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Stochastic Uncertainty Models for the Luminance
Consistency Assumption

Thomas Corpetti and Etienne Mémin

Abstract—In this paper, a stochastic formulation of the bright-
ness consistency used in many computer vision problems involving
dynamic scenes (for instance, motion estimation or point tracking)
is proposed. Usually, this model, which assumes that the lumi-
nance of a point is constant along its trajectory, is expressed in
a differential form through the total derivative of the luminance
function. This differential equation linearly links the point velocity
to the spatial and temporal gradients of the luminance function.
However, when dealing with images, the available information only
holds at discrete time and on a discrete grid. In this paper, we for-
malize the image luminance as a continuous function transported
by a flow known only up to some uncertainties related to such a
discretization process. Relying on stochastic calculus, we define a
formulation of the luminance function preservation in which these
uncertainties are taken into account. From such a framework, it
can be shown that the usual deterministic optical flow constraint
equation corresponds to our stochastic evolution under some
strong constraints. These constraints can be relaxed by imposing a
weaker temporal assumption on the luminance function and also
in introducing anisotropic intensity-based uncertainties. We also
show that these uncertainties can be computed at each point of
the image grid from the image data and hence provide meaningful
information on the reliability of the motion estimates. To demon-
strate the benefit of such a stochastic formulation of the brightness
consistency assumption, we have considered a local least-squares
motion estimator relying on this new constraint. This new motion
estimator significantly improves the quality of the results.

Index Terms—Image motion analysis, image quality, image sam-
pling, stochastic processes.

1. INTRODUCTION

ANY computer vision problems are formulated on the

basis of the spatial and temporal variations of the image
luminance. For instance, in all approaches requiring the tracking
along time of points, curves, or surfaces [31], the evolution of
the luminance function provides crucial information that can be
used as a dynamic constraint [26], [27] or as an observation
measurement [16], [21], [29]. In several domains where physical
flows are involved (e.g., meteorology and oceanography), such
an evolution law describes the transportation of physical scalar

Manuscript received October 24, 2010; revised May 22, 2011; accepted June
23, 2011. Date of publication July 25, 2011; date of current version January
18, 2012. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Stefan Winkler.

T. Corpetti is with the Sino-French Laboratory on Computer Sciences, Au-
tomatics and Applied Mathematics (LIAMA), Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: tcorpetti @gmail.com).

E. Mémin is with the Fluminance Group, National Institute for Research
in Computer Science and Control (INRIA), 35042 Rennes, France (e-mail:
memin@inria.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2011.2162742

data f by motion field ¥ under a global conservation constraint
using the following classical relation:
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where V is the gradient operator in the x- and y-directions.
When function f denotes the luminance function, this equa-
tion is referred to in computer vision as the optical flow con-
straint equation (OFCE) or the brightness consistency assump-
tion and constitutes the only available information for motion
estimation issues. Optical flow estimation has been intensively
studied since the seminal work of Horn and Schunck [15], and a
huge number of methods based on diverse variations of this con-
straint have been proposed in the literature [6], [11], [30], [32],
[33]. Usually, a data model constructed from this constraint is
associated with some spatial regularizers that promote motion
fields with some spatial (and sometimes temporal) coherency.
Many authors have proposed on this basis very efficient tech-
niques. Readers can refer to [4]-[7], [18], [22]-[24], [28], [34],
[35], and [37] for a nonexhaustive panel or to [14] for a recent
review on estimators dedicated to fluid flows. Comparative per-
formance evaluations of some of these techniques can be found
in [2], [3], [12], and [14]. Among the developed approaches,
the techniques focused first on the design of new regularization
terms (able, for instance, to deal with occlusions and discon-
tinuities or relying on physical grounds [10], [14]) and second
on the application of advanced minimization strategies. Surpris-
ingly, apart from some specific applications devoted to some
specific types of imagery (e.g., fluid, biology, infrared imagery,
tomography, and IRM), only a very few authors have worked on
generic alternative data terms to the classical brightness consis-
tency assumption, despite the fact that it plays a crucial role in
the motion estimation process.

Moreover, the motion estimation issue should be seen
in its most accomplished goal as a velocity or deformation
metrology problem, in which one aims at recovering accurate
motion measurements, and not only as a technique providing
an approximate estimate of velocity vectors that inevitably
give rise to erroneous drifts when integrated along time. Such
drifts can be efficiently attenuated considering motion tracking
procedures based on stochastic filtering [1] or optimal control
[26]. These temporal integration approaches require the in-
troduction of uncertainty models quantifying the reliability of
the measurements. Accurate modeling of these uncertainties
is crucial as large uncertainty values favor forecast motion
values provided by the state variable dynamics, whereas small
uncertainty values encourage high confidence in the measure-
ments. In this paper, we aim at proposing a framework that
allows us to estimate not only local motion measurements but
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also their uncertainties. To our knowledge, such uncertainty
measurements are provided by none of the existing motion
estimation techniques.

The conventional optical flow constraint relation (1) is in fact
defined as the differential of a function known only on spatial
and temporal discrete point positions (related to the image se-
quence spatiotemporal lattice). This is somewhat a strong con-
straint since, in practice, the grid points on which the lumi-
nance is defined is transported by a flow itself known only up
to the same discrete positions. The result from this discretiza-
tion process is an inherent uncertainty on the point location that
can reveal to be of important magnitude when involving strong
motions, large interframe lapse rate, or crude spatial discretiza-
tion associated, for instance, with large spatial scale measure-
ments. The idea is therefore to encode such a location uncer-
tainty as a random variable and to incorporate the uncertainty
transportation into the brightness consistency assumption. Sto-
chastic calculus provides the differentiation rules needed to for-
malize such evolution law of uncertainty terms. In this paper,
isotropic or anisotropic models of uncertainty have been settled,
thus yielding to two different versions of a brightness assump-
tion data model under a location uncertainty. Let us point out
that such location uncertainty modeling allows us to propose a
natural continuous multiscale estimation associated with a hi-
erarchical discretization process on nested discrete lattices. Un-
certainty model parameters are seen as additional parameters
that have to be jointly estimated within the motion estimation
procedure. The overall resulting scheme provides a proper way
to measure in a joint way motion vectors and their associated
uncertainty from the data. Our new models enable providing

1) a more accurate consistency conservation assumption

equation that can be used in many computer vision prob-
lems;

2) an estimate of the motion uncertainties;

3) a natural continuous multiscale strategy for the motion es-

timation strategy.

