariant—i.e., a certain
physical quantity that is conserved along trajectories—in
the tridimensional flow.

Finally, the recorded brightness is often a function of the
thermodynamic conditions (temperature and pressure).
Hence, the brightness of a given element of fluid changes
whenever these conditions change along the trajectory. This
is true in infrared satellite imagery, for example, where the
image brightness is a direct function of the temperature [48]
and, thus, depends, among other factors, on the altitude of
clouds visible in the image, as well as on the temperature of
the ground or sea beneath.

Based on these considerations, an alternative brightness
constraint, which would be better suited to the physics of
fluids, has been sought. A few authors have suggested the
use of the continuity equation, as a more physically-
grounded constraint, and they have demonstrated that it
is indeed an appealing alternative [3], [7], [13], [14], [15],
[47], [48]. It turns out that the image irradiance for a fluid is
usually related to the density of a physical quantity—e.g.,
mass in transmittance imagery [14], [47], dye, smoke, or
particle concentration in particle image velocimetry [43],
heat in infrared imagery—transported by the flow under a
global conservation constraint. This density p obeys the
continuity equation:

% +div(pV) =0, (5)
where V is the three-dimensional velocity field. This
equation is derived from the global conservation assump-
tion by stating that the temporal variation of the quantity
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under consideration within an infinitesimal volume
amounts exactly to the flux of this quantity through the
boundary surface of the volume.

One can then assume by analogy that the two-dimen-
sional image brightness E and apparent velocity v satisfy:

%—f + div(Ev) = 0. (6)
For incompressible fluids such as water, the three-dimen-
sional flow is divergence free. Assuming the resulting
apparent bidimensional flow is divergence free as well,
the bidimensional continuity equation above amounts
exactly to the brightness constancy constraint (2), since
div(Ev) = v+ VE 4 Edive. In other cases, i.e., when flows
are compressible such as in meteorological satellite imagery,
the brightness constraint expressed by (6) differs from the
standard one, (2), by the additional term Edivv.

The actual validity of this new brightness constraint has
been formally demonstrated by Fitzpatrick [14] in the
particular case of transmittance images with certain known
boundary conditions. In the same context, it was recently
generalized by Wildes et al. [47], under the simple
assumption of null normal flow on boundaries.

In other contexts, such as the one of atmospheric satellite
images on which our experiments are conducted, both the
image formation model and the boundary conditions are
insufficiently accessible (the boundaries of the image have
nothing to do with the boundaries of the fluid) to obtain
such a strong result. Consequently, even if the constraint
has experimentally proven appealing in previous studies
[7], [48], only qualitative justifications can be provided.

In the case of the Meteosat images on which our
experiments are conducted, simple models of atmospheric
mechanics and thermodynamics can be mobilized in favor
of the continuity equation. For images in both infrared and
water vapor channels, the image irradiance can be con-
verted linearly into brightness temperature based on
parameters reactualized every three months by the Eur-
opean consortium Eumetsat in charged of the Meteosat
images. Considering a homogeneous temperature profile of
the troposhere and using a linearization of the so-called
Laplace formula [42], the temperature can finally be
converted linearly into pressure P, making the original
brightness approximately linear in the pressure.

Based on the hypothesis of atmospheric static equili-
brium, the vertical component of pressure forces and the
weight cancel out, yielding:

oP

0z
where z denotes the altitude, g the gravity, assumed
constant, and p the mass density. Hence, the image
brightness is approximately proportional to the vertical
integral of the mass density:

= —gp, (7)

E(z,y,t) x /Zl plx,y, 2z, t)dz. (8)

20

This image formation model is similar to the one used in
transmittance imagery. Following Fitzpatrick [14], the

integration of the continuity equation (5) with respect to z
and the use of (8) finally provide:

%if +div(Ew) + [En. - V|7 =0, 9)
with the apparent bidimensional velocity v defined as

f ;“l pVh
Z1 )
Jar
with V), the vector made up with the two first components
of Vand nf =[001].

Making the assumption, common in meteorology, that
the vertical component n. -V of the instantaneous atmo-
spheric velocity is negligible, we end up with the image
brightness respecting a bidimensional continuity equation
for the bidimensional “apparent” atmospheric velocity v.

For flows with nonzero divergence in general and those
present in infrared and water vapor Meteosat images in
particular, we thus believe that the constraint (6) is more
principled than the brightness constancy assumption (2).
The comparative results we shall provide on the latter type
of images support this belief.

In contrast to previous studies, however, we think that
the direct use of the constraint in (6) is plagued in exactly
the same way as the classical constraint (2)—i.e., by its
differential nature—and is not suitable to estimate large
displacements. This is particularly problematic when the
imaged flow is very rapid (like in a number of fluid
experiments), or when the temporal sampling rate is very
low (as with satellite images). To circumvent this limitation,
we need to derive an integrated version of the constraint, in
the same way as displacement-based brightness constancy
(3) is derived from the velocity-based version (2).

To this end we first rewrite (6) using the identity
div(Ev) = Edivv + VE - v and the definition 2 = %2 + VE .
v of the total derivative:

% + Edive = 0.
Now, consider an infinitesimal imaged fluid element with
trajectory {z(u),u € (t,t + At)} joining location z at time ¢
to location z + d(z) at time ¢+ At. We assume that its
velocity is constant along this piece of trajectory, implying
that d(z) = Atv(z,t) and

(10)

divo(z(u),u) = At~ divd(z), Yu € (t,t + At).

The ordinary differential equation (10) is then readily
integrated:

dE(th)’t) = —F(z(u),u)divo(z(u), u), (11)
B Vu € (,t + At)
= E(z+d(z),t + At) = E(z,t) exp(—divd(z)). (12)

According to this constraint, the brightness is scaled by the
factor exp(—divd(z)). It decreases (respectively, increases)
for motions with positive (respectively, negative) diver-
gence. When the divergence is zero, this constraint amounts
exactly to the brightness constancy constraint (3).
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Fig. 3. Example of divergence concentrations in these four consecutive water vapor Meteosat images, the dark spots correspond to exploding

convective cells whose motion in the image plane is highly divergent.

