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Abstract
We investigate the combined use of a kinect depth sensor and of a stochastic
data assimilation (DA) method to recover free-surface flows. More specifi-
cally, we use a weighted ensemble Kalman filter method to reconstruct the
complete state of free-surface flows from a sequence of depth images only.
This particle filter accounts for model and observations errors. This DA
scheme is enhanced with the use of two observations instead of one classi-
cally. We evaluate the developed approach on two numerical test cases: a
collapse of a water column as a toy-example and a flow in an suddenly
expanding flume as a more realistic flow. The robustness of the method to
depth data errors and also to initial and inflow conditions is considered. We
illustrate the interest of using two observations instead of one observation into
the correction step, especially for unknown inflow boundary conditions. Then,
the performance of the Kinect sensor in capturing the temporal sequences of
depth observations is investigated. Finally, the efficiency of the algorithm is
qualified for a wave in a real rectangular flat bottomed tank. It is shown that
for basic initial conditions, the particle filter rapidly and remarkably recon-
structs the velocity and height of the free surface flow based on noisy mea-
surements of the elevation alone.

Keywords: data-assimilation, free-surface flow, particle filter, ensemble
Kalman filter, depth sensor, shallow-water equations
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1. Introduction

The circulation of water in an open channel (or free-surface flow) is a key variable in many
problems involved in hydrology. Most often, it is not possible to observe the complete free-
surface flow (i.e. time and space dependent velocity and elevation) but only temporal
sequences of sparse measurements coming from e.g. drifters, altimeters or satellites. Although
insufficient in complex situations, these observations can be used as the starting ingredients to
obtain a more complete characterization of the flow under study. A common way to proceed
consists in coupling the observations with the conservation laws of the flow using a data-
assimilation (DA) method. In geophysics, DA has a long history of developments and
applications. In fluid dynamics, DA was first used to provide low order representations of the
flow (Cuzol et al 2007, D’Adamo et al 2007). Then, for the first time, using variational
approach and particle filter, turbulent flow image sequences were coupled with direct
numerical simulations (Papadakis and Mémin 2008) and with vortex particle simulations
(Cuzol and Mémin 2009), respectively. The reader can refer to Heitz et al (2010) for a
synopsis of these attempts. More recently, DA has been carried out either with sequential
approaches (Colburn et al 2011, Suzuki 2012), or with variational approaches (Gronskis
et al 2013, Foures et al 2014, Mons et al 2014), or even through an interesting combination of
both schemes (Yang et al 2015).

1.1. DA using noise-free dynamic model

In the context of free-surface flows, many methods propose to tackle the DA problem by
considering that we know the dynamic model describing the evolution of the flow under study
up to some parameters such as the bed roughness, the inflow velocity, etc. The goal of the DA
method is then to estimate these unknown parameters of the model, fitting the observations as
best as possible. In addition, to provide an estimate of the free-surface flow, such an approach
is able to handle more specific applications such as: the estimation of equivalent topography
(bed geometry and roughness) to fit the parameters of a given dynamic model to a particular
river then allowing the performance of suitable numerical simulations (Roux and Dar-
tus 2006); the forecasting of a given situation by estimating the current flow and the para-
meters of the model. In the literature, it has been shown many times that such methods
successfully perform on synthetic and sometimes specific real application cases (e.g. Hos-
tache et al 2010, Honnorat et al 2010). As for now, most of these works are focused on the
estimation of the initial condition of the flow (Lai and Monnier 2009, Tinka et al 2009, Titaud
et al 2010), the time dependent flow at the open boundaries (Bélanger and Vincent 2005,
Castaings et al 2006, Honnorat et al 2009, Lai and Monnier 2009, Strub et al 2009), the bed
roughness coefficients (Ding et al 2004) or the equivalent topography, i.e. the geometry plus,
optionally, the roughness coefficient (Castaings et al 2006, Roux and Dartus 2006, Honnorat
et al 2009), mainly from a set of sparse trajectories, sparse elevations or a combination of
them. The associated dynamic models can consist of simple 1D/2D shallow water optionally
coupled together (Monnier and Gejadze 2007) or of more sophisticated models such as the
regular ocean modeling system model (Powell et al 2008) or the Mike11-Mike22 flooding
model (Madsen et al 2003, Hartnack et al 2005). The conceptual bottleneck of DA
approaches using the noise-free dynamic model is that the behavior of the fluid under study is
assumed to be completely explained by tuning the parameters of the model (this is the so-
called strong-constraint paradigm of the 4D-Var formulation). However, in practical situa-
tions the complete list of parameters involved can be huge: (time-dependent) wind stress,
(time-dependent) topology, bed roughness, (time-dependent) boundary conditions, ... and for
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any situation involving parameters not dealt by the DA method, the estimation is likely to fail.
This in particular explains why such methods have not been exploited in the purpose of fully
characterising the flow under study, with the notable exception of Strub et al (2009).