We have the conviction that the association of an uncertainty
measure to the estimated variable is of high importance in many
applications. For instance, in the context of motion estimation,
this uncertainty is directly related to the accuracy of the velocity
field. For the tracking issue, such uncertainties are also linked to
the confidence one may have in the conservation of any scalar
field defined on the image grid. For a problem in which one aims
at forecasting these scalar fields, the uncertainties enable simu-
lating various configurations of the displaced scalar field image.
This may have many practical applications (in geosciences in
particular) when one wishes to predict scalar fields transported
by the flow, such as temperature, pollutant sheets, or microor-
ganism density.

In this paper, in order to validate our new data terms, we have
designed a simple local motion estimator based on the princi-
ples of the Lucas—Kanade (LK) estimator [20]. We have used
our new stochastic relations of the image luminance as an ob-
servation operator and compared it with the standard optical
flow constraint (1). In addition, an original multiscale scheme,
which is also interpreted as a stochastic uncertainty on the pixel
grid, is presented and evaluated. Experiments are carried out on
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fluid particle images and on images of the Middleburry data-
base. In the context of particle images, local approaches are cur-
rently used in operational systems. Those local techniques based
on correlation have shown to be very efficient in this context.
On particle images, dense motion estimation techniques may
reach the same level of accuracy with a greater density of mea-
surements when regularization terms reflecting well the phys-
ical properties of the fluid are considered [9], [10], [13], [38].
As for the second experiments, on several images issued from
the Middleburry data set, we analyze the benefit of a data term
based on the stochastic models proposed in this paper compared
with a classical evolution based on (1). The experimentations
indeed reveal better accuracy of the motion fields provided by
our models, and we also highlight the benefit of the uncertainty
maps extracted. Finally, we present the evaluation on the com-
plete Middleburry database.

This paper is organized as follows: In Section II, we define
a stochastic version of the luminance function by incorporating
isotropic and anisotropic uncertainties. From this formulation,
two conservation constraints of the image luminance are de-
rived. If the velocity field is available or if we estimate it si-
multaneously, we propose in Section III a way to compute the
associated uncertainty. Finally, Section IV presents a local mul-
tiscale LK motion estimator based on the brightness consistency
stochastic models.

II. STOCHASTIC LUMINANCE FUNCTION AND
CONSERVATION CONSTRAINTS

A. Notations/Conventions

In this paper, we use four conventions/notations.

1) The image luminance is f.

2) We represent as a vector X = (X', ...
2-D points, X* € R2.

3) The “pixel” grid of images X; 1 is represented by the po-
sition of grid X at the initial time, setto ¢—1 [see Fig. 1(a)].

4) At time t — 1, this grid is driven by velocity field
v(X;_1,t — 1) : R?™ x Rt — R2™ defined on initial
grid X;_; to generate new point positions X, at time ¢
[see Fig. 1(b)].

,X™)T a grid of

B. Stochastic Luminance Function

We first write the image luminance as a function of a sto-
chastic process related to the position of image points. As il-
lustrated in Fig. 1, if one assumes that velocity v to estimate
transports the grid from X;_; to X; up to a Brownian motion,
we can write

dX; =v(Xi—1,t — 1)dt + B(¢, X;)dBy )

where B; = (B},...,B™)7T is a multidimensional standard
Brownian motion of R?™, ¥ is a (2m x 2m) covariance matrix,
and dX; = X; — X, 1 represents the difference between the
grid positions. Luminance function f usually defined on spatial
points £ = (z,y) at time ¢ is here defined on the grid as a map
from R* x R?™ into R™ and is assumed to be C12(R*, R?™).
Its differential is obtained following the differentiation rules of
stochastic calculus (the so-called It6 formulas) that gives the
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(a): Grid at time -1

grid X,

grid X,
velocity field v

uncertainty

(b): Displaced grid at time ¢

Fig. 1. Displacement of the grid of points. The initial grid at time ¢ — 1 in (a) is transported by velocity field © to reach the configuration at time # represented

in (b), up to some uncertainties (dashed lines).

expression of the differential of any continuous function of an
It6 diffusion of the form (2) (see [25] for an introduction to
stochastic calculus), i.e.,

AF(Xot) = L+ 3 —af(axf’t)dxg‘

T i
1=(1,2)
1 O f (X4, t) i yi
Y v a(Xi,x{). @

(,7)=(1,2)x(1,2)

The term (X}, th ) denotes the joint quadratic variations of X*
and X7 defined as the limit in probability, i.e.,

Z (Xtik—1 - Xttk) (Xt]k—1 - thk)
<

tr <

. . P
<X;,Xg> — lim

5t —0

which can be computed according to the following rules:

(B', B7) = 6;;t
(h(t),h(t)) = (h(t),dB") = (B ,h(t)) = 0 4)

where 6;; = 1if i = j, 6;; = 0 otherwise, and h(t) is a deter-
ministic function. Compared with classical differential calculus,
new terms related to the Brownian random terms have been in-
troduced in this stochastic formulation. A possible way to rep-
resent the stochastic part of (2) is to use an isotropic uncertainty
variance map o(X;,t) : RT x R?™ — R™, ie.,

