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Abstract. In this paper we propose a new method to extract the vortices, sources,
and sinks from the dense motion field preliminary estimated between two images of
a fluid video. This problem is essential in meteorology for instance to identify and
track depressions or convective clouds in satellite images. The knowledge of such
points allows in addition a compact representation of the flow which is very useful
in both experimental and theoretical fluid mechanics. The method we propose here is
based on an analytic representation of the flow. This approach has the advantage of
being robust, simple, fast and requires few parameters.
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1. Introduction

Since several years, the analysis of video sequences showing the evo-
lution of fluid phenomenon gave rise to a great attention from the
image analysis community [9, 12, 16, 18, 31]. The applications concern
domains such as experimental visualization in fluid mechanics, envi-
ronmental sciences (oceanography, meteorology,...), or medical images.
In all these application domains, it is of primary interest to measure
the instantaneous velocity of fluid particles. In oceanography one is
interested to track sea streams and to observe the drift of some passive
entities [11, 28]. In meteorology, both operational and experimental
the task under consideration is the reconstruction of wind fields from
the displacements of clouds as observed in various satellite images
[3, 23, 27]. In medical imaging the issue is to visualize and analyze
blood flow inside the heart, or inside blood vessels [13, 29]. The images
involved in each domain have their own characteristics and are provided
by very different sensors. The huge amount of data of different kinds
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available, the range of applicative domains involved, and the techni-
cal difficulties in the processing of all these peculiar image sequences
explain the interest of researchers of the image analysis community.

In this context, one problem of interest is the extraction and the
characterization of the critical — or singular — points of the flow. These
points are the centers of kinematical events such as swirl, vortices or
sinks/sources. The latter correspond to areas of apparent diverging 2D
motions which are either related to 3D motions not parallel to the
image plane or to real sinks or sources of matter. The knowledge of
the type and location of these points is for instance of great interest
in meteorology to detect and track violent and sudden meteorological
events such as convective clouds or tornados[19, 24]. The knowledge of
all these points is thus precious to understand and predict the flows of
interest. It also allows for compact and hierarchical representations of
the flow [16, 15, 14, 22].

Most of the methods used so far to localize and characterize crit-
ical points are based on local linear phase portrait approximation of
the flow around points where the velocity vanishes (singular points).
These techniques have been pioneered by Rao and Jain’s work [25]
originally proposed in the context of wood or wafer inspection. The
authors developed a non linear least squares technique to estimate a
first-order flow model from the oriented texture field. It is associated
to a vote technique to locate and classify critical points. The approach
has been extended to fluid images by Ford ef.al for linear [16] and
non-linear phase portraits [15]. The localization of critical points is
here based on the use of Poincaré index (or winding number). Winding
number technique has also been used from previously estimated dense
velocity fields together with a phase portrait model [9] or without it [21].
Maurizot et. al. [19] proposed a statistical method based on the study
of bias and variance of a risk function. This method allows to compute
simultaneously a linear phase portrait, the critical point location, and a
rectangular domain of linearity around each point. This method is less
sensitive to noise due to its statistical nature. Nevertheless unlike index
technique it does not allow formally to recover all the singular points of
the flow. In practice only the most “attractive” ones are captured. An-
other method based on analytic modeling of the flow and the Cauchy’s
theorem of residues has been proposed in [22] in the context of medical
images. Based on our experience, this approach is unfortunately very
sensitive to noise.

As in this latter work, the technique we propose to detect and char-
acterize vortices, sinks and sources relies on a complex modeling of the
velocity field. Not only it allows a robust extraction and identification
of singular points, but it also enables to build a compact parametric
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representation of the velocity field. This parametric representation is
based on the Rankine model of vortex.

The paper is organized as follows. After recalling some basic defini-
tions and properties of planar vector fields on which our work relies, we
show how the velocity fields may be separated into its two solenoidal
and irrotational components which gather respectively the divergence
and the vorticity of the velocity field. We show also how the location of
the critical points may be obtained as local extrema of a complex poten-
tial function of the flow. It is shown also how this methodology allows to
get access to additional information on the flow such as streamlines. A
second part is devoted to the presentation of the Rankine model and to
its estimation from a dense velocity field. In the last part of the paper,
the performance of the method is demonstrated on different kinds of
meteorological image sequences.

2. Planar vector fields

The method we propose in this paper aims at the recovery of vor-
tices and sinks/sources of a previously estimated instantaneous velocity
fields. We will consider only 2D fields defined over the bounded image
plane.

A lot of techniques exist in the literature to estimate a 2D dense
motion field from a sequence of images. In the field of experimental visu-
alization in fluid mechanics, most of the methods are correlation based
[1]. The displacement of a fluid element is obtained by maximizing a
local correlation function. In meteorology, such methods are also used to
recover wind fields from cloud tracking [23, 26]. These methods are fast,
but lead usually to sparse and sometimes inaccurate motion fields due
to the necessary quantization of velocities. The sparse and quantized
nature of the motion field prevents from recovering accurately valuable
information such as trajectories, streamlines, vorticity, or divergence of
the flow.

Dense motion field estimators for fluid flows have also been studied
by the computer-vision community. These estimators are essentially
based on the seminal work of Horn and Schunck [17]. They resort to
the minimization of an objective functional composed of two terms. A
data term based on a photometric consistency assumption and a regu-
larization term which enforces the smoothness of the solution. Recently
functionals dedicated to fluid images have been proposed [6, 10]. They
incorporate a dedicated data-term based on the continuity equation
of fluid mechanics. Additional improvements are obtained by consider-
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ing tailor-made regularization terms preserving the concentrations of
divergence and vorticity [10].

Before explaining the core of our method to recover and characterize
the singularities of the flow, let us review some useful definitions and
properties of planar vector fields.