This integrated continuity equation has the advantage of
dealing explicitly with displacements instead of velocities,
but, as a consequence, the dependency on the unknown
vector field d is now highly nonlinear. As with standard
incremental motion estimation techniques described in
Section 2.1, we cope with this problem by using a coarse-
to-fine succession of linearizations. Given a previous
estimate d of the displacement field obtained at a coarser
resolution, a first-order expansion of the left-hand-side of
(12) is performed around (z + d(x),t + At). Dropping the
time indices of the intensity function for sake of clarity, we
end up with the following data term for our dedicated cost
function:

Fi(Ad) = /Qfl [exp(div&(z)) ((E(z)Vdivd(z)+

(13)

VE(z)) - Ad(z) + E(z)) - E(w)] dz,
where Ad = d — d and we introduce the compact notation
E(z) = E(z +d(z),t + At).

Although the continuity equation seems more appro-
priate than the brightness constancy constraint in the
context of compressible fluids, it remains an ad-hoc choice.
As we previously discussed, no one has given to date a
rigorous proof of its validity, except in the specific case of
transmittance imagery [14], [47]. Moreover, the underlying
assumption of global conservation of some physical
quantity, such as mass, is likely to be locally violated for
physical reasons (presence of actual sources or sinks in the
flow), as well as for image-based reasons. Concerning the
latter issue, three-dimensional motions nonparallel to the
image plane, such as convective motions of clouds, can
result in the appearance or disappearance of matter in the
imaged volume. Similarly, the motion at the boundary of
the image plane is not parallel to this boundary in general.
This again results in the entrance and the exit of fluid
elements in the imaged area.

For all these reasons, we would like a soft penalty
function in (13), which will limit the impact of the various
violations of the continuity equation on the overall motion
estimate.

A whole range of such soft penalty functions have been
proposed in the literature (see for instance [10]). Some are
convex, which is convenient from a minimization point of
view. However, we have found that a bounded penalty is
more effective. We chose the Leclerc function defined as
fi(z) =1 —exp(—m2?), where 7 is a positive parameter.
The hierarchical minimization scheme we describe in
Section 5 proven effective in dealing with the resulting
nonconvexity.

We now turn to the definition of the smoothness prior to
be used in conjunction with (13).

4 ADAPTED Div-CURL REGULARIZATION

The first-order regularization used in the standard cost
function (4) penalizes the spatial variations of the displace-
ment field d = (u, v). Such a regularization thus results in
estimated vector fields with rather small divergence and
vorticity. This can be made more visible when the penalty
function f is quadratic by noticing that the Euler-Lagrange
equations associated with

/ |Vul* + |Vol?
Q

are the same as those associated with the so-called first-
order div-curl regularizer [41]

(14)

/ div’d + curl’d, (15)
Q

where divd = 2" + g—z and curld = 2% — g—z are, respectively,
the divergence and the vorticity of the bidimensional vector
field d. From a minimization point of view, the two first-
order regularizers, (14) and (15), are thus equivalent. This
equivalence does not hold any longer for a softer penalty
function f,. But, it is easy to see that the discontinuities
authorized by the use of such a penalty function in (4) will
not remove the global bias towards low divergence and
vorticity.

For fluid motion estimation, such a first-order smoothing
does not seem appropriate since the flows of interest are
expected to exhibit large “concentrations” of vorticity and
divergence. In fluid mechanics experiments, for example,
turbulent flows develop vortices which are interacting
rotational structures characterized by large vorticity. In
meteorological satellite images, the spiraling motion of
depressions (Fig. 1) possesses both substantial vorticity and
divergence. Important divergent bidimensional motions are
also associated to tridimensional motions that are nonpar-
allel to the image plane, such as those shown in Fig. 3.

The key information present in these concentrations of
divergence and vorticity will then be partly ignored by
standard motion estimation techniques based on a first-
order regularization. Besides, in the prospect of using the
data cost term introduced in the previous section, which
makes explicit use of the divergence, an underestimation of
the divergence field would be critical. It would neutralize
the advantage of the new data term by making it tend to the
standard one based on the brightness constancy constraint.

Hence, we propose to use a second-order regularization.
Since the divergence and the vorticity of the flow are much
more physically meaningful than the spatial gradient, the
second-order div-curl regularizer introduced by Suter [41]
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/ |Vdivd|* + |Vcurld|? (16)
Q

is particularly appealing. However, we modify it in two
ways. First, we substitute a soft penalty function f, for the
quadratic one. Second, we introduce two auxiliary scalar
fields, £ and (, which will constitute direct estimates of the
divergence and vorticity, respectively. The new regularizer
is given by:

/ divd — € + Afo(|VE]) + / jcurld — ¢ + Ma(IVC).
9] 9}
(17)

The first part of each integral encourages the displacement
to comply with the current divergence and vorticity
estimates, £ and (, through a quadratic goodness-of-fit.
The second part equips the divergence and the vorticity
estimates with a robust first-order regularization favoring
piece-wise smooth configurations.

Although it is not investigated in this paper, the introduc-
tion of the two scalar fields, ¢ and (, permits even more
sophisticated priors on the divergence and the vorticity of the
imaged flow. In [33], we investigate, for instance, the use of a
parametric description of these two quantities in the
neighborhood of the critical points of the flow. In the same
vein, the explicit manipulation of div and curl estimates
should simplify the assimilation of physical measures
provided by dedicated probes, such as sparse vorticity
measurements obtained by thermal anemometry [43].

The augmented formulation also provides computational
advantages. The second-order regularization is replaced by
two interleaved first-order regularizations. From the Euler-
Lagrange point-of-view, this amounts to replacing the
fourth-order PDE associated with (16), by a coupled PDE
of order two. In the next section, we shall see that our
minimization, although not posed in terms of PDEs, turns
out to be a discrete problem of reasonable complexity as
assessed by the locality of the interactions among the
unknown variables (or, equivalently, by the bandwidth of
the nonlinear sparse system to be solved).