1.2. DA using stochastic dynamic model

An alternative, and to our opinion a more appropriate, track consists in considering that we
have only an estimate of the true dynamic model describing the evolution of the flow under
study (in the context 4D-Var technique, this is the so-called weak-constraint paradigm). To
model this view, one considers that the actual state of the system at each time t results from
the propagation of the state at time -t 1 through the estimated (known) dynamic plus a
stochastic term. By using such a modeling, one is tempted to consider the problem of fully
estimating the flow under study (instead of a set of parameters of the dynamic model). Some
authors have followed this track and most of them use ensemble-based methods (Verlaan and
Heemink 1996, Wolf et al 2000, Madsen et al 2003, Hartnack et al 2005, Salman et al 2006)
to solve the problem.

Among them, some authors considered the assimilation of a small set of Lagrangian
observations, given for example by drifters (Salman et al 2006, Strub et al 2009). We think
that the application of such observations, limited to particular applications such as the
acquisition of larges set trajectories, can be in practice a complicated task. The other authors
proposed to use water level measurements (Verlaan and Heemink 1996, Wolf et al 2000,
Madsen et al 2003, Hartnack et al 2005). In these works, the authors consider the assimilation
of a very few measurements and are interested on the reliability of the observed components
of the flow (velocity or elevation) at some critical points and do not consider the opportunity
to characterize the full flow understudy. Two main reasons can explain this situation. In the
above mentioned articles and in many hydrological applications, observations consist of
sparse local measure of velocity, flow or elevation from which it seems difficult to estimate a
reliable complete characterization of the flow all over the space. Furthermore, the use of dense
observations necessarily add a significant computational cost and memory usage into the DA
procedure. Thanks to the advent of depth-sensors and of Monte Carlo methods for high-
dimensional problems, one can reconsider this question.

In this work, we propose a complete system to characterize free-surface shallow flows.
This system is composed of a very affordable commercial depth camera and of the particle
filter DA method proposed by Papadakis et al (2010), dealing with stochastic dynamic model
and involved in this study to account for the complexity of real free-surface flows. In
section 2, we present the stochastic DA method reconstructing the spatiotemporal geometry
and motion fields of free-surface shallow flows from sequences of depth images, only. We
propose an enhancement of the particle filter for unknown inflow boundaries by using two
observations instead of one. In section 4.1, we discuss the ability of the Kinect depth sensor
having the strong advantages of being cheap and easy to use. Then, in section 3 and in
section 4, we evaluate the potential of our system by showing its ability to estimate free-
surface shallow flows spatiotemporal geometry and velocity fields from synthetic and real
data, respectively. Finally, we conclude and give some perspectives in section 5.

2. The particle filter to assimilate depth images into a shallow flow model

The problem of estimating the consecutive states ¼x t1 of a physical system from a sequence
of partial observations ¼y t1 is ubiquitous in geosciences. A common approach consists in
stating it as a filtering problem i.e. characterizing the probability distributions associated to
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the state space of the physical system given the past observations and a stochastic dynamic
model. More specifically, one states an observation model and a dynamic model respectively
defining the densities p x. tYt

( ) and ¼ -p x x. , tX 0 1t
( ) that are then combined via Bayes’ rule

to define the posterior probability ¼¼p y y. , .tX X, 0t0
( ) This last distribution is called the

filtering distribution and generally cannot be given in a computable closed-form solution but
can be estimated using Monte Carlo methods.

2.1. Stating the filtering distribution

The overall model is graphically represented in figure 1 and presented in detail in the three
next subsections.

2.1.1. The dynamic model. The shallow-water model (often referred to as Saint-Venant
model) is practically suited to handle many hydrological situations such as tides, storm
surges, river and coastal flows, lake flows, tsunamis and more generally is theoretically
supported by the linear wave theory (or airy wave theory) when the ratio water depth under
wave length is smaller than ´ -5 10 2 (Vreugdenhil 1995). Let briefly summarize it. We
consider a liquid in a gravitational field in an open channel (or free surface) contained in a
rectangular cuboid of length L. The free surface level is supposed to be a time and space
differentiable function h x y t, , .( ) The bed topology is flat as sketched in figure 2. In addition,
we assume that the fluid is only subject to gravity, viscous stress and that the liquid is
Newtonian, incompressible and of constant viscosity ν.