2.1. DEFINITIONS AND PROPERTIES

A planar vector field w is a IR?>-valued map defined on a bounded set
of IR? and we should denote w(z,y) = (u(z,y),v(z,y)) where z and y
stands for the spatial coordinates. The flow of a fluid is the vector field
of instantaneous velocities. If the flow is unsteady then the velocity
depends on time as well on position, and we should note w(z,y,t).
In the following, unless specified otherwise, we always refer to time
dependent vector fields. For the sake of simplicity we will therefore omit
the time index. Throughout the paper we will also suppose that each
component of the vector field is twice continuous and differentiable: u
and v € C?(Q, R).

The operator V denotes the symbolic vector operator whose com-
ponents are the partial derivatives with respect to £ and y coordinates:
V = (%, (,%). If V operates on a scalar field ¢(z,y) one gets a vector

field V(z,y) = (%, %Z’y)) which is the gradient of a scalar field.

The symbolic dot product div(w) SVw= g—g + g—z is the divergence of
the vector field. The integral of this quantity over a region R amounts
to compute the flux of the vector field across the boundary of the region
OR (divergence theorem):

/ div(w) = /w-n, (1)
IR

R

where n denotes the outward normal to the boundary dR. A vector
field whose divergence is null everywhere is called solenoidal.

In a similar way, noting w= = (—v, u) the orthogonal counterpart of

w, we define the vorticity of the vector field as the quantity: curl(w) =

V- wt = g—z — g—g. Its integral over a simply connected region R is

equivalent to the circulation of the vector along the region boundary

(Green theorem):
// curl(w) = /w - T, (2)
R R

where 7 denotes the unitary tangent along the closed curve OR. A
vector field whose curl vanishes identically is called irrotational.
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For irrotational vector fields, the application of Green theorem shows
that the circulation of the vector along a closed curve is null. The
circulation along an arc joining two points depends therefore only on
these two end points. In particular, one can define uniquely a function
¢(x,y) giving the circulation of w along an arbitrary path from the
origin to (z,y). The circulation on a path with endpoints p and ¢ is
then ¢(p) — $(q). Considering the circulation of w along an infinitesimal
arc parallel to x, we have:

9 _ L
ox _A:lcrg(] Az

z+Ax

(9l + Ar.y) — (o) = Jim < [ ultg)dt = u(zy).

Using the same technique along y one thus gets the classical result that

for irrotational fields there exists a scalar function ¢, called the velocity
potential, such that:

w = V. (3)
The velocity at point s = (z,y) is therefore orthogonal to the curve
{#(z,y) = c}. These curves are normal to the integral lines of the

velocity field (i.e. the streamlines, or the trajectories for steady flows).

Now, if w is solenoidal it is easy to see that the field w is irrota-
tional and therefore, there exists a scalar function 1, called the stream
function such that:

wt =V (4)

The equipotential curves, {1(z,y) = c}, are the streamlines of the flow.
For a flow both irrotational and solenoidal, it is interesting to note that
level curves of ¢ and 1) form an orthogonal network.

2.2. COMPLEX POTENTIAL

If the field is both irrotational and solenoidal from equations (3) and
(4) we deduce:

op _ 0¥ op _ 9%
o dy and oy Oz’ ®)

These equations are the Cauchy conditions that must be satisfied for
the function:

F(z) = ¢(z,y) + it(z, ), (6)

of the complex variable z = x + iy to be z-differentiable or analytic. Its
complex derivative is:

P(e) = 200 4 P8 T — (o) — o)
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that is the complex conjugate of the complex representation of the
velocity field f(z) = u(z,y) + iv(z,y). The knowledge of this function
F(z), called the complex potential, provides a triple advantage. By
derivation it gives the velocity, and it allows to obtain without any
computation the curves {¢(z,y) = c} and their orthogonal counterpart,
the streamlines {¢)(z,y) = c}. It might be therefore very fruitful and
practical to describe the velocity field as complex functions. We will
rely on a peculiar case of such a modeling in the following section.

Irrotational and solenoidal fields play an important role in vector
field analysis. As a matter of fact these two types of fields can be
combined to represent uniquely any arbitrary continuous vector field
which vanishes at infinity. This is the Helmholtz representation of vector
fields w = wg + wyp. For any vector field w one can define the velocity
potential ¢ of its irrotational component, and the stream function v of
its solenoidal component. As a result, the complex potential F' = ¢+i1)
can be defined. It reduces to a real function for irrotational flow and
to a pure imaginary function for solenoidal vector fields. The complex
function is nevertheless not anymore analytic and the velocities are
then obtained from equation (3) and (4) i.e, wj, = Vo, ws, = Vb.

When the null border condition at infinity cannot be imposed, the
representation is extended by the introduction of a third laminar com-
ponent. A laminar field is a vector field that is both irrotational and
solenoidal. The extended Helmholtz representation is then:

W = Wigm T Wso + Wiy (7)

In our applications, the laminar component accounts for a global trans-
portation flow and for the effect of sources/sinks or vortices outside of
the image plane. In the following we assume that this very smooth
component is known. It is indeed easy to estimate a laminar compo-
nent from a pair of images, and many techniques from computer vision
are available. For example, one can use a standard motion estimation
technique based on Horn and Schunck model (as the one in [20]) under
a strong first order regularization and whose rule is to prevent from the
apparition of diverging and rotationnal motion fields. In this work, we
used a particular case of a technique proposed in [10], which, through
an adequate regularization prior, strongly enforces a null divergence
together with a null curl. The resulting motion field can be associated
to the laminar part of the flow. From now we will always refer to motion
fields vanishing at infinity, and consequently to the original Helmholtz
representation.
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2.3. IRROTATIONAL AND SOLENOIDAL FIELD SEPARATION