The soft penalty function f, is important to allow for
abrupt variations of divergence and vorticity. The vorticity
and divergence of complex flows are actually known to
concentrate in aggregates with sharp borders. These
boundaries will consequently be better recovered by a
loose penalty function. We chose again the Leclerc penalty
function, fo(z) = 1 — exp(—mz?).

To embed the regularization term (17) in the incremental
hierarchical framework briefly presented in the previous
section, we must express it in terms of the displacement
increment Ad = d — d, where d is a crude estimate of the
displacement field. The second term of our global cost
function, to be combined with (13), is then:

Fy(Ad.£,0) = /) div(@+ Ad) — € + Mo(IVE)+
(18)
/Q leurl(@ + Ad) — (> + Ma(|VC]).

We now detail the minimization of the total cost function.

5 MINIMIZATION

The incremental estimation of the dense displacement field
is conducted as follows: From each image in the sequence,
lower resolution images (three in our experiments) are
derived by Gaussian smoothing and subsampling. This
multiresolution structure is then used in a coarse-to-fine
way. At a given time in the sequence and at a given
resolution, the displacement field d obtained from the
previous resolution is refined by solving

foin Fi(Ad) + aFy(Ad, €, ), (19)
where F; and F, are defined in (13) and (18). The
approximate solution obtained by the technique described
hereafter is added to d and passed to the next resolution
(Fig. 2). At the coarsest resolution, d = 0.

5.1 Discretization

The discretization of the minimization problem (19) can be
done in several ways. It can be implemented at the level of the
Euler-Lagrange PDE that the minimizer must satisfy or it can
be performed right away at the level of the cost functional. We
prefer the second solution, reminiscent of MRF-based
approaches, for its simplicity. With the unknown fields Ad,
& and ( now restricted to the finite grid S of pixel centers, the
discrete counterpart of cost terms F; and £ is:

R(Ad) =Y f [exp(diva(s)) ((E(s)Vdivd(s)+
ses (20)
VE(s)) - Ad(s) + B(s)) — E(s)}

Fy(Ad,&,¢) =) [divd(s) + divAd(s) — &+

seS
A Rl -6+
(s,m)eC (21)
Z[curl&(s) + curlAd(s) — ¢J*+
ses
DA
(s,ryeC

where C' is the set of adjacent pixel pairs (in the nearest-
neighbor sense), f; and f, are Leclerc penalty functions
with parameters 71 and 7, respectively, and div (respec-
tively, curl) is now a discrete divergence (respectively,
vorticity) operator.

Using a standard central finite difference discretization,
the divergence and the vorticity can be defined at location

s = (i,]) as

{ divd(i, ) = §[(uwiji1 — wij1) + (Vig1j — vio1)]

g 22
curld(i, j) = % [(’Ui,j+1 - Ui,j—l) - (ui+1,j - ui—l,j)]v (22)

where d; ; = (u;j, vi ;). However, because the central point
(1,7) does not appear in this discretization, the set of pixels
is split into subsets (the red and black of a checkerboard)
that only weakly interact through the data term Fj. This
results in a badly conditioned system for which the
resolution has been found problematic, with the appearance
of numerical instabilities. Hence, we prefer to use a
nonsymmetric discretization of the partial derivatives so
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as to include the central point. The resulting discrete div
and curl operators are:

diva(i, j) = §[(3ui; + wij2 — Guij1 + 2ui50)+
(3vij + i j — 6V_1j + 211 )]

curld(i,j) = % [(3’[)1'1]' + vij—2 — 6’01"]',1 + 2’[)2'3];#])—
(Buij + wi—gj — 6ui—1j + 2w 5)].

(23)

The discretization of the z-derivatives used here arises from
solving the linear system

) .—.-+haz o
Rith,j =%i,j ox i 2 6332 ij
h3 0z
-z 0h47h:_171727
6 8I3 ij + ( )

for the three derivatives at location (i, j), where z denotes
either u or v. The discretized y-derivatives are similarly
obtained.

5.2 Semiquadratic Alternate Minimization

The global discrete cost function F' = F; + af, must be
minimized with respect to the three sets of variables
d={Ad},c & ={&}oegr ¢ = {(s}oeg- The minimization is
conducted alternately with respect to one of the three sets at
a time. If the penalty functions, f; and f;, are quadratic,
then each of the three optimization subproblems amounts to
a large, sparse, linear system for which efficient solvers
(e.g., multigrid Gauss-Seidel, preconditioned conjugate
gradient) exist. The choice of softer penalty functions,
however, makes the problem nonquadratic and even
nonconvex in the case of the bounded Leclerc function.
Although general nonconvex minimization techniques are
available, the specific minimization problem we face is
classically turned into an augmented half-quadratic mini-
mization problem [22]. Indeed, the Leclerc penalty shares,
with all penalty functions f such that f(,/) is concave, the
property that:

f(z) = min zz? +¥(2), (24)
z€(m,M]
where M = limg: £ /;Z) , m = lim_ %, and 1), for which an

expression can be found in [10], [19], is such that the
minimizer on the right-hand-side is given by z = %j) For
the Leclerc penalty with parameter 7, we have m =0,
M =7, and f;f) = Texp —T12>.

Using (24), each minimization problem of the generic
form min, ), f(gx(z)) can be replaced by the auxiliary
problem min, (..} >, 297 (%) + ¥(z;), which can be solved
by iteratively reweighted least squares (IRLS) [22]: For fixed
auxiliary (weight) variables z;, € (m, M], one faces a least-
squares problem; for fixed z, the optimal value for each
weight is known in closed form as )"2(;:_&))

The sum constituting Fj, as well as the sums in F5 where
penalty function f, appears, can be rewritten this way.
Three sets of weights, {20} g, {4}, yec, and {2}, yec are
thus introduced. Each of the three minimizations of F, with

respect to Ad, & and (, respectively, is then handled by
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IRLS. As suggested in [34], however, we use a nonclassic
version. Whereas the chosen least-squares solver is usually
applied to each least-squares problem at fixed weights until
a convergence criterion is met, we only apply one iteration
(i.e., one sweep over the pixel grid) of the Gauss-Seidel
solver in between two weight updates. This is proven to
leave the theoretical convergence properties of the algo-
rithm unchanged—namely, convergence towards a local
minimum in nonconvex cases—and yields in practice a
faster convergence towards a better local minimum [34].