Figure 1. Schematic view of the modeling. Each state of the system consists of the
elevation and the velocity components for the given time Dk t. The evolution of the
system is handled by a function f̃ which is unknown (we simply know a simplified
version f). An observation yt is generated from the states each k time step of the
dynamic. The unknown quantities to estimate (i.e. the states xt) consist in the first row
of this scheme while the known variables consist in the second row.

Figure 2. Free surface flow configuration.
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The shallow water approximation consists in considering that  = h L 1max (calling
hmax the maximal water level) and that the dimensionless parameters follow the asymptotical
dominance as   0:  =Re O ,( )  =Re O1 1( ) ( ) and =Fr O 1 ,2 ( ) with

n=Re u hmax max the Reynolds number and =Fr u ghmax max the Froude number. Then,
performing a dimensional analysis of the Navier–Stokes equations for an incompressible flow
according to these dominances, integrating the velocity components u and v along the water
depth h0, ,[ ] considering that the pressure is hydrostatic and empirically replacing the two
bottom stress component n ¶ ¶u z x y, , 0( ) and n ¶ ¶v z x y, , 0( ) by gn h u u v,2 1 3( ) ( ) and
gn h v u v,2 1 3( ) ( ) (from Groves and Groen formula and Manning formula, n being the
Manning bed roughness factor, u and v being described in a few lines), the shallow water
equations read

¶
¶

+
¶
¶

+
¶
¶
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h
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where ò=u u x y z z, , d
h x y t

0

, ,
( )

( )
and ò=v v x y z z, , d

h x y t

0

, ,
( )

( )
are the depth integrated

horizontal velocities.
On that basis, we consider that the dynamic of the free surface flow under study is

completely described at time t by the state variable = u x y t v x y t h x y tx , , , , , , , , ,t [ ( ) ( ) ( )]
satisfying the discrete time integration of the shallow water system dynamics f:

= -Dfx x . 2t t t( ) ( )

As previously mentioned, this numerical model is based on physical assumptions and on
numerical truncation errors. In other terms, it is an attempt to produce only an approximation
of the actual dynamic of the flow. We model this aspect by considering the evolution of the
state as a stochastic process (in the following we use capital letters to denote random vectors
and caligraphic letters to denote matrices):

= +-DfX X W , 3t t t t
f( ) ( )

with ~X x ,0 init 0( ) and ~W 0,t
f

t( ) (that denotes that the random variable Wt
f has

a normal distribution with mean 0 and covariance matrix t). In practice, we model the
spatial components of Wt

f as a stationary random field whose covariance coefficients evolve
as a function of -r rexp h

2 2( ) where r is the distance between the sites of the field and rh is a
bandwith parameter (Evensen 1994). The correlation between the different times and between
the three components h, u and v of Wt

f is chosen as null. We call (3) the dynamic model and
we note -Dp x. t tXt

( ) the subsequent conditional probability density function that we call
prior. We consider that the discrete-time variables ¼D DX X X X, , ,t t T0 2 are connected in a
first order Markov chain (i.e. ¼ =-D - D -Dp px x x x x x, ,t t t t t t t t2 0( ) ( )) with an initial
distribution p . .X0

( ) Each of these variables Xt is latent (or unobserved) and fully
characterizes the state of the system under study at time t. We call nx the size of each variable
X .t
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2.1.2. The observation model. We consider that we acquire an observation yt of the
geometry of the free surface =z h x y t, ,( ) using a perspective range camera (often referred to
as 2.5D camera). We call g the function such that = =g g h ty x .,., .t t( ) ( ( )) There is no
simple formula giving the value of the observation yt for a given elevation function h. A first
solution consists of using a ray casting procedure to simulate the operator g. However, such a
solution can be very time consuming considering the number of observations that we will
have to perform to solve the filtering problem. To simulate the range camera operator, the
observation yt can be back-projected into the state grid xt using an appropriate matrix 
converting camera frame coordinates to object frame coordinates. This way g xt( ) simply
consists in subsampling the elevation component of x .t We tested both methods and we do not
noticed any significant difference. For that reason, we used the back-projection approach in
order to speed-up the computations.