Equation (3) and (4) characterize respectively irrotational fields and
solenoidal fields. The potential functions ¢ and v of a given continuous
vector field w are therefore related to its irrotational and solenoidal
part respectively. Taking the divergence of (3) and (4) leads to

V2¢ = div(w) and V%) = curl(w). (8)

Both potential functions are therefore the solution of Poisson equations.
Assuming that the curl and divergence vanish at infinity, one has to
face a well known Dirichlet problem whose solution may be obtained
through 2D Green kernel:

ha.y) = 5 (e + 7). 9

With that kernel and noting V+ = (—%, %), one can define two
orthogonal vector fields:

oo o0

1
wi(z,y) = 7 / / Vh(zx —u,y — v)divw(z, y)dudv

—0o0 =0

RN (10)
wa(z,y) = oy / / V4h(z — u,y — v)curlw(z, y)dudv,

—00 —00

which have the same divergence and curl as w and which vanish at
infinity. Assuming the vector field w has bounded components, it is
easy to prove that it is uniquely specified by its divergence and curl
and consequently wq = w;, and wy = wy,.

To show this, let us denote any vector fields f, and f, with exactly
the same curl and divergence and which both tend to zero at infinity;
let also the field d = f; — f, be their difference. Assuming that d is
continuously differentiable, then it admits an analytic complex poten-
tial (as divd =0 and curl d = 0 ) F(z) = P(z,y) +iQ(z,y). From
Liouville theorem we know that any bounded analytic function over
the whole complex plane is constant. Therefore, F'(z) is constant and
d = F' is null everywhere.

Knowing the divergence and the curl of a velocity field, the ex-
traction of the irrotational and the solenoidal components through
convolutions (10) may be numerically tricky since it lies on infinite
support.
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Instead of that, using a spectral Fourier representation of the flow
@ = (F[u], F[v]) such that:

( ) = Flf] = o //f I<k2> s andf(s =5 //f o i<k.s> .
(11)

with k = (o, ), (a, 8) being the frequencies coordinates of (z,y). In
the Fourier domain, we have:

Fleurl(w)] = Fleurl(w;,)] =< kL, @i (k) >= 0,

. . . (12)
Fldiv(w)] = Fldiv(wso)] =< k, ws0(k) >= 0.

Therefore, assuming the vector field w is known, the irrotational and
the solenoidal component may be respectively obtained through:

k
and
k'L
L:Jso(k) =< kl,(.:.’(k) > W (14)

The irrotational and solenoidal components are finally obtained from
the inverse Fourier transform.

It is important to note that Fourier transform is defined for periodic
signals. When the motion field is non-periodic (which is the case in
practice), classical techniques consists to add identically end to end the
motion field in order to apply the Fourier transform on the resulting
periodic signal. To attenuate boundary effects that may appear as a
consequence of this manipulation, it is usual to apply this kind of tech-
nique on a larger motion field that contain the original one, bordered
with zeros on the whole sides long. This way, connections between two
consecutive fields are softer and attenuate the apparition of non-desired
signals in the Fourier domain. In practice, for an original motion field
whose size is (N x M), we use a is (4N x 4M) for the Fourier transform.

2.4. POTENTIAL FUNCTIONS ESTIMATION

As it has been shown in the previous section, the knowledge of the
complex potential function and more generally of its components ¢ and
1) might be very useful as it allows a complete description of the velocity
field. In turn, if the velocity field and its irrotational and solenoidal
components are known, functions ¢ and 1 can be easily estimated(as
w;; = V¢ and wi = V). Noting that, if g is a C? function, g(z,y) =
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9(0,0) + [, Vg(z,y) - dy, where 7 is any path from (0,0) to (z,y).
Averaging this relation over the two paths joining (0,0) to (z,y) along
the sides of a rectangle, we get:

z Y

$(w,y) = %( / wir (t,y)dt + / v (2, 1) dt
0 0

]
+ ir(t,0)dt + ir(0,2)dt ) + ¢(0,0), and
O/u O/'U ) an
Y T
so(x, t)dt — so(t,y)dt
(0/u T O/U Y

wso (0, 1)dt — / Vso(t, 0)dt) +16(0,0).
0

(15)
Y(z,y) =

N | —

+

S —

\

Both terms of relation (15) may be conveniently numerically computed,
as they consist in 1D integrations along image rows and the columns.

2.5. EXTREMA OF THE POTENTIAL FUNCTION

From (3), it can be observed that characteristic points of the irrota-
tional flow component (i.e., points s for which w;.(s) = V¢(s) = 0)
corresponds to local extremum of the velocity potential ¢. Of course
the same relationship links extremum of the stream function and char-
acteristic points of the solenoidal component. Otherwise, around a
singular point 8 = (z,y), the velocity distribution of a fluid flow can
be accurately approximated (and characterized) by the so-called linear
phase portrait [2]. Within some neighborhood around s, one can fit a
parametric velocity model of the form w = As where A is a 2 x 2 matrix.
The qualitative characterization of the motion field in the neighborhood
of this singular point s relies on the structure of matrix A. Six typical
motion configurations can be identified from its canonical Jordan form
[2, 16] (see figure 1)
A second-order approximation of the velocity potential and the stream

function around a singular points gives respectively:

wir = V(s + &) = Hy(s)e + ofe) (16)
and

Wi, = V(s +€) = Hy(s)e +ofe), (17)
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eigenvalues

Jordan form

type

‘ phase portrait

A O]

real and distinct 01 A\ AtA2 >0 det?fé)l()ig 0

(A(4) > 0) R
MO ddl JL
0 A Atdz <0 det A) <0 W(F

A0 t d
equal l 0 )\1] rsota(rASlO:eO
(A(4) =0)

improper node

rot(A) #0
complex a £+ i3 lo _ﬂ] tr%i te:r 0
8 0
(A(4) <0)
a —f spiral
B a tr(4) #0

LICINSES

Figure 1. Singular points classification based on the structure of the linear phase
portrait matrix A; A(A) 2 tr?(A) — 4det(A) .