2:(X157 t)dBt = dlag (O'(Xt, t)) ® ﬂdet (5)

where [5 is the (2 x 2) identity matrix, and ® denotes the Kro-
necker product. Alternatively, one can use anisotropic inten-
sity-based uncertainties along the normal (with variance o)) and
the tangent (with variance o) of the photometric contour fol-
lowing

Z(Xt,t)dBt = dlag (O'T,(Xt7t)) 34 ndB;’
+diag (o-(X4,t)) @ TdB{. (6)

~ () = ()
=w\n) TTIVA\ L

Vectors

represent the normal and tangent of the photometric isolines, re-
spectively, and B" and B™ are two scalar independent multidi-
mensional Brownian noises of R™ and f, = 9f(X4,t)/0e for
e = (,y). Let us now express luminance variations df (X, t)
under such isotropic or anisotropic uncertainties.

1) Isotropic Uncertainties: Applying It6 formula (3) to the
isotropic uncertainty model yields a luminance variation, which
is defined as

df (X, t) = (g—{ FVfou+ %UZAf> dt+oV f-dB,. (7)

2) Anisotropic Uncertainties: Considering the anisotropic
uncertainty model (6), the corresponding quadratic variations
are

d<xi,xi> :ﬁ (02f2 + 02f2) dt ®)
d<xf,xf> :ﬁ (02f2 + 02f2) dt )
d<Xi,X?> Zﬁ(fmfy) (02 —o2)dt  (10)
and variation of luminance df is now
df (X, 1)
_ (88_{+Vf.v+%;@w @gﬁﬂ@) it
+ 0|V fl|dB] + o,V fTrd By . (11)
=0

In this brightness variation model, the stochastic term related to
the uncertainty along the tangent vanishes (since the projection
of the gradient along the level lines is null).

It is straightforward to remark that the standard brightness
consistency assumption is obtained from (7) or (11) using zero
uncertainties (0 = o, = o, = 0). The proposed stochastic
formulation thus enables using a softer constraint. From this
formulation, let us now derive generic models for the evolution
of the image luminance transported by a velocity field with a
location uncertainty.
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C. Uncertainty Models for Luminance Conservation

Starting from a known grid X;_; and its corresponding
velocity, the conservation of the image luminance can
be quite naturally expressed from conditional expectation
E(df(X:,t)|X:—1) between ¢ — 1 and ¢. To compute this
term, we exploit the fact (as shown in the Appendix) that the
expectation of any function ¥ (X, t) of stochastic process dX;
[as in (2)] knowing grid X;_1 is

E(U(X4t)|Xim1) = U( Xy +0,8) *N(0,E)  (12)
where NV (0, X) is a multidimensional centered Gaussian. This
latter relation indicates that the expectation of function ¥ (X, ¢)
knowing location X;_; under a Brownian uncertainty of vari-
ance X is obtained by a convolution of U(X;_; + v,t) with a
centered Gaussian kernel of variance X.

Assuming that ¥ is known, our new luminance variation
model E(df(X4,t)|X+—1) is hence defined as

E (df (X+,1)|X1—1) = g5 * (df (X¢-1 + v, 1))

=g+ H(f,v)dt (13)
where function H(f,v) corresponds to the bounded variation
part of the luminance differential. Its form depends on the type
of uncertainty considered. For an isotropic diffusion, the expec-
tation of this function is

0 1
EHU )X = g0« [ V0t 2t 2oar | g
L N——
F(f)
whereas for the anisotropic version, it is
E(H(f,v)|Xi—1)=9=
of VITV?IVF o o 02Af
ES Vf.v—i_a—i_W(JU_UT)—i_T (15)
F()

If the brightness conservation constraint strictly holds, one ob-
tains 0 = o0, = o, = 0; the Gaussian kernels turn to Dirac
distributions, and relations (13)—(15) correspond to (1). The pro-
posed model thus brings a natural extension of the usual bright-
ness consistency data model. Furthermore, as a bounded varia-
tion process, H( f,v) has a null quadratic variation, i.e.,

E (H*(f,v)) = gs* H*(f,v) =0. (16)
An approximation of this relation for a locally constant velocity
in space will provide us a local least-squares estimation scheme
for the unknown velocity. Before presenting this procedure, in
the next section, we propose a way to estimate uncertainties o,
and o,.
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III. UNCERTAINTY ESTIMATION

Assuming that an observed motion field v, that transports
the luminance is available (we will describe in Section IV a
local technique for this estimation), it is possible to estimate
uncertainties o, (z,t) and o (z,t) for each location z at time
t.

A. Estimation of o,

Computing the quadratic variation of luminance function df
between ¢ — 1 and ¢ using the properties in (4) yields

d{f(Xe,1), f(Xe, 1) = o (X, ) VA (X t)P A7)
for the isotropic or anisotropic version, where ¢ = o, in the
isotropic formulation. This quadratic variation can be also ap-
proximated from luminance f by

d(f(Xe,t), f(X0 1) ~ (F(Xrt) = f(Xima,t = 1))
(18)
As convergence in probability implies convergence in distribu-
tion, the conditional expectation of both previous terms should
be identical, and one can estimate the variance by

E((X0t) = f(Xprt= 1)

Jn(Xt) = [E(HVf(Xtt))H2)

19)

The expectations in the numerator and the denominator are then
computed at displaced point X; 1 + vops(X;—1) through the
convolution of variance X(X;_1,¢— 1). A recursive estimation
process thus emerges from (19). Let us note that this recursion
corresponds to the following least-squares estimation:

02 = arg min [[Ede(Xt,t) — 0% ||Vf(Xt,t))||2] "0

where df?(X,t) is a shortcut notation for quadratic variation
d{f(Xy,t), f(X¢,t)). This provides us a simple scheme for the
estimation of the uncertainty directed along the isophotometric
curves’ normals. However, in the case of an anisotropic noise
model, the uncertainty along the tangent is also needed.