In the following, the values yt are considered to be rearranged in a vector form (to
facilitate the algebraic formulations). As the acquisition process is subject to noise, we model
the observation of the state xt as a stochastic process given by

= +gY X W , 4t t t
g( ) ( )

where ~W 0, .t
g

t( ) In practice, we consider that there is no spatial correlation, thust is
a diagonal matrix. We call (4) the observation model. We consider the set of discrete-time
variables ¼ ¼Y Y Y, , , ,t T1 conditionally independent provided that ¼ ¼X X X, ,t T0 are
known. We note p x. tYt

( ) the subsequent conditional probability density function. We call ny
the size of each variable Y .t

2.1.3. The filtering model. The overall model formally reads













~

= ~

= ~
-D -D -D

⎧
⎨⎪

⎩⎪
f

g

X x

X X x x

Y X x x

,

,

, .

5t t t t t t t t

t t t t t

0 init 0( )
( )
( )

∣ ( )
∣ ( )

( )

Then, given an initial guess of the system at time t = 0 (x ,init0) and the set of
observations ¼y ,T1, , we want to estimate the filtering laws ¼¼

p y. tX 1t0
( ) (for Ît T0,[ ]) or

one of their estimators such as the root mean square estimator (RMSE)

ò=¼ ¼ ¼ ¼ ¼pE X x y x xd . 6t t t t t0 0 1 0 0( )( )ˆ ( )

In the present study this estimator provides the elevation ĥ and the depth integrated
horizontal velocities ū̂ and v .¯̂

2.2. Solving the filtering problem: the weighted ensemble Kalman filters (WEnKF)

From a theoretical point of view, the evolution of the conditional density ¼¼
p y. tX 1t0

( ) is
described by the Fokker–Planck (or forward Kolmogorov) equation (Jazwinski 1970).
However, its direct numerical evaluation is intractable in real situations. In this context, the
representation of the conditional PDF as an ensemble or a set of particles and the integration
through time of each of the ensemble elements leads to particularly tractable algorithms. The
sequential importance sampling (SIS) filters (Gordon et al 1993, Doucet et al 2000) and the
ensemble Kalman filters (EnKF) (Evensen 2003), including its numerous variants, are
probably the most used methods. In this work, we followed the recent works of Papadakis
et al (2010) who proposed the WEnKF, a SIS filter relying on an EnKF. It combines the best
of particle filter and EnKF. The algorithm is based on the EnKF updates of samples in order
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to define a proposal distribution for the particle filter that depends on the history of mea-
surement. In the present study we propose to enhance the WEnKF scheme with the use of two
observations yt and yt + 1 instead of one. This provides a better coupling of elevation and
velocity component estimations when considering unknown inflow boundary conditions.

In the following, we simplify the notations with D =t 1 so that e.g. =+ +DX X .t t t1 In
section 2.2.1, we recall the foundation of the SIS filter. In section 2.2.2, we discuss the use of
an ensemble Kalman to build a specific SIS filter. In section 2.2.3, we propose to modify the
stochastic process underlying the EnKF procedure so that it uses two observations yt and yt +

1 instead of one. In section 2.2.4, we discuss a method to build efficiently the Kalman gain,
which is the main ingredient of the EnKF.

2.2.1. Bayesian filtering of a non-linear process using SIS. The SIS method stands on the
point that we can compute any estimator of ¼¼

p y. tX 1t0
( ) using sequences of samples xt

i( )
iteratively drawn from a proposal density function q (optionally parametrized in ¼y T1 ). We
denote this general proposal as ¼ - ¼q x y. ;t TX 0, , 1 1t

Q ( ) (calling XQ
t the associated random

vector). In particular, we can write the RMSE associated to the filtering distribution as

å
å

=¼
¥

¼ ¼

¼

w

w
E X

x x

x
lim , 7t

N

N i t t
i

t
i

N i t t
i0

1
0 0

1
0

( )
( )( )ˆ ( )

where each sample xk
i ( Î ¼k t1, , ,[ ] Î ¼i N1, ,[ ]) is generated from the distribution of

density ¼ - ¼q x y. ;k
i

TX 0, , 1 1k
Q ( ) and where the weights wt are built recursively as

=¼ - ¼ -
-

- ¼

w w
p p

q
x x

y x x x

x x y;
, 8t t

i
t t

i t t
i

t
i

t
i

t
i

t
i

T
0 1 0 1

1

0 .. 1 1

( ) ( ) ( ) ( )
( ) ( )

with for t = 0, =w Nx 1i
0 0( ) and each sample xi

0 is drawn according to the distribution of
density p . .X0

( )
The combination of the equations (7) and (8) is the keystone of any SIS filters and leads

to the following algorithm:

Algo SIS: basic SIS algorithm.

init:
for =i N1:

=wi
N1
1

draw xi
0 with density pX0

for =t T1:
Sampling: for =i N1:
draw xt

i with density ¼ - ¼q x y. ;t
i

TX 0, , 1 1t
Q ( )

Weighting: for =i N1:
= - - - ¼w w p p qy x x x x x y;t

i
t
i

t t
i

t
i

t
i

t
i

t
i

T1 1 0: 1 1( ( ) ( )) ( )
Normalising: for =i N1:

å=w w wt
i

t
i

j t
jˆ

å=¼ ¼E wX x .t i t
i

t
i

0 0
ˆ [ ] ˆ

2.2.2. The proposal distribution q. In practice, any proposal - ¼ ¼q x y. ;t TX 1, ,0 1t
Q ( ) can be

used and the different instantiations of the SIS filter mainly differ by this choice. There are
two main characteristics to consider when choosing the proposal - ¼ ¼q x y. ; .t TX 1, ,0 1t

Q ( )
Firstly, it must be possible to sample it in a moderate time (sampling q is needed for the SIS
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algorithm). Secondly, it has to be as close as possible to the target pdf ¼p y. tX 1t
( ) to provide

a reliable estimation of the target estimator (for a given number of particle N). A classical
choice for q consists of =- ¼ ¼ -q px y x. ; . ,t T tX X1, ,0 1 1

t
Q

t
( ) ( ) resulting in the so-called

bootstrap algorithm (Gordon et al 1993). Another classical choice consists of
=- ¼ ¼ -q px y x y. ; . , ,t T t tX X1, ,0 1 1

t
Q

t
( ) ( ) resulting in the so-called optimal SIS algorithm

(Doucet et al 2000). While theoretically supported, these instances of the SIS algorithm are
often considered as practically less efficient than the EnKF. However it seems apropriate to
mention that unlike the SIS algorithm, the EnKF does not converge, as the number of
ensemble members tends to infinity, to the target estimator. In this work, we combine the
benefits of the two algorithms by using an EnKF to build the proposal distributions q of a SIS
filter.

Interestingly, Le Gland et al (2010) showed that the EnKF can be seen as a Monte Carlo
simulation of the following stochastic process:

= + + - gX X y W X ,t
Q

t
Q

t t t
g

t
Qf f( )( )

with = +-fX X Wt
Q

t
Q

t
f

1

f

( ) (f standing for forecast) and wheret the Kalman gain associated

to samples Xt
Q f

reads

 = +
-

⎜ ⎟
⎛
⎝

⎞
⎠g g gX X X Xcov , cov , .t t

Q
t
Q

t t
Q

t
Q

1
f f f f( ) ( )( ) ( ) ( )

In practice, the Kalman gain t is estimated from the set of samples used in the
simulation process. As a consequence the simulated random variables XQ

t are not independent
and identically distributed. However, it has been shown by Le Gland et al (2010) that when N
tends to infinity,t tends to its deterministic limits and the simulated random variables tend
to be independent and identically distributed according to the normal distribution:

T        

=

~ + - + + +

- - ¼

- -f g f

X X x y

x y x I I

;

, ,

9

t
Q

t
Q

t T

t t t t t t t t t t
T

1 1 1, ,

1 1( )( )( ) ( ) ( )
∣

( ) ( )
( )

 being the matrix associated to the observation operator g (see section 2.1.2). This finally
permits to define properly a proposal distribution - ¼ ¼q x y. ;t TX 1, ,0 1t

Q ( ) and a procedure (the
EnKF) to sample it (in the limit of large samples). Then, one can easily restate Algo SIS as:

Algo WEnKF: SIS with Kalman proposal.

for =i N1:
draw xi

0 with density pX0

=wi
N0
1

for = ¼t T1
(1) Draw x :t

i

(1.1) Forecast step:
for =i N1:

= +-f wx xt
i

t
i

t
i

1
f

( ) with wt
i generated from  0, t( )

(1.2) Analysis step:
for =i N1:

= + vy yt
i

t t
i with vt

i generated from  0, t( )
build  = ´ + -g g gx x x xcov , cov ,t t

f
t
f

t
f

t
f

t
1i i i i

(( ) ( ( ))) ( (( ( )) ( ( ))) )
for =i N1:
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(Continued.)