¢ 9%¢ 2y 2y
with Hessian Hy(s) = g%; g%‘g and Hy(s) = g%’; g%"’i . The phase
dzy  9y? oy dy*

portrait of irrotational field around singular point s is given by Hy(s).
As this matrix is symmetric (since curl w;, = 0), it has real eigenvalues.
Around local extrema the matrix is in addition positive or negative
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definite. In that case, the eigenvalues are therefore all positive or all
negative. The singular point corresponding to a maxima or a minima
is thus a node or a star node. For the solenoidal field the phase portrait

2y %Y
is given by Ay = ag%’ " agj w whose trace is null: the singular point
T 9x2 T Ony

is a center. These three configurations characterize well the flow in
the vicinity of vortices and sink/sources. The knowledge of the two
potential functions gives us therefore a practical way to extract vortices,
sinks or sources. As a matter of fact, to estimate those peculiar singular
points one has just to identify the points corresponding to extremal
values of the potential function. Unlike to Poincaré indices techniques,
the other configurations — which are less informative from a physical
point of view — are discarded by the proposed method since they do
not correspond to extremal value of the potential functions.

3. Rankine model of flows

One of the simplest models of velocity field for fluid flows comes from
the Rankine model of vortex. It consists in approximating the velocity
field of a vortex as a vector field of constant curl inside a disk repre-
senting the shape and the location of the vortex. Beyond this circular
domain the velocity decreases as the inverse squared distance to the
disk center and the vorticity is null. A complex representation of this
velocity field reads:

iB(z — z) )

Z)=———— if z—z|>r

gl( ) |Z—Zl‘2 | Z|_ [

iB(z — 2)

h(z) = ————= if |z — 2| <y,

2
T

fi(2) = (18)

where 7, is the singularity radius; z, = x, + 1y, denotes the complex vor-
tex location and g, its strength. Based on a similar model the velocity
field associated to, source/sink in the plane can modeled as:

a,(z — z,) .
. 9,(2) = ﬁ if 2= z| >,
fj(z) = a](z _ Z]) . (19)
hy(z) = 3 if |z — 2| <,

J

where «; denotes the sink/source’s strength. If a, > 0, this constitutes
a source model, whereas if a;, < 0 we are in presence of a sink. From
these equations it is easy to verify that functions f, are solenoidal (i.e.,
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Figure 2. Velocity fields associated to (a) a source, (b) a vortex , and to (c) the
composition of a source and of a vortex .

D3

D

Dy

Figure 3. Example of Rankine models supports; disks associated to vortices are
light-colored whereas sources/sinks are in black; intermediary-colored regions denote
areas where the curl and the divergence are simultaneously non-null.

div(f,) = 0) whereas functions f, are irrotational (i.e., curl(f;) = 0).

The functions h, (respectively h,) are of constant curl, curl(w) = 2131,

(resp. of constant divergence, div(w) = 27%) whereas functions g, (resp.
J

g,) have a null divergence and vorticity everywhere.
These two fields can be composed to model a fluid flow with P
vortices and N sources/sinks:

P

N
F) =" f(2) + ) fi(2). (20)
=1

1=1 7

The figure 2 shows examples of fields associated respectively with a
vortex, a source and, a composition of both entities at the same loca-
tion.
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3.1. VELOCITY POTENTIAL AND STREAM-FUNCTION

From the Rankine model expression, it is informative to deduce the
associated potential functions. To that end, it is necessary to consider
separately the possible different cases.

3.1.0.1. Vortex model

Let us consider a Rankine vortex centered at z, = 0 (for simplicity) and
of radius 7, and strength (3,. According to equation (18), the associated
velocity field outside of the disk reads:

N y .z
f(x—*_ly)_ﬁZ(xQ_i_yQ Z$2+y2) (21)
= u(z,y) + iv(z,y)
According to equation (15) and recalling that:
/Ldb = Arctan(f)
z? +y? y
Y 1 2 2 (22)
7 d==1
[ = 5 ).
one gets:
z
¢(z,y) = B Arctan(—)
Yy
5 . (23)
1/)(56, y) = Eln(x +y )7
which gives us the associated complex potential
F(2) = ¢(z,y) + ip(z,y) = iB1n(z). (24)
Inside a vortex disk we have now f(z+iy) = —j—é(w +iy). Integrating
in the same way function u(z,y) and v(x,y) we obtain:
p(z,y) =0
Jé; (25)
P(z,y) = W(ZL’Q +4%)

3.1.0.2. Source/sink model

In a similar way, we obtain the complex potential component associated
to a sink/source. Outside of the circular linearity domain centered at
the origin and representative of a source/sink of strength c, we have
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the velocity potential and the stream function given by:

d(e.y) = 5 In(a” + 1)

P(x,y) = ozArctan(y)

x

(26)

The complex potential is therefore F(z) = ¢(z,y) + itp(z,y) = aln(z).
Inside of this circular domain the velocity potential and the stream
function are:

$(z,y) = 55 (=" +v7) @)
1/)(377 y) =0

From these expressions it may be check that outside the different
circles the functions ¢ and 1 do not have any local minima/maxima
whereas inside the disks each function respectively admits local max-
ima/minima at the disk centers. These centers correspond to the lo-
cation of singular points associated to vortices, sinks or sources of the
flow.