B. Estimation of o

It is not possible to estimate the uncertainty along the photo-
metric contours in a similar way since, as shown in (11), this
quantity does not appear in the noise associated with the lu-
minance variation and, therefore, is not involved in the corre-
sponding quadratic variations. Writing the Itd diffusion associ-
ated with the velocity projected along the tangent yields

v 1m=vX, 1,t—V)Trdt +0.(t,X,)dB]. (21)
This scalar product constitutes a scalar Gaussian random field
of mean p = v(X;_1,t — 1)T'7 (assuming v(z, ¢) is a bounded
variation process) and covariance (diag(o,)). We assume that
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scalar product ¥ 7 and tangent uncertainty o, (¢,2) are suffi-
ciently smooth in space and can be well approximated, respec-
tively, by the local empirical mean and variance over a local
spatial neighborhood N (z) of point . That is

_ 1 3 T
"IN G@)] 2, €N (z) (oo (22, = 1) 22
2 1 E i _ T, 2
T T IN(@) - 1 a:iGN(:t)(vaS(x“t DT @9

Relations (14) and (15) provide new models for the variation
of the image luminance under isotropic or anisotropic uncer-
tainties. Here, we have presented a technique to estimate such
uncertainties from an available velocity field. The next section
focuses on the application of those extended brightness consis-
tency models for motion estimation.

IV. APPLICATION OF THE PROPOSED LUMINANCE MODELS

This section aims at defining a simple local motion estimator
that embeds the proposed evolution models as an observation
term. As previously indicated, the quadratic variation of the
bounded variation term of the luminance function is null. We
thus have

E (H*(f,v)) = g * H*(f,v) = 0. (24)

As the classical OFCE based on (1), an observation model
based on this constraint is ill posed. Similarly to the well-known
LK estimator, we cope with this difficulty by assuming a con-
stant flow within a Gaussian windowing function defined by
the uncertainty estimate. However, for a small uncertainty, this
model will be likely to be still subject to the aperture problem.
We introduce, hence, an additional uncertainty isotropic func-
tion of variance o, which defines the minimal windowing func-
tion at which the estimation is performed. As a result of the lo-
cally spatially constant approximation of the motion field, con-
straint (24) can only be approached; we thus seek to fulfill it in
the least-squares sense. Sought motion estimate v should thus
minimize

9 2
mving(,z *gg*(Vf-'v—ka—J;—l—]—'(f)) (25)
which yields the following relation for any position :
fr faly } )
ot ~ v
<9 e [fmfy f;
— e vam (A 1| T ] 0o
Yy

Let us note that, in our model, the Gaussian windowing func-
tion can be interpreted as the distribution of a new isotropic
constant uncertainty term related to the grid resolution and in-
dependent of the motion uncertainties depending on the image
data. In practice, the choice of convolution kernel o* is crucial:
a large value of ot will remove all details, whereas a small value
is likely to be unstable and may lead to an extreme case of an

3"@; 20 @ ,@"é"?e\ )
® gio ® ojio ® o0 ©
7\ H 1"
F AL A LA X

. grid X*¢

Fig. 2. Multiresolution grids represented through an isotropic Brownian
process. Clear circles: original pixel grid. Dark circles: grid at a given resolu-
tion {.

ill-posed problem. In addition, such motion estimation proce-
dure, which is based on a linearized version of the displaced
frame difference, leads to inaccurate measurements of large dis-
placements when the linear assumption of the brightness consis-
tency breaks (high photometric gradients and/or large displace-
ments). To prevent such limitations, many authors have pro-
posed to embed such estimation procedures within a pyramidal
setup. However, a pyramidal representation requires Gaussian
filtering, sampling, and interpolation of the input data, which
is likely to introduce artifacts that spoil the estimation. Inter-
preting the windowing function convolution as associated with
the computation of the expectation of a grid uncertainty random
term will allow us to define an original continuous multiresolu-
tion framework. This is presented in the next section.

1) Multiresolution: A multiresolution scheme consists of re-
defining the problem on grid X ‘. which can be viewed as a
coarse representation of initial grid X % — X with a Brownian
isotropic uncertainty of constant variance ‘. This is illustrated
in Fig. 2: From initial pixel grid X° = X that corresgonds to
the plain circles, the problem is redefined on grid X~ (repre-
sented by the dotted circles), which is a coarse representation of
X. This reads

X' =X"+0',dB. 27)

Motion »(X:_,,¢ — 1) on this grid should minimize expec-
tation E(H?2(f,v)|X°), which is equivalent (see the Appendix)
to a convolution of H?( f, v) with isotropic Gaussian N (O, ¢*).
Therefore, one exactly gets the system in (25), which is locally
solved by inverting the system in (26). A main advantage of
such a formulation of the multiresolution setup is to naturally
get rid of the use of a pyramidal image representation. Instead
of dealing with successive decimations of factor 2 of the initial
image to fix the different multiresolution levels, the evolutions
of levels ¢ are much flexible here. This framework may be inter-
preted as a scale-space representation of the extended brightness
consistency assumption [19]. However, in our case, it rigorously
stems from an uncertainty analysis of the point location.
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TABLE I
QUANTITATIVE COMPARISONS OF THE DNS SEQUENCE WITH A PYRAMIDAL LK (LK, [20]), A COMMERCIAL TECHNIQUE BASED ON CORRELATION (COM, LA
VISION SYSTEM), HORN AND SCHUNCK (HS, [15]), TWO FLUID-DEDICATED MOTION ESTIMATORS WITH DIV-CURL SMOOTHING TERMS (DC1 [10] AND DC2
[38]), A FLUID-DEDICATED MOTION ESTIMATOR WITH TURBULENCE SUBGRID MODELS IN THE DATA TERM (TUR, [8]), OUR APPROACH USING THE CLASSICAL
OFCE (OFCE), AND OUR APPROACH IN ISOTROPIC (ISO) AND ANISOTROPIC (ANISO)