Finally, the key minimization with respect to the
increment field Ad is improved, both in terms of result
quality and speed, by applying the coarse-to-fine technique
introduced in [32]. For sake of completeness, we provide a
brief description of this hierarchical minimization technique
in Appendix L.

The complete algorithm is summarized below:

. & =0

o From coarsest to finest resolution do
0o Ad=0,6=0,(=0,2=7,25=m, 28 =n
o Until convergence do® ¢ ¢

GS (Z 259 (Ad),
+()4[divc~l(s) + divAd(s) — &]°
+afcurld(s) + curlAd(s) — Cs}z)

Ad <+

nexp —719°(Ad)s, Vs € S
GS (Z[diva(s) +divAd(s) — &]* (26)

+A Z Z§r|£s - 57"2)
(s.r)
T2 exp —Talés — &%, V(s, 1) € C
GS (Z[curl&(s) + curlAd(s) — (]? (27)

+A Z Z.grlés - <’r‘|2>
()
2, — mexp—ml — G|} Vs, eC

+ If not finest resolution, pass d « d+Ad to next resolution.
« If finest resolution, d + d + Ad.

“Convergencee is reached when the relative change in the La-norm of
Ad is below 3%.

bg(Ad)s denotes exp(divd(s))((E(s)Vdivd(s) + VE(s)) - Ad(s) +
E(s)) — E(s).

¢475()” denotes one Gauss-Seidel iteration on the quadratic form un-
der consideration.

6 EXPERIMENTAL RESULTS

In this section, we compare a variety of dense displacement
fields to assess the respective merits of the data cost term
Fy, (13), introduced in Section 3 and of the div-curl
regularizer F3, (18), introduced in Section 4. Their classic
counterparts, reviewed in Section 2 [where they constitute
global cost function (4)] will be referred to as G; and G,
respectively, in what follows. The first is discretized in the
same way as Fj in (20). The discretization of the first-order
spatial derivatives in G is similar to those of ¢ and £ in (21).
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Fig. 4. Synthetic spiral motion under the brightness constancy assumption the motion with curl = 0.2 and div =0.2 is applied to a real
Meteosat image from the visible channel to get (Left) a noise free image pair and (Right) a noisy image pair.

To ease the reading of the next sections, one might think of
F as in “fluid” and of G as in “general.” Also, each of the
four cost functions involves a penalty function. When this
penalty function is chosen to be quadratic, a superscript g is
used and when the bounded Leclerc penalty function is
used instead, the superscript L appears. For instance, the
cost function GY + oG4 amounts to an incremental version
of the original Horn and Schunck functional and G¥ + aG%
is similar to the robust costs used in [9] and [31]. When
using the Leclerc penalty function, an additional parameter
T must be set.

Whatever the combination of data term and regularizer
under consideration, the minimization procedure employed
is the straightforward adaptation of the one described in
Section 5 for FL + aFFf, with an incremental estimation
based on a multiresolution representation of the images and
a hierarchical technique to speed up and improve the
minimization at each resolution.

6.1 Synthetic Motions

In order to assess the relevance of the second-order div-curl
regularizer F, (in its simple quadratic form FY), we start
with comparisons on two image pairs obtained by applying
the same synthetic spiral motion to a real Meteosat image
(Fig. 4). This motion is the sum of a zoom-in (constant
divergence of 0.2) and a counter-clockwise rotation (con-
stant vorticity of 0.2). In the first pair, the second image is
built from the first real image in order to satisfy the
brightness constancy constraint. In the second pair, both
images are then corrupted by white Gaussian noise at 10dB.

On this benchmark we compared G{ + oG4, GY + aGE,
and G!+ aFyj. The quadratic data term G? is employed
since the image pairs respect the brightness constancy
constraint for the true field by construction (up to an

additive Gaussian noise, for which the quadratic estimator
is the optimal one, in the second pair). The first cost has
been tested with 10 different values of regularization
parameter « € [50,500]. For the second one, 100 different
parameter combinations (a, ) € [50,500] x [0.4,2.0] have
been tried. Finally, the third one has been used with 100
different parameter combinations

(a, M) € [50,500] x [50,500].

The true displacement field being available, we can quantify
the global correctness of the various estimates according to
the angular discrepancy criterion of Barron et al. [5]. For a
given estimated motion field, the mean ;. and the standard
deviation o of the angular discrepancy over the whole pixel
grid are computed. For each method, we average these
quantities over the estimates obtained with the different
parameter sets, getting (u) and (o). These quantities are
reported in Table 1, along with the extremal values,
(mins maz) and (Oumin, Omaz), Obtained within each set of
trials. We also report the total number of image sweeps taken
by each algorithm to converge with its best set of parameters.

The average values of the mean discrepancy and its
standard deviation over the multiple trials are lower for the
regularizer Fy in both examples. The much tighter range of
variations of 1 and o for this regularizer also indicates that
this superiority holds consistently over the large range of
parameter values we have explored.

These first simple experiments show that the second-
order div-curl regularizer, even in quadratic form, is better
suited than a standard regularizer, robust or not, for
rotational and divergent motions, which are key compo-
nents of fluid flows. From a complexity point of view, this
new regularizer results in a computation increase of
roughly 15 percent.