3.2. RANKINE MODEL ESTIMATION FROM A VELOCITY FIELD

As recalled in section §2 the knowledge of the instantaneous velocity
field w of a fluid flow enables to recover its associated stream-function
and velocity potential. We saw also that the knowledge of both po-
tential functions gives a practical way to identify all the vortices and
sinks/sources of the flow by extracting their minima and maxima. In
addition, in order to define completely the flow in terms of its Rankine
parametric representation we need now to estimate the strength and
the circular linearity domain associated to the different singular points.

To that end, we will first assume that the field w previously estimat-
ed from a dense estimator such as [10] has been separated into its two
irrotationnal and solenoidal components by means of equations (13)
and (14). Considering now these two components as available data,
and assuming that the solenoidal and irrotational components of the
flow differ from the two corresponding components of the compound

Rankine model by a white Gaussian noise of variance o2, we get:
P N

Fool2) =D (fu(2) +a(z) +ib(2)) and fir(2) = 3 (fo(2) + al2) +ib(2))
1=1 1=1

with a(z) and b(z) ~ N(0,0?). Function fi, 2 Uso + V50 (resp. fir =
Ui + V) is the complex representation of wg, (resp. of w;,), and P
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and N denote respectively the number of vortices and sources/sinks
of the flow. Their locations and number have been obtained by the
technique described previously.

A maximum likelihood estimation of the Rankine model parameters
leads to maximize with respect to the unknown parameters vector © =
(o, B) g X (1), ) szl the following log-likelihood defined on the whole
image domain 2:

/mr I // ) = 3 ez (29

v

'

£50 Lir

With the assumption that two circular linearity domains of the same
nature do not intersect each other, the two solenoidal part of this

expression can be expressed as, on a disk domain Dy, = f 1D,
P
£0o(©) = 3 [[ 1feo) = halr.2) = X gu(2) %
1=1 D, k;ﬁl

(29)

+ [ 1£:002) zgp )z,

where D, denotes the disk associated to the sth singularity and D, =
Q— Uil D,. The irrotational part being obviously expressed in a very
semilar way in considering a new non-overlapping disk domain D;, =
U;VZI D, and the adequate associated functions. It is important to re-
mark that the non-overlapping assumption only apply to domains asso-
ciated to singularities of the same type. Likelihood (29) is still valid for
a vortex and a source combined in a swirl. For the sake of simplicity, we
will develop the proposed method in the solenoidal case, and only give
results of the irrotational part. They are indeed obtain in an exactly
similar way.

To ensure that two singularity domains of the same type does not
intersect each others, we have to consider an additional constraint
whose rule is to hardly penalize the functional to be minimized, when
assumptions of non intersecting circular domain are violated. Let us
note this constraint C(r,,r,) applied on any pair of singularity (z,7)
with radius (r,,7;). The aim is now to find © that minimize Lc,,(0)
such that:

Lcso(©) = Lso(0) + Z C(rlalrj) (30)
(1:0)2#7
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where (7,7) indices any pair of singularity. Expanding this expression
in the solenoidal case one gets:

Les(© Z / /

wso(8) +

2

ds

Wsol(S ﬁz +Z HS ‘Qﬁk

(s —s)"

s s HQﬁk ds—l— Z C(ry,r))

(2.9) 277

(31)

A minimizer of equation (31) is given by the resolution of V Lecs, = 0.

3.2.1. Radius estimation
Following the derivation developed in the appendix (49) we have:

ALesof (s —8)"
7—‘4//1"’” mzns |25’“' 3 s

2

k#1

BC(TU ’I”k)
or,
(32)

Then, the problem yields:

0Lcso(0)
T =0
4 1 ’L
4 / | lwsou,ym(s o) loma) ¥ (||s_3§kfé“ // e = sl
aC(ﬂﬂ"k) .
YhT e O

(33)

Many solutions are available to solve this kind of non-linear equa-
tion, where the integration domain D, depends on the unknown variable
r, to estimate. We choose to use a fixed point iteration method. This
kind of techniques consist in solving a problem of the form z = g(x)
given a previous iterate. The new problem read then z(P+1) = g(z(?)).
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An iterative fixed point process may be written as:

0Lcso(O)
T_O
e (s_s). S 88k
@49/(4 lwsou,y)A(s V-G DI e
_ 4 s_ s r(p) = 9C(ru(p), i) _
r(p+1) /(p/)” e+ =5 kzﬂ ar.(p) .

which finally reads:

B.(p)
Tl<p + 1) = r3 r r.)?
J Au(p) + T Y, PG

with:

Aqi(p) :4// [wso(wvy) A (s —s,) _(3—82)'Zw ds

2 ?
S S

Bilp) =4 [[ s = su|Pfuds = 277 ().

D.(p)
(36)

Expressions A,(p) and B,(p) are computed directly from w,, s, ,and
rl(p ) and B, previously estimated.
3.2.1.1. Choice of the constraint functional
At that step, function C has to be defined. Such a function must have a
low value if constraints are not violated (if in fact (q,, = r,+r,—d,)) <0
where d,; is the distance between centers (s,, s,)) a high one in the other
case (if q,, > 0). It is common to employ, for that kind of problem,
an approximation of the Heaviside function H associated with a very
strong coefficient A (in practice A = 103Y). One can choose for instance
the approximation proposed by Chan and Vese in [7]:
A 2

Clay) = M(a,) = 5 (1+ Zatan(22)). (37)
The derivation of this function is an approximation of the Dirac func-
tion:
A €

e+ q% (38)

C’ (q’L]) = >\56<qu) =
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Two graphics representations of these functions are shown in Figure 4
for different values of e.