LK COM As DC1___DC2 _ TUR _OFCE (57s) IS0 (63s) ANISO (31s)
AAE | 6.07° 458° 427° 435°  3.04°  4.49° 1.53° 3.59° 3.12°
RMSE | 0.1699 0.1520 0.1385  0.1340  0.09602  0.1490 0.1243 0.1072 0.0961

With all these elements, we can define the incremental local
motion estimation technique presented in the next section.

2) Incremental Framework: The local estimator proposed
here comprises a specific multiresolution scheme where, at each
level, an incremental framework is defined to estimate as accu-
rately as possible the uncertainties. The incremental algorithm
is used.

Incremental Algorithm

1) Initializations:
* Fix an initial resolution level £ = L
* Define f(X¢—1,t) := f(Xi—1,t); v = 0;
2) Estimation for level £
a) Initializations:
e n=1v =0;
» Fix a normal uncertainty Ug
+ Fix a tangent uncertainty o2 (if anisotropic
formulation)
b) Estimate ag by relation (19)
c) Estimate o7 by measuring the tangential
uncertainty of v [see (23)]
d) Find v™ by local inversions of system (26)
e) Update motion field: v := v + v"
f) Warp image f(Xy,t): f(Xi—1) = f(Xi—1 +0,1)
g ni=n+1l
h) Loop to step b until convergence (|v"| < ¢€);
3) Decrease the multiresolution level: o/ = Ao’

4) Loop to step 2 until convergence (o° < ot ; ).

The previous framework is a natural and simple implementa-
tion of a local motion estimation technique using the proposed
models for the evolution of the luminance. A quantitative and
qualitative evaluation of such an estimator, in comparison with
the classical OFCE, will be presented in Section V.

V. EXPERIMENTAL RESULTS

We present here some experimental results of the local mo-
tion estimator described in Section IV. We show examples on
synthetic fluid images and on the Middleburry database.! It is
important to outline that the estimator defined in Section I'V con-
stitutes a local technique whose aim is simply to validate, com-
pare, and qualify the observation model based on stochastic un-
certainties versus the usual OFCE (1). Hence, its performances
have to be compared with other local approaches.

Thttp://vision.middlebury.edu/flow/.

Following the proposed algorithm, four uncertainty parame-
ters have to be set, i.e., 02 and o9 (initial values of the uncer-
tainties), o (coarse-scale level), and Uﬁlin (finest scale level). In
practice, we have fixed o} = 0, = 1, ot =40,and o’ =T.
As for the multiscale setup, parameter A that rules the scale de-
crease (01 = Ao, o1 > ol ) hasbeensetto A = 0.3. We
can note that a standard pyramidal scheme would correspond to
A = 0.5. In practice, we have found, as in [36], that smaller
values were more efficient. This will be illustrated in the next
section. As a first benchmark, we analyze the results obtained

on images depicting the evolution of a 2-D turbulent fluid flow.

A. Fluid Images

In fluid imagery, it is common to visualize and analyze flows
with particles: the fluid flow is seeded with small particles
and enlightens through a laser sheet. All existing commer-
cial systems are local motion estimators based on correlation
techniques. These technique are usually referred to as particle
image velocimetry (PIV) methods.

We used a pair of synthetic images of 256 x 256 pixels ob-
tained by direct numerical simulation (DNS) of Navier—Stokes
equations and representing a 2-D turbulent flow. Numer-
ical values of the average angular error (AAE) [3] and the
root-mean-square error (RMSE) are used as criteria to com-
pare our estimators (isotropic and anisotropic) with some of
the state-of-the-art approaches. These results are depicted in
Table 1. The techniques to which the proposed estimators are
compared with are given as follows:

1) Horn and Schunck estimator (HS technique) [15];

2) commercial software based on correlation (DaVis 7.2 from
LaVision GmbH; COM technique);

3) pyramidal incremental implementation of the LK estimator
(LK technique) [20];

4) proposed framework in Section IV with the OFCE as an ob-
servation model (i.e., with a zero uncertainty; OFCE tech-
nique);

5) two fluid-dedicated dense motion estimators based on
Div—Curl smoothing with different minimization strate-
gies (DC1 and DC2 techniques) [10], [38];

6) fluid-dedicated dense motion estimator based on a turbu-
lence subgrid model in the data term (TUR technique) [8].

The pyramidal LK implementation only differs from the mul-
tiscale estimator with zero uncertainty (OFCE) in the setting of
the decreasing scale parameter to A = 0.5. For techniques is-
sued from our local framework (OFCE, ISO, and ANISO), we
have added the run-time experiments. The estimation was per-
formed using MATLAB on a 4-GB random access memory per-
sonal computer of 2.6 GHz. As for running times, it turns out, as
expected, that the anisotropic version is longer. This is due to the
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(b)

)

@

Fig. 3. Results on the DNS sequence. (Top) (a) Image of the sequence. (b) Estimated flow. (c) Real flow. (d) Difference flow represented with the coding color in
(i). (Bottom) (e) Coding color for vector flow representation. (f)—(h) Vector representation of the estimated motion field, the ground truth, and the difference field,

respectively (X 25).

local convolutions (with various standard deviations) required
by the technique that cannot be as efficiently implemented as an
isotropic convolution with a constant standard deviation. How-
ever, it is very important to outline that this technique is local,
and therefore, at each iteration, all local estimations (step 2d of
the algorithm) can be parallelized.