= + - gx x y xt
i

t
i

t t
i

t
if f

( ( ))
set =¼ ¼ -x x x,t

i
t

i
t
i

0 0 1[ ]
(2) Weight samples:
for =i N1:

= - - -w w p p qy x x x x x y;t
i

t
i

t t
i

t
i

t
i

t
i

t
i

t1 1 1( ( ) ( )) ( )
(3) Compute estimators:

å å=¼ ¼E w wx xt i t
i

j t
j

t
i

1 1
ˆ [ ] ( )

A resulting challenge consists in performing step (2) of this algorithm: evaluating the
three densities p x. ,tYt

( ) p y. tXt
( ) and -q x y. ; .t tX 1

t
Q ( ) Whereas p x. ,tYt

( ) can be evaluated
very efficiently, the two other terms are more difficult to address. Following previous works
(Hoteit et al 2008, Papadakis et al 2010), we chose to drop these two terms. More
justifications about this choice can be found in (Papadakis et al 2010). Further work is needed
to evaluate the theoretical impact of this choice.

2.2.3. Using two observations for a better coupling of the state variables. To improve the
previously stated algorithm, we slightly modify the proposal distribution q to incorporate two
observations yt and yt+1 instead of one. By doing this, we do not simply consider the
relationship linking the observation of the current state g xt( ) and the state xt itself to compute
the Kalman gain but also introduce the next observation +y .t 1 Our motivation is to provide a
better coupling between the estimation of the elevation and the velocity components of the
state variables by analyzing through the observation yt and yt+1 their combined effects over
the time interval +t t, 1[ ] instead of a simply considering successively each observation
independently from each others. In practice, this yields to the following stochastic process:
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where n2 y is the ´n n2 2y y block diagonal matrix composed of two copies of the matrix.
We expect this process to give more suited samples to approximate the filtering distribution

¼¼
p y. TX 1,T0

( ) and we use it as a generator for the proposal distribution q. The question of
whether this process properly defines a density q is not addressed in this work and is a future
research direction. As observed in the validation section, such a choice quantitatively
improved the estimations.
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2.2.4. Computing the Kalman gain t . To our opinion, the main challenge in the EnKF
procedure consists in computing efficiently reliable Kalman gain +t t, 1 (ort in the original
version). Indeed, this matrix is crucial as it determines how to convert the errors from the
observation grid into the state grid and ultimately how to compute the correction term
associated to xi

t regarding the observation yt and the past uncertainty. We assume the
covariance matrix t associated to the observation noise as known and hence focus our
interest on how to estimate the covariance matrices +g gX X Xcov , ,t

Q
t
Q

t
Q

1

f f ff( )[ ( ) ( )] and

+ +g g g gX X X Xcov , , ,t
Q

t
Q

t
Q

t
Q

1 1

f ff f ff( )[ ( ) ( )] [ ( ) ( )] (or gX Xcov ,t
Q

t
Qf f( )( ) and

g gX Xcov ,t
Q

t
Qf f( )( ) ( ) in the basic version).

In the original EnKF implementation, these covariance matrices are estimated as the
empirical covariance matrices of the samples3. However, the empirical covariance is only a
rough estimate of the true covariance when < <N nx (this is a case of the so-called large
p-small n inference problems). Indeed, the number of degrees of freedom ( +n n 1 2x x( ) ) is
too high to express correctly the covariance matrices using only N samples. However, Xt (and
g Xt( )) represents a space-structured random vectors and we can infer a structure on their
covariance matrix. Adding a structure to or regularizing the covariance matrices will decrease
the number of degrees of freedom of the statistic. Then, the estimated regularised covariance
matrices are likely to better characterize the sample statistic (for a given sample size) and thus
to result in a more appropriate Kalman gain and analysis. In this context, a pragmatic solution
consists of smoothing the covariance matrix and imposing a complete independence between
spatially distant points of the state grid (Houtekamer and Mitchell 2001). Such a localization
increases virtually the size of the ensemble. In this work, we choose to use a strategy similar
to the one proposed by Houtekamer and Mitchell (2001), that consists of performing the
product between the empirical covariance coefficients and a slowly positive definite radial
basis function decreasing with point-to-point distance and canceling at a fixed cut-off distance
h .correl In practice, we use a Buhmann (2003) function. Then all matrices involved in the
analysis step (step 1.2 in Algo SIS-KF) become sparse and the analysis step becomes a sparse
linear algebra problem that can be solved efficiently using the appropriate optimization
algorithms (Golub and van Loan 1996).

3. Numerical validation

In this section, we investigate the performance of the WEnKF method to estimate the
dynamic of a free-surface flow from synthetic sequences of depth data.