Such functions seem at first glance well adapted to our problem. As
a matter of fact, starting from an admissible solution (non-overlapping
disks), if the different radiuses growes slighty and continuously, the

non-overlapping assumption is guarantee through function %, who
2
keep solutions into an admissible domain.

c@

A

q o 8 & 4 2 0 2 4 6 8 10

(a) (b)

Figure 4. (a) Graphic representation of a constraint defined as a strong Heaviside
function and (b) its derivative for three different values of €

Nevertheless, in our case, within the fixed point strategy, the tempo-
ral evolution of r,(p) over iterations (p) is not necessary “continuous”:
the difference r,(p + 1) — r,(p) can be important. As a consequence,
if r,(p) respects the constraint, it is possible (if the evolution is too
violent) for r,(p + 1) to have its value in the domain where constraints
are violated. In that case, following relations (35) and (38), the con-
tribution of g—fl in the estimation of the radius is neglected, since this
constraint is effective only at the frontier of the admissible domain. The
“barrier” imposed at the frontier to prevent from overlapping has been
crossed and g—fl has no effects.

To cope with this particular phenomenon, we have to find a function
whose derivative become “active” (i.e. with very strong values) not only
at the frontier of two domains, but all over the non desired area. Instead
of using (37), we preferred to use for C:

C(a,,) = Aq, He(q,), (39)
whose derivative is:

aC(qy,)
ar,

C'(a,) = = M He(ay,) + a,0c(ay,) )-
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Graphics representations of C and C' can be shown on Figure 5. In that
case, C is “active” not only at the frontier of two domains but also
over the whole area where r,(p + 1) is not valid.

)

Figure 5. (a) Graphic representation of our proposed constraint and (b) its derivative
for e =0.01

3.2.2. Strengths parameters estimation
In that simpler case, the partial derivative with respect to one of the

By's is:

Penl®) _, [ [ww(s) Pomaty s lema 5| a=a)t

o ) e T
(3 ) (3 _'sz)i
”4/ el 3 ||s—sk||25’“] e aP®
(s — )+ (s —8,)*
2 s0 s ds.
’ %Z/ lw 0+ ”pg%;z} = sp||2ﬁp] ls=aP

(40)
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Then:
M_o
o6,
S — 8
<:>——//||3_32” d9+A2//l“’80 +Z||s skH?ﬁ'c (s =07 &b
_/_/ ’
272 accordlng to (35-36)"
1
B //
// s zHQ % o= sl
. B
(S —'Sz)i
s — 8 s — 8
D [ 2 ” ’“” | To-a )
B
J_ o 1
—I-Z// Wso(s ﬁk—l- > 500 Lo 82)2:0
iZp P} ”s N s”” o ==
k
C’
B+C 1
_2Tv . h A — -
06, I , Wit // HS—SzHng
Q—-D,
(41)

At this step, A, B, and C are directly computed from given observations
Wso, 8, and previous estimated radiuses r, and strengths f,.

3.2.3. Irrotational case
In a similar way, the optimal singularity radius is given by:

(p)
) = B

with:
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(r) — 4 . e e e ey N (8 k)
Al {/) lwm,y) (a=0) =~ (em ) 3 |
D,P

BP) = 4// s — s,||?c,ds = 27rrf(p)al

Dyﬂ

\

(43)

The optimal strength source/sink , «;,, is given by a, = % with:

B— Z/ {w”(s) _y ez ozk-l 5= b g
D

Zlls—snlZ™| s — sl

and

o= z//[wz, ICETIIS u]%@

_ 2P _ 2
= 7 S s = a7 s =l
(45)
Let us remark that in both cases the term A is the same. Through
Green theorem this term can be computed from the contour of domain

Q) — D,. Green theorem states that for any continuously differentiable
vector field w 2 (p, ¢) on a planar region € we have:

/ / (— - —dxdy> / p(z, y)dz + q(z,y)dy.
0N

In our case let us pose:

9q(z.y) 1 . . ,

Oy - 2(z2 + y2) with q(z,y) = % arctan " and
Ip(z,y) 1 _ . )
or _2(:1:2 + y2) with p(z,y) = 2 arctan —

we have then:
1 1
// ———dxdy = / —— arctan d:v + — arctan dy
22+ y? T z
o

The right hand side expression is then much cheaper to compute nu-
merically.
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3.3. METHOD SUMMARY

Before turning to the experimental results, and in order to give a clear
view of the different treatments involved by our method, let us sum-
marize the overall proposed technique for extracting the vortices, sinks
and sources from a given velocity field, and estimating the associated
Rankine models.

For a given dense velocity field, w, we first separate through a 2D
Fourier transform the two solenoidal and irrotational components (13-
14). From these components, the stream function ) and of the velocity
potential ¢ are obtained through the numerical integrations of (15). The
search for the local maxima of functions ¢? and 1)? gives us the location
of the different vortices and sinks/sources. To make this step robust,
this maxima extraction — which is obtained in practice through simple
morphological processing of the potential functions— we consider the
Bhattacharyya distance between two multidimensional Gaussian laws
[5]:

AN a1, 20), No(piz, %)) = (2 — i) (S1 + %)z — )

N lln( det(Z + 31)
2y/det(X129) "

2
(46)

For each component (i.e., the irrotational one or the solenoidal one) we
compute this distance for the two Gaussian distributions corresponding
to the error between the considered Rankine model for two consecu-
tive numbers of singularities and the known corresponding component
of the flow. For instance for the solenoidal component, we compute:
dpN1(wso — w§_ ), No(wso — w’(f):rol] where the field wg  correspond
to a maximum likelihood estimate of Rankine model with n vortices
(35-45). Starting with no singularities, we increase successively the
number of singularities by considering the highest local maxima of
its corresponding squared potential function. When the Bhattacharyya
distance between two consecutive models is small enough (i.e., when the
introduction of a new singularity does not bring additional information)
the process is stopped.
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A schematic view of the complete method is as follows:

w
e Compute w;, e Compute wy,
e Compute velocity potential ¢ e Compute stream function 1
¢ Setn=0,wg, =0 eSetn=0,wd =0
——
o Select the n + 1 highest ™ e Select the n + 1 highest
maxima of ¢? maxima, of )2
¢ Estimate Rankine irrotational o Estimate Rankine solenoidal
flow: wgzl flow: wgt?
e Compute: e Compute:
n n 1
dpNi(wir — wd, ), No(wir — Wi 1)] BN (Wso — w8 )y Na(@so
n=n+l n=n+1
L |
else else

/

we = we,, +we,,

(47)

4. Experimental results

In this section we present some experimental results to evaluate our
method. The experiments have been carried out both on a synthetic
benchmark and on three different real examples. In order to show the
accuracy of the proposed method we present first the results obtained

on a synthetic motion field.