In Fig. 3, we present an image of the sequence, the estimated
flow with the proposed method (anisotropic version), and the
error flow field. We have also plotted in Fig. 5 the velocity
spectra of the different techniques and compared them with the
ground truth. These spectra are represented in log—log coordi-
nates [see Fig. 5(a)] and a standard-log coordinate system [see
Fig. 5(b)] in order to highlight the accuracy of small and large
scales, respectively.

In Table I, one can immediately observe that, compared with
the other local approaches, our method provides very good
results since the global accuracy is highly superior than the
LK technique and the commercial software (COM technique).
Compared with dense techniques (HS, DC1, and DC2), our
numerical results are of the same order of magnitude, which is
a very relevant point. They are competitive with some dense
estimation techniques dedicated to fluid flow analysis (DC1 and
DC2) [10], [38]. The comparison between the results OFCE,
ISO, and ANI is very interesting since it highlights the benefit
of the stochastic formulation of the image luminance. These
three results have been estimated with the same incremental
estimation framework of Section IV but using an observation
model based on the usual OFCE [(1), OFCE technique], an
isotropic uncertainty [(14), ISO technique], and an anisotropic
uncertainty [(15), ANISO technique]. From the corresponding
quantitative errors, it is obvious that the uncertainty modeling
greatly improves the results, particularly in the anisotropic
approach, but with a higher computational cost.

Angular error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of .

Fig. 4. Influence of decreasing parameter A on the multiresolution process.
Results of the angular error obtained for different values of A using the ANI
algorithm on the DNS sequence.

In order to evaluate the influence of decreasing parameter A
on the multiresolution process (step 3 of the incremental algo-
rithm), we have plotted in Fig. 4 the angular error obtained on
this pair of images with the ANI algorithm depending on sev-
eral values of A € [0.1,0.9]. As one can observe, the minimum
is reached for A =~ 0.3 and not around A = 0.5, which corre-
sponds to the usual pyramidal framework. The same observa-
tions hold for other kinds of images.

Now, if one observes the spectra of the velocity shown in
Fig. 5, we see that the small scales (right part of the graph) are
much better recovered by the proposed estimators than by the
dense estimators. They are generally difficult to estimate and
often smoothed out with the spatial regularizers introduced in
the dense techniques. Even if the LK technique seems to ex-
hibit better results on small scales, when observing Fig. 5(b),
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Fig. 5. Spectra of the velocity compared with the ground truth and for several methods. (a) Log—log representation (highlights small scales on the right part).
(b) Nonlog-log representation (highlights large scales on the left part). Red: ground truth. Green: our approach (anisotropic version). Blue: LK [20]. Purple: Horn
and Schunck [15]. Cyan: Div—Curl smoothing [10]. Black: Div—Curl in mimetic discretization [38].

—a

(a): the first image (b): ground truth color Coding

\ .

(c): difference (ANISO - ground truth) (d): our motion field

(e): difference (OFCE-ground truth) (f): difference (ANISO-OFCE)

Fig. 6. Dimetrodon sequence. (a) Image of the sequence. (b) Ground truth. (c) Difference between the estimated velocity field and the ground truth. (d) Estimated
motion field with our approach in the anisotropic version (ANISO). (e) Difference (OFCE—ground truth). (f) Difference (ANISO-OFCE).

it is obvious to note that large scales are badly estimated with  Table I). As for the large scales, the results are comparable with
this approach, and this yields very poor overall accuracy (see the best dense dedicated techniques. Hence, we believe that our
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TABLE II
QUANTITATIVE RESULTS, TIME COMPUTATION, AND COMPARISONS OF THE DIMETRODON, YOSEMITE, AND VENUS SEQUENCES

Results on the Dimetrodon sequence (584 X 388 pixels)

Method OFCE (124s)  1SO (208s)  ANISO (271s) || Bruhn et al.  Black, Anandan  Pyramid LK  Media Player'™  Zitnick et al
Ang. error 7.95° 3.95¢ 2.85° 10.99° 9.26° 10.27¢ 15.82¢ 30.10°
Results on the Venus sequence (420 X 380 pixels)
Method OFCE (93s) ISO (156s)  ANISO (197s) Bruhn et al.  Black, Anandan  Pyramid LK  Media PlayerTM Zitnick et al
Ang. error 12.02° 10.23° 8.42° 8.73° 7.64° 14.61° 15.48° 11.42°
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Fig. 7. Uncertainty areas for the Dimetrodon sequence. (a) Snapshot of some anisotropic uncertainty areas highlighted by the ANISO technique, in which one
can observe that the optical flow is computed depending on the photometric level lines of the luminance. (b) Extracted uncertainty map o,,. (c) Evolution of the

error and percentage of correct motion fields when one takes into account only velocity fields with smaller values of

estimator constitutes an appealing alternative to usual local PIV
methods. Let us now describe the accuracy of the observation
term on some images of the Middleburry database.

B. Middleburry Database

The Middleburry database has been recently proposed in [2]
to compare recent and state-of-the-art optical flow methods. It
contains several sequences with various challenging situations
such as hidden textures, complex scenes, nonrigid motions,
and high motion discontinuities. The aims of this validation are
given here.

1) To highlight the benefit of the proposed brightness consis-
tency model under a location uncertainty. To that end, we
compare the results obtained with the simple motion esti-
mator presented in the previous section using three obser-
vation terms, namely, the proposed ones in their isotropic
and anisotropic versions and the usual OFCE (i.e., without
uncertainty).