TABLE 1
Results for the Two Image Pairs in Fig. 4

Cost function ) Bmin  Mmaz (o) Omin Omaz  iNage sweeps
G + aG3 3.26°  2.63° 834° 3.27° 2900  6.32° 936
Gg + aG% 3.40° 2.42° 18.93° 2.80° 1.11°  26.71° 1136
Gg + ozF2q 2.64° 2.35° 4.96° 1.44° 1.04° 3.67° 1377
Gi + oG 10.59° 8.55° 15.38° 11.48 8.28° 18.14° 1103
GI + aGY 10.36°  5.99° 25.13° 10.81° 6.05° 28.41° 1204
Gg + ozF2q 7.90° 5.89° 11.97° 851° 5.72° 14.26° 1384

Average and extremal values of the mean (respectively, standard deviation) of the angular discrepancy to ground-truth for three different global cost

functions. (Top) Noise free image pair. (Bottom) Noisy image pair.
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Fig. 5. Synthetic spiral motion under the continuity equation
assumption the motion with curl = 0.2 and div = 0.2 is applied to a real
Meteosat image from the visible channel, so as to respect the integrated
continuity equation, i.e., the brightness of a displaced point is multiplied
by exp —0.2.

The results on the noisy image pair also demonstrate that
the second-order div-curl regularizer is more robust to
noise. One of the reasons might be that a higher regulariza-
tion parameter « is required to limit the noise influence,
which in turn exaggerates even more the tendency of first-
order smoothing to underestimate divergent and rotational
motion components.

It is worth noting that the image pairs are only related to
fluids via the photometric content of the first real image.
The apparent motion we have generated is that which any
fronto-parallel plane rigid object undergoing a rotation
while closing in on the camera would exhibit. Although the
use of this new regularizer in other contexts falls beyond the
scope of this paper, we think that these simple experiments
already indicate that it is an appealing alternative to
standard robust first-order smoothing as soon as important
divergent and vorticity motions are present, irrespective of
the nature of the imaged scene.

Continuing these synthetic image experiments, we
assessed the consistency of the data cost F; by considering
a new image pair (Fig. 5), where the same spiral motion has
been applied to the same satellite image, but accompanied
this time by brightness changes compliant with the
integrated continuity equation (12). More precisely, the
divergence of the motion being 0.2, the luminance of each
displaced pixel is scaled down by exp(—divd) = 0.818.

On this image pair we compared the four combinations
of data costs (G and Fi) and regularizers (G; and F3). As
the brightness constancy is, by construction, not satisfied,
we have considered only the robust version G¥ of the data
cost relying on it. The value of the associated parameter 7
has been tested within the range [1,30]. Conversely, because
of the compliance with the continuity equation, only the
quadratic data cost F} is considered. The regularizers were
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taken to be G and FY, as in previous experiments, with
their parameters set to the best combinations found in the
previous experiments namely, (a,7) = (400,1.6) for the
first-order robust smoothing and («a, A) = (450, 200) for the
quadratic div-curl regularization. The results are summar-
ized in Table 2. Note that, since F} does not involve
parameters, only one parameter combination was finally
considered for the two global costs using this data term
(resulting in blank entries for the corresponding averaged
quantities in the table).

The dramatic difference between the standard model
(GY + aGE), whose convergence is difficult on this example
and the complete new one (Fy + aFy) can be visually
appreciated by examining the plots in Fig. 6.

Because of the compliance of the data with the integrated
continuity equation, no conclusion can be drawn from the
drastic superiority of the data term F} which relies on it.
However, two interesting observations can be made. First, it
is striking to note the extent to which a modest intensity loss
can fool an estimation based on brightness constancy, even if
a soft penalty function is used. The second remark is that the
superiority of the div-curl regularization already noticed in
previous experiments is even more apparent in this case. The
use of a first-order smoothing with the continuity equation
leads indeed to an inherent contradiction in the presence of
brightness changes: The data term favors a nonnull diver-
gence to account for the brightness changes, whereas the first-
order smoothing encourages a low divergence. Here, the
estimated mean divergence with F{ + oG exhibits a relative
error of 21 percent, whereas this error drops to 1 percent with
the full dedicated cost FY + aF}.

6.2 Real World Sequences

We now turn to qualitative comparisons on two different
types of real meteorological image sequences.

The first sequence, issued from the infrared (IR) channel
of Meteosat (Fig. 7), was acquired 21 January 1998 and
shows a large spiraling depression in the lower left part of
the image, together with a cold (dark) cloud structure
expanding in the upper right part of the image.

In Fig. 8, we compare, for two consecutive images of the
sequence, the displacement fields estimated with the five
cost functions G + aG%, GF + aFf, FF +aGE, FE + oF],
and FF+aFL, as well as the associated vorticity and
divergence.

The minimization of each cost function provides a
plausible displacement field, where both the counterclock-
wise spiral of the depression and the downward motion of

TABLE 2
Results on the Image Pair in Fig. 5

Cost m Wmin  Mmaz (o) Omin  Omaz  1INAZE SWEEPS
GF +aGE 59490 43.75° 75.65° 22.14° 12.66° 27.67° 28365
GE +aF] 57.60° 45.36° 73.46° 10.84° 4.69° 22.44° 1625
Fl+aGY  891° - - 15.46° - - 1225
Fl+aF] 212 - - 1.54° - - 3733

Average and extremal values of the mean (respectively, standard deviation) of the angular discrepancy to ground-truth for four different global cost

functions.
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F{ 4+ aFf

Fig. 6. The robust generic model (Gf -+ aGLk) as compared to the
quadratic dedicated model (F} + aFy) on the spiral motion with intensity
loss of Fig. 5. (Top) Subsampled displacement fields. (Middle)
Corresponding divergence. (Bottom) Corresponding vorticity.

cold clouds are captured. Nevertheless, the complete
generic estimator underestimates the different components
of this complex motion, providing an estimated field with
smooth and small divergence and vorticity. Replacing the
robust first-order regularizer by the novel div-curl regular-
izer already reduces this tendency. Whereas the impact of
the novel data-term is not noticeable when used in
conjunction with the first-order smoothing (remember that,
for low divergence, this data term gets close to the standard
data-term), the full benefit of this data-term appears clearly
with the second-order regularization. Indeed, the two
versions FI* + aFy and F}' + aFf of the complete dedicated
cost function provide fields which capture the full extent of
the spiraling motion of the depression motion and recover
better the diverging motion of the cold cloud structure. At
the divergence and vorticity level, these various motion
components estimated by the dedicated approach are
associated with a large concentration of vorticity in the
middle of the depression and several divergence concentra-
tions at the periphery of the depression and in the middle of
the cloud structure entering at the top right of the image.
The visualization of these scalar fields finally demonstrates
the impact of the robust cost penalty in the div-curl
regularizer. As compared to the quadratic version Fy, one
notes that Ff provides an even better recovery of the
divergence and vorticity concentrations.