4.1. SYNTHETIC EXAMPLE

The synthetic example we consider to assess the performance of our
method arises from a Rankine model involving four vortices, one sink,
and one source. The set of parameters used to obtain the flow are
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Figure 6. Synthetic Rankine motion field associated to the parameters of table I.

gathered in the left part of table I. The associated velocity field is
presented in figure 6.

The results are reported in the right part of table I. They have
been obtained on a noisy version of the synthetic motion field?. For
each singularity the parameters are well recovered (locations, radius,
strength). In order to assess the quality of the reconstructed motion
field, we can quantify its global agreement with the initial motion field
through the angular discrepancy criterion proposed by Barron et al.
[4]. We get an average angular error of 0.40° with a standard deviation
of 0.38° between the true velocity field and the reconstructed one.

Table I. Estimation of Rankine models on the synthetic field of Fig. 6

Synthetic parameters | | Estimated parameters

|| Error on strength |

|
| location | radius | strength || location | radius | strength ||
|

|
Source | (210,60) | 20 | 2500 | (211,60) | 21 | 2496 | 0.16% |
Sink | (100,180) | 30 | —150.0 || (100,180) | 30 | 1515 || 1.0% |
Vortex | (200,350) | 15 | —400.0 || (201,350) | 15 | —399.1 || 0.22% |
Vortex | (210,60) | 50 | —250.0 || (211,60) | 39 | —247.9 || 0.84% |
Vortex | (50,50) | 20 | 2000 || (50,49) | 20 | 2053 | 2.65% |
Vortex | (100,180) | 25 | 1500 || (101,180) | 26 | 1498 || 0.13% |

For this synthetic example, we present in figure 7 the two solenoidal
and irrotational components that have been extracted from the initial

2 Each component of the velocity field has been corrupted by a centered Gaussian

no

ise (0 = 0.9)
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velocity field. The estimated stream function and velocity potential and
their associated squared functions are also presented in the second and
third rows of the same figure. In the last row of figure 7 we superimposed
to the solenoidal and irrotational components the estimated singularity
domains.

The time computation for the whole process (field separation, singu-
lar point detection and Rankine model identification) for this synthetic
example is t = 119s, on a Sun Ultra 10 (with a c.p.u rate at 440 Mhz),
the image size being (396x276) pixels. It is important to note that most
of this computation time is due to the motion field decomposition in the
Fourier domain (the time needed, under a Matlab environment, for this
decomposition is ¢ = 72s which is 60,5% of the global computational
time).

4.2. REAL MOTION FIELDS

We show here three results obtained on real velocity fields. The veloc-
ity fields have been estimated with a motion estimator dedicated to
fluid images [10]. As mentioned previously, the corresponding laminar
component is estimated through the same technique, with a smoothness
term enforcing a null divergence and curl prior. The laminar component
enables to fix the boundary conditions. Indeed, removing this global
transport component from the flow under consideration then makes
reasonable the assumption of vanishing at infinity.

The first example corresponds to the motion between two consec-
utive images of the infra-red channel of Meteosat, shot the 215! of
January 1998. An image of the sequence is shown in figure 8(a). It
exhibits a large trough of low pressure (lower left part of the image)
together with a large cloud structure moving in the upper right part of
the image. The corresponding vector field with its laminar component
removed is visible in figure 8(b).

The two solenoidal and irrotational components of this velocity field
are shown in the first row of figure (9). The stream lines and the level
curves of the velocity potential are presented in the second row of the
same figure, whereas the squared potential functions are plotted in the
third row. The last row of figure (9) presents the estimated singularity
domains. The corresponding parametric velocity field is visible in figure
8c.

Due to the restricted form of the parametric model (let us recall
that the Rankine model is one of the simplest vortex model), the re-
constructed velocity field deviates slighty from the real one. The global
discrepancy, following criterion of Barron et al. [4], is 4.71o £+ 2.18o.
Considering this discrepancy measure, we see that main characteristics
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(a)

Figure 8. (a): Infrared Meteosat image; (b): dense velocity field; (c): parametric
Rankine flow.

features of the motion we have extracted (singular points and radiuses
of their associated linear domains) allows to get a good parametric
description of the flow. The global time computation for this example
ist = 270s on a Sun Ultra 10 (440 Mhz), the image size being (396x276)
pixels.

The second real example we present corresponds to water vapor
Meteosat images, acquired the 4* of August 1995. This sequence rep-
resents a depression in the left part of the imaged area and a convective
cell in the center of the image. An image of the sequence and the
associated motion field can be seen on figures 11 (a,b) respectively.

For this motion field we present figure 10 the same kind of results
as in the previous example. The associated reconstructed parametric
Rankine flow is presented in figure 11. Again, This flow captures well
the main visible structures (four vortices and one source). The method
as it stands is not able to locate, even roughly singularities which lie
outside the image plane. The consequence of this can be observed in the
reconstructed field: whereas the irrotational component in Fig. 10(b)
strongly suggests the presence of one or two singularities, on the left,
outside the image plane the estimated parametric Rankine flow does
not capture them, which limits the accuracy of the reconstruction.