2 2
,/Jn—i—o',,_.

2) To promote the interest of the associated maps of uncertain-
ties by demonstrating that they are directly related to the
quality of the estimated motion field. To that end, we ana-
lyze the evolution of the error on the motion field when this
latter is computed on points corresponding to low values of
uncertainties.

On this database, we have first detailed the algorithm on a pair
of images where the ground truth is available (since we need to
compare the results on sparse motion fields). In order to help the
reader in understanding the approach, in a second step, we have
applied the technique on the whole database (even if the aim is
to propose an alternative observation model only).

Evaluation of data with the ground truth: We have tested
our approaches on the “Dimetrodon” and “Venus” sequences.
For these sequences, the ground truth and a comparison with
other state-of-the-art approaches are available. One image of
each sequence is depicted in Figs. 6 and 8(a) with the asso-
ciated ground truth in Figs. 6 and 8(b). The first sequence
exhibits large homogeneous motions with variously located
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(b): ground truth color coding

ol

(d): our motion field

(f): difference (ANISO-OFCE)

Fig. 8. Venus sequence. (a) Image of the sequence. (b) Ground truth. (c) Difference between the estimated velocity field and the ground truth. (d) Estimated motion
field with our approach in the anisotropic version (ANISO). (e) Difference (OFCE—ground truth). (f) Difference (ANISO-OFCE).

discontinuities (around the dinosaur), whereas the discontinu-
ities of the Venus sequence are more spatially homogeneous.

The quantitative results and associated run times are pre-
sented in Table II. When comparing the first three columns that
use exactly the same technique but based on the usual OFCE
[see (1)] and our luminance model with isotropic [ISO, see
(14)] and anisotropic [ANISO, see (15)] uncertainties, it imme-
diately points out that the proposed models enable enhancing
significantly the quality of the results. This fair comparison
of the three observation models onto the same estimator pro-
motes the use of a stochastic formulation under anisotropic
uncertainties. In fact, this latter version is a softer constraint
than that of the OFCE, which, as previously shown, implicitly
assumes a perfect measurement without any incertitudes. This
better efficiency results in a larger time computation. However,
as already mentioned, such local estimator can efficiently be
implemented using parallel software.

The estimated motion fields under the anisotropic luminance
formulation are represented in Figs. 6(d) and 8(d) and can be
compared with the ground truth in Figs. 6(c) and 8(c).

The benefit of this new formulation of the luminance (ANISO
version) compared with the usual brightness consistency as-
sumption (OFCE version) is quantitatively demonstrated in
Table II. In order to visually interpret these improvements, we
have depicted in Figs. 6(e) and (f) and 8(e) and (f) the difference
in motion fields between the OFCE estimator and the ground
truth [see Figs. 6-8(e)] and the difference between ANISO and
OFCE estimators [see Figs. 6-8(f)]. By comparing Figs. 6-8(c)
and Figs. 6-8(e), one can observe that the errors diffuse on
larger areas using the OFCE than with our anisotropic version
of the OFCE. This is more remarkable in Fig. 8(e), where it
is obvious that the error areas in red (bottom left part of the
image), blue (bottom middle), and yellow (middle) are much
larger with the OFCE. The differences (ANISO-OFCE) in
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Fig. 9. Uncertainty areas for the Venus sequence. (a) Snapshot of some anisotropic uncertainty areas highlighted by the ANISO technique, in which one can
observe that the optical flow is computed depending on the photometric level lines of the luminance. (b) Extracted uncertainty map o,,. (c) Evolution of the error

and percentage of correct motion fields when one takes into account only velocity fields with smaller values of

Figs. 6-8(f) highlight the areas where the proposed estimator
significantly differs from the OFCE. As expected, the benefit
appears in areas where the luminance exhibits high disconti-
nuities, whereas homogeneous areas generate more or less the
same behavior of both estimators.

Let us also remember that the motion estimation technique
that has been developed for comparing the models of luminance
is quite simple (based on the LK estimator). Therefore, as ex-
pected, the errors are mainly localized on discontinuities. Since
the Venus sequence contains more discontinuity areas than the
Dimetrodon one, our results are less performing on this pair of
images. However it is very informative to observe that, despite
the simplicity of this technique, our results in Table II are very
competitive and sometimes outperform advanced dense tech-
niques with a specific process for motion discontinuity recovery.
Apart from regions exhibiting motion discontinuities and where
the error can be important, the difference fields of Figs. 6(c) and
8(c) reveal very good results (white areas) in the other locations.
This suggests that the luminance models introduced in this paper
is useful in allowing a global improvement of accuracy.

In addition to the estimated motion fields, such a technique
is able to extract the associated uncertainty areas. For each lo-
cation of the image, these areas represent local neighboring,
where the brightness consistency assumption is likely to hold
and on which the motion is locally estimated. We have plotted
in Figs. 7(a) and 9(a), for a given location of the image, such
anisotropic areas, which, in practice, were computed with re-
lations (19) and (23). As one can observe, they correspond to
the main structures of the image (mainly anisotropic along the
contour and more isotropic in homogeneous regions) and thus
provide the user valuable information. Therefore, in a step for-
ward, these areas can be taken into account in a more advanced

2 2
Vo +o3.

motion estimation technique in order to better preserve the dis-
continuities.

The norms of global uncertainty 072] + 02 maps obtained at
the end of the process with the best estimator (the anisotropic
one) are plotted in Figs. 7(b) and 9(b). As expected, homoge-
neous areas where the aperture problem holds correspond to
high values of ¢,, whereas small values are linked to photo-
metric contours. Such output of our method is very promising
since it highlights the main structures of the images and gives
an indicator of the quality of the estimation. To justify this last
point, we have depicted in Figs. 7(c) and 9(c) the reconstructed
errors when we take into account for the evaluation only the
points where the incertitude is below a given value (blue lines)
and the corresponding percentage of points used for the com-
putation (red lines). In the two cases, the error grows with the
uncertainty, which indicates that it is a reliable indicator of the
quality of the measurements.