The robustness of the proposed method to simulated depth data quality is evaluated for
two flow configurations: a collapse of a water column as a toy-example and a flow in an
suddenly expanding flume as a more realistic flow. Furthermore, we illustrate the interest of
using two observations instead of one observation into the correction step (see section 2.2.3).
We note oneObs and twoObs the two WEnKF algorithms using in the correction step one
observation and two observations, respectively.

The numerical dynamical model used to simulate the two flow configurations involves a
finite volume implementation of the shallow-water system of equations (1a)–(1c) as proposed
by Bradford and Sanders (2002). Time integration is performed with a second-order Runge–
Kutta scheme. A no-slip boundary condition is applied on the walls.

3 This choice leads to the algebrical reformulation exploited by the reduced rank, and the EnTKF formulation.
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The true states ¼x t1˜ are calculated with this numerical model running from an initial
condition x .0˜ Based on that true state we build the synthetic depth data sequences taking every
fourty time step Dt of the numerical model integration. Then, to simulate the depth sensor
image quality, we add a white noise of standard deviation sobs and introduce a percentage of
outliers pout in the depth images. That provides the observations ¼y .t1 Note that for the sake of
simplicity the observations are created with the same spatial resolution as the numerical
simulation grid.

The initial state xinit is obtained by deteriorating the initial true state x .0˜ For that purpose
we add a random noise with a covariance having a large range (as for the noise on the
dynamical model) such that the initial state perturbation parameter

 =
- 
 

x x

x
, 11init

0 init

0

˜
˜

( )

is equal to a given quantity (typically 0.1), where = < > . .,. is the L norm2 ‐ acting on the
whole flow domain. The following states ¼x t1 are estimated by assimilating the observations

¼y t1 given the perturbated initial state x .init

To assess the accuracy of the free-surface flow reconstruction we compare the estimated
flows ¼x t1ˆ to the true ones ¼x t1˜ such as the assimilation errors read

 =
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=
-   

u

h h

h

w w
and , 12u v h,

0 0

ˆ ˜ ˆ ˜
( )¯̂ ¯̂ ˆ

where = =h u v hx w, , ,ˆ ( ˆ ˆ) ( ¯̂ ¯̂ ˆ) and = =h u v hx w, , ,˜ ( ˜ ˜) ( ¯̃ ¯̃ ˜) are the estimated (via assimila-
tion) and true state components, respectively, and where u0 and h0 are a characteristic velocity
and a characteristic length scale, respectively. In addition, we define the free-run errors

 =
-

=
-   

u

h h

h

w w
and , 13u V h,

0 0

˜ ˜
( )¯

where = =h u v hx w, , ,( ) ( ¯ ¯ ) are the free-run state components calculated with the shallow-
water numerical model from the initial condition xinit up to time t. Then, to give an insight of
the gain obtained using the observations driving the model instead of running the model
alone, we compute the ratios between assimilation and free-run errors for the velocity
 u v u v, ,¯̂ ¯̂ ¯ ¯ and for the elevation   .h hˆ

The same set of parameters was used to evaluate our method for both synthetic flow
configurations. The number of particles N was set to 100. The initial standard deviations of
the covariance matrix0 were equal to h0.05 0 and u0.25 0 for the elevation and the velocity
components, respectively. Then the standard deviations oft were set to h0.04 0 and u0.06 0

for the elevation and the velocity components, respectively. The bandwith parameter rh
indicating the spatial decrease of 0 and t covariance coefficients was set to h2 .0 The
covariance matrix t was set diagonal (no spatial dependance on noise) with constant
standard deviation equal to h0.114 0 (this value was estimated for the Kinect depth sensor, see
section 4.1). Finally, h ,correl the cut-off distance of the radial basis function used for the
localization process described in section 2.2.4, was set equal to h0.6 .0

3.1. Collapse of a water column

In this simple case, a small circular column of water placed at the center of a square container
collapses under gravity and generates a wave. The initial elevation h0 of the water column
above the initial container water level ¥h was such that =h d0.5 ,0 0 where the water column
diameter =d 2 cm0 and with =¥h d1.5 .0 The width of the container was equal to
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=L d10 .0 The initial velocity in the container was zero. To non-dimensionalize the results
we define the characteristic time scale =t h g0 0 and the characteristic velocity =u gh .0 0
The collapse of the water column was simulated with the shallow-water numerical model in a
computational domain ´ = ´L L L Lx y discretized on a square grid of

´ = ´n n 200 200x y points and integrated in time with a time step D =t u h 0.006.0 0