The global discrepancy between the true and the reconstruct motion
field, following [4], is 6.46° + 4.64°. The global time computation is
t = 121s on a Sun Ultra 10 (440 Mhz), for a (512x256) image. We can
remark that whereas the image size is grether than in previous example,
the computation time required is lower. This is due to a lower number
of singularities detected. The time computation depends more on the
number of singularities than on the image size.

The last velocity field corresponds to an infrared Meteosat sequence,
acquired the 4" of August 1995. It represents the explosion of active
convective cells. These cells are associated to high vertical motion. They
are therefore the center of highly diverging area within the 2D apparent
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Figure 11. (a): Water vapor Meteosat image; (b): demse velocity field ; (c):

parametric Rankine flow.
\%@ % /i
o
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(a) (b)

Figure 12. (a): Infrared Meteosat image; (b): dense velocity field; (c): parametric
Rankine flow.

motion field. An image of the sequence and the associated dense motion
field are shown on figures 12 (a,b).

Figure 13 presents the results obtained for this example. As we can
see, the two main convective cells are very well captured. We have also
extracted different vortices accounting for secondary motions of the
cells present in the image. The corresponding reconstructed parametric
field is also shown figure 12.

The global discrepancy between the true and the reconstruct motion
field is 5.62° 4+ 2.15°. Again, despite the simplicity of the model used,
the global parametric description of the flow allows to represent in
a compact but informative way the original dense motion field. The
global computation time is ¢ = 48s on a Sun Ultra 10 (440 Mhz), for a
(256x128) image.

4.3. COMPARISON WITH WINDING NUMBERS TECHNIQUE

Other techniques are available to extract singular points from a dense
motion field. One of the most popular is based on the use of Poincaré
indices also called winding numbers. The winding number (or index)
of a closed curve in a vector field amounts to the numbers of turns,
o [d(tan™' u/v), that the field undergoes along the curve. Its value
is +1 if the considered Jordan curve surrounds a vortex/sink/source
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(h) (i)

Figure 14. (a,d,g): Original real Meteosat images; ; (b,e,h): associated dense motion
fields; (c,f,i): blobs of singularities estimated with winding numbers.

[8, 21, 30]. In practice, due to the image discretization, a small blob
(whose size depends on the size of used curve) of +1 index pixels is
obtained in the neighborhood of a singular point.

This method as the advantage to be fast. Nevertheless, it remains
based on a local criterion which is not robust to noise. Furthermore,
only blobs containing a potential singular point may be detected with
such technique; the concerned point has then to be extracted from such
blobs with other adhoc techniques.

In order to visualize the difference between such an approach and
the one we propose, we present, in figure 14, for the three real motion
fields, the different blobs detected with winding index.

We can note that the correct singular points are always detected.
Nevertheless, the results are cluttered by a large number of false posi-
tive due to the sensitivity of the technique. Those spurious points have
then to be removed with some post-processing treatments.
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5. Conclusion

We have proposed an original technique to detect singular points and
their associated domain of linearity from dense motion fields measured
in image sequences. This technique is based on the decomposition of
the motion field in terms of its irrotational and solenoidal compo-
nents. From these components, we extract by integration the associated
stream function and the velocity potential, whose local extrema provide
the location of vortices and sinks/sources. The strength and linearity
domain associated to each of these detected singular points are then ob-
tained from a maximum likelihood estimation of a parametric Rankine
model.

This method has been validated on synthetic and real examples, and
has proved to extract the main structures of a motion field. Compared
to an usual winding number technique, our approach is more robust to
various sources of noise.

As a by product, the approach provides a simple way to extract
streamlines, velocity potential, solenoidal or irrotational components,
which are central to most studies of fluids.

As a final remark let us outline that the method described here is
fast and requires no tuning of parameters.
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Appendix

Considering a domain D delineated by a circle D of radius R and the domain D
exterior to the disk, we show in this appendix that the derivative with respect to R
of

// f(x,y,R)dwdy—}—/ g9(z,y, R)dzdy, (48)

D D

where f and g coincide on circle 9D, is

% // f(m,y,R)dxdy—i—//g(m,y,R)dmdy :// %dmdy_k// %dmdyzo.
D D D 5

(49)
Let us first consider the function:
H(R) = // f(z,y, R)dzdy.
D
We want to compute the partial derivative ?,—g. In polar coordinate with origin the

center of disk D, this derivative is defined by (with slight abuse of notation f(r, 6, R)
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stands for f(rcosf,rsinf, R)):

R+h
H'(R) = lim 1 / / f(r,6, R+ h)rdrdf — / / f(r,0 R)Tdrde]
h—0 h

R+h
= lim 1 / / f(r,6, R+ h)rdrdf — / / f(r,6,R + h)rdrd
h—0 h

/ / f(r,0, R+ h)rdrdd — / / f(r,6,R) rdwdé}

R+h
= lim — / / f(r,0,R+h rdrd¢9+/ / f(r,6,R+h) — f(r,H,R)rdrdO]
I df(r,0,R) B / / /
= 0 o1, 9, 1y — o7
/O f(R,6, R)Rd6 +/O /O 3R rdrdf f+ 3
oD D

The derivation of function

(50)

= //g(ﬁ,y, R)dzdy,
D

is then readily obtained by noting that

-+

The derivation of the first term in the right hand side yields f f 99 and the one of

the second term is similar to the one of H(R):
’ _ Jg dg
rw= -] [o |[ 5
Q D D
_[[ 9
AL
) D

By continuity at circular boundary 0D, implying f f= f g we get:
D D

(e l)- g e e

(51)
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