We then strongly believe that the stochastic models presented
can be exploited in the future to design dense estimators relying
on the proposed brightness consistency model.

Let us now turn to some experiments on the complete Mid-
dleburry database.

Evaluation on the complete database: In a second step, we
have applied the proposed local estimator in its anisotropic ver-
sion (since it performs better on images with the ground truth)
on the evaluation data set. A snapshot of numerical results is
depicted in Fig. 10. Our method is named “SLK” for stochastic
LK. One can observe that the presented technique is the best
in the category of “local estimators” since it outperforms the
pyramid LK and the FOLKI estimator, this latter being based
on a local window registration [17]. In addition, it is promising
to observe that it is more efficient than some dense techniques,
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Average

Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
angle (Hidden texture) (Hidden texture) (Hidden texture) (Hidden textura) (Synthetic) (Synthetic) (Synthetic) (Sterea)
error avg GT im0 im1 GT im0 imi GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT im0 imt GT im0 im1

rank| all disc untext| all disc untext| all disc untext| all disc untext| all disc untext| all disc untext| all disc untext| all disc untext
SLK [50] 46.0/11.6 47 26.0 50 14.6 4|1 _é 25.0 49 17.5 47| 17.8 47 30.1 48 18.1 47| 25.4 51 33.6 49 28.0 51|5.25 48 5.90 46 7.03 49 M49274w106m9 2.89 24 4.47 31 2.94 31| 14.9 49 20.7 49 18.8 49
Adaptive flow [47] 46.8|13.248 20845 14.047|17.14822.044 17.9 48/ 18.1 48 27.1 44 22.8 51| 11.8 43 31.1 45 10.5 43(6.35 50 7.13 50 6.25 48| 9.87 48 21.8 44 9.44 47| 12.6 51 11.4 51 20.0 51|7.75 44 13.6 41 7.73 43|
FOLKI [16] 4851 05«52564911945209%26250251wﬁ45311501654:5_47326|71604‘616496534990750&502975! 13.0 50| 4.67 47 5.83 47 9.41 49| 18.2 50 22.8 50 25.1 50,
Pyramid LK [2] 49.9/13.9 50 20.9 46 21.4 51|24.1 51 23.1 45 30.2 51| 20.9 51 29.5 47 21.9 50| 22.2 50 34.6 50 25.0 50| 18.7 51 23.1 51 20.2 51|21.2 51 24.5 49 21.0 51| 6.41 50 7.02 49 10.8 50| 25.6 51 31.5 51 34,5 51

Fig. 10. Results on the Middleburry database quantitative values of the evaluation data set. One can observe that our method (SLK) is better than other local

estimators (pyramid LK and FOLKI).

such as the one named “Adaptive flow” with adaptive smooth-
ness priors.

Of course, its efficiency is poorer than sophisticated optical
flow approaches equipped with advanced smoothing terms since
only a coarse estimation corresponding to uncertainty level o, ;|
is available (without any smoothing). Therefore, all discontinu-
ities are completely smoothed out. Nevertheless, these experi-
ments prove that the introduction of uncertainty models in the
data term enhances the quality of the estimation since compa-
rable local estimators based on the OFCE are less competitive.
To enforce the relevance of the observation model, we should
note that, on sequences where the flow possesses softer discon-
tinuities such as Yosemite or Dimetrodon, the quality grows and
outperforms several dense methods. All results can be seen in
the Middleburry web site.2

VI. CONCLUSION

In this paper, an observation model for optical flow estimation
has been introduced. The new operator is based on stochastic
modeling of the brightness consistency uncertainty. This data
model constitutes a natural extension of the usual brightness
consistency assumption. Isotropic and anisotropic uncertainty
models have been presented. From this new data term, we have
designed a simple local motion estimator where the multireso-
lution is also interpreted in terms of a spatial uncertainty.

The performances of this local estimator have been validated
on synthetic fluid flows issued from DNSs and on the Middle-
burry synthetic database. In the first case, the results have ex-
hibited significant performances, particularly in the recovery of
small scales that are generally smoothed out by spatial regular-
izers of dense approaches. As for the Middleburry database, the
simple local implementation of the presented data term outper-
forms local approaches. We therefore believe that this stochastic
modeling is a very promising alternative to the usual determin-
istic OFCE for all optical flow methods.

APPENDIX

Conditional expectation given X;_; of any function ¥ (X, t)
of a stochastic process defined through It6 diffusion (3) and dis-
cretized through an Euler scheme X; = X; 1 + v(X;_1)dt +
21/2(Bt+1 — B;) may be written as

E(\P(Xt,t)|Xt_1) = /\P(Xt,t)p(Xt|Xt_1)dXt (28)
R

2http://vision.middlebury.edu/flow/eval/results/results-e 1.php

As process X; is known up to Brownian motion ¥dB;, proba-
bility p(X|X;—1) is a multidimensional Gaussian of variance
¥V/dt (dt = 1 here), and we get

B X)X i) = oy / (X, 1)

. exp (_(Xt_1+v_xt)2—1
(X +v—Xt)) dX,. (29)

By a change of variable Y; = X;_1 +v — X, this expectation
can be written as

E(U(X,, )X 1)= ! /\D(Xt,ﬁv—yt,t)

V2rdet(2)1/2 J

. exp (—YS’lYt) dY,

=U(X,_1 +v,t) « N(0,5). (30)
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