The importance of using an integrated version of the
continuity equation to recover incrementally large diver-
gent displacements has been outlined in Section 3. We can

illustrate this by leading comparative experiments on real
divergent sequences at various frame rates. We applied our
approach on one convective cell in the three first images of
the water vapor sequence in Fig. 3, using the data term
based on the integrated continuity equation, as well as its
counterpart, based on the plain differential continuity
equation. If we denote d2, d®?, and d* the displacement
fields estimated between images 1 and 2, 2 and 3, and 1 and
3, respectively, one should obtain d'? + d* = d"*. Focusing
on the divergence only, we noted a much larger loss of
accuracy without the integrated continuity equation when
the frame rate is divided by two (thus increasing the
amplitude of the divergent motion). Indeed, with the
integrated continuity equation divd' is only 3.3 percent
lower than div(d'? + d**) in average, whereas this discre-
pancy is 10.9 percent with the standard differential
continuity equation.

Obviously, the true value of all the estimated quantities
(motion components, divergence, vorticity) are unknown.
The good quality of the results obtained by the dedicated
approach, as compared to the generic approach, has
however been assessed by meteorologists in the context of
a cooperation with the European consortium Eumetsat.
Also, the superiority of the dedicated approach on the
whole sequence will be made clearer via trajectory
reconstruction in the next section.'

The second satellite sequence (Fig. 9) is a water vapor (WP)
image sequence acquired 4 August 1995. This sequence
represents a depression in the left part of the imaged area and
a set of active convective cells in the right part. Such water
vapor images contain valuable information for meteorolo-
gists. However, automatic analysis of these images remains a
challenge due to their low photometric contrast.

Two sequences of displacement fields obtained on this
sequence by the generic and the dedicated cost functions are
shown in Fig. 10. It is important to point out that, to ensure a
minimum of temporal coherence, the estimation procedure at
the coarsest resolution was initialized in both cases by the
displacement field estimated at the preceding time index. At
the very beginning of the sequence, the procedure was
initialized by a null field as explained in Section 5.

On this test sequence the difference in behavior of the two
cost functions is even more drastic than on the IR sequence.
The generic approach smoothes the displacement field in
such a way that the spiraling motion of the depression is
completely lost. In contrast, the dedicated approach demon-
strates its capacity to recover this important motion compo-
nent, evenin the very adverse conditions imposed by the poor
contrast of the images. Furthermore, the observation of the
consecutive displacement fields indicates that the good
instantaneous estimation of the large vorticity displacement
by the dedicated method does not preclude a satisfactory
stability in time. The spatio-temporal quality of the motion
fields thus obtained will be further confirmed in the next
section, where entire trajectories are recovered through the
complete test sequence.

The vorticity and divergence of the estimated motion
fields obtained with the dedicated approach are shown in

1. For a better visual assessment, the complete sequences and results
can also be viewed at http://www.irisa.fr/vista/Themes/Demos/
MouvementFluide/fluide.english.html.
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Fig. 7. IR Meteosat images two consecutive images from the test sequence, with a large spiraling depression in the lower left quarter of the
observed region and a cold (dark) cloud structure expanding in the upper right corner.

GL + aFf

FE 4 aGE

FL + aF] FL + aFf

Fig. 8. The dedicated data-model and regularizer as compared to standard data-model and regularizer on the IR Meteosat sequence
(Top) Subsampled displacement fields estimated on the image pair in Fig. 7. (Middle) Corresponding divergence. (Bottom) Corresponding vorticity.

Fig. 11. A stable clear-cut concentration of vorticity
characterizes the central part of the depression, whereas
small and transient divergent blobs appear in the depres-
sion and at the level of the various convective cells.

7 Two APPLICATIONS

7.1 Trajectory Reconstruction
Reconstructing the entire trajectories of some elements of
fluid isa problem of practical interestinits ownright. Itindeed
provides numerical Lagrangian drifters which can comple-
ment or even replace complicated, expensive, and sparse
physical drifters in a number of applications ranging from the
tracking of fish eggs to the tracking of atmospheric pollutants.
Apart from this applicative interest, the reconstruction of
trajectories provides a unique visualization tool to assess the
quality of estimated motion fields. As suggested in [40],
trajectory reconstruction is performed here using a fourth-
order Runge-Kutta integration method (see Appendix II).
We present results obtained for the complete IR and
WP Meteosat sequences partly shown in Figs. 7 and 9. We
compare various trajectories reconstructed in these two
sequences, based on the displacement fields obtained with
the generic robust cost GI' + aG% and the dedicated robust
cost F + aFY, respectively. These trajectories are super-
imposed on the final image of the sequence in Figs. 12 and 13.

The starting points were either picked manually or taken tobe

the nodes of a regular grid.
Again, no ground truth is available to assess the quality of

these trajectories. However, the global flow evolution
pictured by the trajectories stemming from a regular grid of
starting points is visibly more plausible when based on the
dedicated approach. Inboth sequences, itis clear, for instance,
that these trajectories are in better agreement with the
spiraling motion of depressions than those based on the
generic model. The latter model fails to capture this motion at
all in the WP sequence, where the photometric information is

rather poor.
This first global impression can be made more precise by

having a closer look at just a few sparse trajectories. For
each trajectory, one can visually assess the relevance of the

obtained endpoint given the selected starting point.”
The quality of these trajectories demonstrates the

relevance of the instantaneous motion fields estimated by
our method, as well as their temporal stability within a long
time period, despite the absence of an explicit temporal link
within the estimator (apart from the use of the previous
estimate as an initial guess).

2. The complete sequences and the reconstructed trajectories can be
viewed at http:/ /www.irisa.fr/vista/Themes/Demos/MouvementFluide/
fluide.english.html.
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Fig. 9. WP Meteosat images four consecutive images from the test sequence, with a large spiraling depression in the left part and convective cells

(dark) rapidly expanding in the right part.

e i

oo T TISEESETEEES

SEEaE

Fig. 10. The dedicated model as compared to the robust generic model on the WP Meteosat sequence: Subsampled displacement fields
estimated from the WP images in Fig. 9 using (Top) the dedicated cost function FL + «FL and (Bottom) the generic cost function G + aG%.

Divergence

PR

Vorticity

Fig. 11. Divergence and vorticity sequences with the dedicated approach as derived from the displacement fields in the top row of Fig. 10. (Top)
divergence, (Bottom) vorticity. The stable vorticity structure of the depression and the transient divergent structures of the convective cells emerge

clearly.

Fig. 12. Trajectories reconstructed in the WP images based on the displacement fields estimated with (Top) the robust dedicated cost and
(Bottom) the robust generic cost. The trajectories are superimposed on the final image of the sequence.

7.2 Extraction of Main Divergence and Vorticity
Structures

As we have repeatedly mentioned, the vorticity and

divergence structures are key entities for describing,

understanding, and predicting, imaged fluid flows. Based

on a dense displacement field previously estimated, such

structures can be identified via the extraction and analysis

of the critical points (i.e., where the speed vanishes locally)
of the flow [11], [16], [17], [18], [33], [35]. This usually
requires the fitting of parametric motion models and gives
access only to the structure of interest modulo the laminar
(i.e., divergence and vorticity free) component of the flow: If
a vortex is transported by a global laminar motion, say a
translation, its center, being nonstationary, will not be a
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Fig. 13. Trajectories reconstructed in the IR images based on the displacement fields estimated with (Top) the robust dedicated cost and
(Bottom) the robust generic cost. The trajectories are superimposed on the final image of the sequence.

FL + oFL (u=04)

Gt + oG (1 =10.05)

Gt + aGE (u=0.15)

Fig. 14. Main divergent structures extracted from estimated flows on WP Meteosat images.

Fl +oFf (u=

GL+aGL( =0.05)

Gt + aGE (u=0.15)

Fig. 15. Main rotational structures extracted from estimated flows on IR Meteosat images.

singular point of the flow, although it is the real location of
interest. This typical situation arises in meteorological
images. The depressions are indeed spiraling structures
whose center is often in motion with respect to the earth.

We propose here a simple way to extract the divergence
and vorticity structures from our dense displacement fields,
while avoiding the above-mentioned problem. Based on the
characterization of these structures in terms of concentra-
tions of large divergence and vorticity, we pose the problem
as one of extracting automatically such concentrations in the
divergence and vorticity fields computed numerically from
the estimated flow. We thus face two identical binary
labelling problems in which a soft thresholding must be
combined with a compactness prior on the regions to be
extracted. This combination is classically achieved by
casting the problem as the minimization of a twofold cost
function (see Appendix III for the details).

In Figs. 14 and 15, we provide examples of divergence
and vorticity concentrations extracted by this method on the
WP and IR Meteosat images used in previous sections. In

the two sequences, the simple labelling technique, applied
to the motion fields estimated with our dedicated motion
estimator, provides a sensible detection of the main
divergent and rotational structures of the flow. See the
convective cells in the right part of WP images in Fig. 14 and
the large spiraling depression in the IR images in Fig. 15. In
contrast, the application of the same detection technique on
the fields provided by the generic motion estimator is
doomed to fail because of the underestimation of the main
divergence and vorticity components of the motion. With
low values of the threshold parameter ;1 involved in the
minimization-based detection the detected regions are
much too wide with hardly any isolated blob to be
identified as a structure of interest. If increasing this
parameter suffices to reduce the number and span of
detected regions, this might not be sufficient to recover a
correct estimation of the structures. In the right image of
Fig. 15 for instance, a single rotational structure is extracted,
but it does not capture correctly the shape and location of
the depression, which the extraction based on our dedicated
model does (left image).
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Hence, the divergence and the vorticity derived from the
displacement fields estimated by our approach can be used
simply and reliably to identify key structures of imaged
fluid flows.

8 CONCLUSION

In this paper, we have presented a new method for
estimating fluid flows from image sequences. This method
is an extension of the standard minimization-based
approaches, where a two-fold robust objective function is
minimized. The two parts (i.e, the data term and the
regularizer) of the novel cost function have been specifically
designed to suit image sequences of fluid flows.

The data term is based on a continuity equation, as a
more physically-grounded alternative to the brightness
constancy assumption. In contrast to previous uses of such
an alternative brightness constraint, we propose to use it in
an integrated form. This makes it compatible with the
standard multiresolution incremental set-up that any large
displacement situation requires. Such situations occur when
the imaged flow is fast (like in a number of fluid
experiments) or when the temporal sampling rate is low
(as with satellite images).

Concerning the regularization, we argue that only a
second-order regularizer is able to preserve completely the
divergence and vorticity structures of the flows. Based on
the div-curl formalism, we thus introduced a robust second-
order regularizer via auxiliary scalar fields which capture
the divergence and vorticity of the unknown flow.

On both synthetic images and real satellite images of
different natures, the merit of the two ingredients have been
demonstrated. We showed in particular on the Meteosat
images that the dedicated objective function made up of
these two terms allows the estimation of complex flows
with multiple divergence and vorticity structures. These
structures, which are of primary importance for analyzing
and describing fluid flows, are much better recovered by
the proposed technique than by generic robust techniques
which work very well on other types of images.

Based on the displacement fields provided by the
proposed technique, by-products of interest to experts
(e.g., meteorologists) can be obtained easily and reliably.
We provided two examples of such post-processing with
the detection of the main divergence and vorticity concen-
trations and the reconstruction of long trajectories. Similar
tasks, but with a higher semantics, can now be envisaged.
The automatic detection, classification, and tracking of
various types of clouds in meteorology is such an example.

In view of the number of domains where the analysis of
imaged fluids is important, we believe that the motion
estimation technique we have presented constitutes a
valuable tool. Further improvements probably lie in the
incorporation of more physics. When more precise informa-
tion is available, such as a model of the image formation
process, an experimental knowledge of the boundary
conditions, a theoretical prior on the aspect and behavior
of the divergence and vorticity structures, or a set of in situ
measurements, the cost function should be modified to
capture it.

APPENDIX |

HIERACHICAL MINIMIZATION WITH REGARDS TO THE
DiSPLACEMENT INCREMENT FIELD

For better and faster convergence, the mimimization with
respect to the incremental displacement field Ad at a given
resolution is performed using the coarse-to-fine technique
introduced in [32]. As the alternate minimization iterations
proceed at a given resolution, the increment field is
constrained to be piecewise-parametric relatively to an
image partition which becomes finer and finer. More
precisely, at “grid” level ¢, the pixel grid is partitionned
in blocks B! of size 2/ x 2° and the increment field is
constrained to satisfy

Ad, = P'(s)6',, V¥n, Vs € B, (28)

n?

where Pf(s) is a matrix depending on the chosen
parameterization at level ¢ and 6/, is the parameter vector
for block Bf. Until the penultimate grid level, the affine
parameterization is chosen, i.e:

1 2y 0 0 0

Ve >0, Pl(s = (z,y)) = 00 0 1 y and 0 € R,

(29)

The last level ¢ =0 corresponds to the pixel grid itself:
When it is finally reached, no parametric constraint applies
anymore.

Atlevel/, the cost terms tobe minimized with respect to Ad
must be rewritten in function of the parameter vectors (6)
which defines Ad via (28). This symbolic rewriting is
explained in [32]. It yields a quadratic cost %OZTAZGZ —v"e,
where the matrix A and the vector b’ are function of the three

sets of variables z¢, ¢, and (.
Using this technique, the synopsis presented at the end
of Section 5 is replaced by:

. & =0

o From coarsest to finest resolution do
o From ¢ = £,,2, to 0 do
- Until convergence do

6 Gs(%eﬂAW - z/Taf)
Ad is defined by (28)

24, &, 25, ¢, 2% are updated as in original synopsis

+ If not finest resolution, pass d « d+Ad to next resolution.
« If finest resolution, d < d + Ad.

APPENDIX Il

NUMERICAL INTEGRATION FOR TRAJECTORY
RECONSTRUCTION

Knowing the dense displacement fields d(t)+ nAt) =
{d(z,ty + nAt),z € Q}, n=0,---,N — 1 for a sequence of
N +1 images, we aim to reconstruct the trajectory z(¢) of
the point located at x; in the first image. Approximating the
velocity dxd—y) by %, we have to solve the following
ordinary differential equation with initial condition:
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da(t) _ d(z(t))
dt At

Runge-Kutta methods are standard numerical techniques to
solve this problem in a robust way. They work by
approximating the integral

(30)

z(to + (n + 1)At) — z(ty + nAt) =

Tl Tn 31
/t0+(n+1)At dx(t) gt — /t()+(n+1)At d(x(t)7 t) i ( )
to+nAt dt to+nAt At

A fourth-order approximation gives the classical result:

1
Bor =z, + 7 (A +2d? +2dP + V), (32)
where
dgl,l) = d($1L7 t() + TLAt)
d? = dz, —l),to +nAt +41)
2
ds?) = d(xn " ,to + nAt —+ %)
d = dz,+ dﬁf”io + nAt + At).

Since displacement fields d are only available at pixel
locations and at times ty + nAt, we have to resort to a
spatial and temporal interpolation, which we chose bilinear.

APPENDIX Il

MiNIMIZATION-BASED DIVERGENCE AND CURL
SEGMENTATION

Given the estimated displacement field d, we can numeri-
cally compute its divergence and vorticity using (22) or (23).
When using the second-order regularizer we introduced,
regularized versions of these two scalar fields are made
available at the same time as the vector field itself.

In either case, denote ¢ and ( the scalar fields from which
the significant concentrations of divergence and vorticity
have to be identified. We now explain briefly how we deal
with this detection problem in the case of the divergence. The
technique for the vorticity is the same, with ¢ replacing £ in
what follows.

We must assign to each pixel s € S a binary label o,
indicating whether it belongs to a divergence structure
(05 = +1) or not (o; = —1). This decision should be based on
two criteria: The absolute value of ¢ should be large in
divergent structures and these structures should be
compact and at least a few pixels in size. This two-fold
requirement is classically captured by designing an ad hoc
Markov-type cost function to be minimized. We used:

AR .
Sl s 3 oo

<s;r>eC
where 1 is a “soft” threshold on the divergence and 3 is a
positive parameter which controls the relative importance
of the Ising regularizer.

The minimization of this global cost is conducted itera-
tively according to the deterministic Iterated Conditional
Modes (ICM) algorithm [8]: All pixels are visited in turn a
number of times and at each step, only the assignment of the

(33)
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current pixel s is updated so as to maximize the decrease of
the cost function. This local update only involves the
neighborhood N(s) of the current pixel. Simple calculations
provide the following update rule:

&)
Ts = { +1 i+ B en(s) or > 0 (34)

-1 ot erwise.

The initialization is provided by the minimizer of the
first sum in (33) only, i.e., the binary labelling associated
with the thresholding of || at level pu.
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