Here, we considered the initial state xinit as the ‘perfect’ case described above, i.e. with
flat and static initial water surfaces (top of the water column and around in the container),
whereas the initial true state x ,0˜ considered as the ‘real’ case, was more complex, i.e. with a
large scale random extra component providing non-smooth initial water surfaces with local
non-zero velocities. The observation ¼y t1 were built from snapshots of the true state elevation
component taken every Dt u h40 ,0 0 leading to an observations Strouhal number

= D =St h t u40 4.15.obs 0 0( )
Figure 3 displays the time evolution of the observations, the free-run simulation, the

particle filter estimations and the true at three time steps. The results given by the proposed
WEnKF method showed a good agreement with the true for both the elevation and the
velocities. As expected for a sequential DA scheme, the agreement improved in time. The
free-run states, i.e. the simulation starting from x ,init rapidly diverged from the truth whereas
the DA scheme, starting from an ensemble of simulations around xinit rapidly recovered the
true states over time. It should be noted here that the proposed DA approach reconstructs the
full states of the free-surface flow (i.e. elevations and velocities) based on depth observations
alone. This is quite remarkable, given the limited input information. Following those
encouraging results, obtained for parameters fixed to median values, it was legitimate to
analyse the sensitivity of the method to the data quality and to the initialization. To this end
we investigated varying parameter horizons, ranging from s = d0.015obs 0 to s = d0.12 ,obs 0

from =p 0out to =p 0.35out and from  = 0.025init to  = 0.5.init

Figure 4 represents DA errors as a function of the non-dimensional level of noise s h ,oobs

the rate of outliers pout and the rate of initial perturbation  ,init for twoObs at =t t 9.51.0

Whatever the parameter values, the three estimated state components had the same low error
level, below 2%. The rate of outliers (given realistic ratio below 35%) did not influence the
estimations. On the contrary the errors increased with the level of noise in the observations.
For s hobs 0 larger than 10% and 5% the errors reached a plateau slightly decreasing for the
elevation h and slightly increasing for the two velocity components ū and v,¯ respectively.
Note that this changing slope might be correlated with the noise standard deviations of the
observation and dynamical models (covariance matricest andt) equal to 11% and 6% of
h0, respectively. This asymptotic behavior, also reflected in figure 5(a), indicated the good
robustness of the WEnKF scheme. The slope difference seen between the elevation and the
velocity component errors could be due to the fact that the elevation was the observed
component. Another feature of the observed component was clearly exhibited when plotting
the errors as a function of the initial perturbation level init (see figures 4 and 5(b)): the
elevation component estimations were not sensitive to init whereas the velocity component
estimation errors slightly increased with  .init Note that the noise standard deviation of the
observation model.

As a conclusion of this first simple flow configuration experiment, the proposed particle
filter method exhibited very interesting reconstruction and robustness properties. Further-
more, we indicate that we did not observed any significant differences between the methods
oneObs and twoObs. This result can be explained by the fact that in the present configuration,
the only source of departure from the free-run flow to the true flow came from the unknown
initial state. As a result, one did not need a complex coupling between the model and the
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Figure 3. Comparisons of elevation colormaps in millimeters and of free-surface
motion vector fields, for the water column collapse. From top to bottom: observations
y, free-run states x, assimilated states x,ˆ true states x.˜ From left to right: =t t 3.17,0

=t t 6.340 and =t t 9.51.0 Perturbation parameters on the observations and on the
initial state were set to s =h 0.16,obs 0 =p 0.1out and  = 0.1.init
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observation after the first few time integration because by itself the model was able to explain
the flow. The two schemes (oneObs and twoObs) will be compared further more extensively
for more realistic flow configurations when adding unknown varying inflow conditions and a
stochastic forcing term. In the following we fix data quality and initialization parameters to

=p 0.1,out s = d0.03obs 0 and  = 0.2,init respectively.

3.2. Flow in an suddenly expanding flume

In this case study, we considered the flow in a suddenly expanding flume as described in
figure 6. The flume consisted of a =L 10 cm long, L wide approach flume before a sudden
expansion and a L long, L2 wide expanding flume. The inflow water surface elevation and
velocities were oscillatory in phase with a frequency of 1 Hz and amplitudes of 1 cm and
0.22 m s−1, respectively. The inflow mean elevation and mean velocity were =H 1 cmin and
Uin = 0.22 m s−1, respectively. The corresponding inflow Froude number

= =Fr U g H 0.7in in was lower than unity which indicates that the flow was subcritical,
i.e. behaved like a fluvial motion. A characteristic of this flow lies in the sudden expansion
where the flow separates and generates a two dimensional vortex. In addition we considered
two cases for the oscillatory inflow: one with a uniform inlet velocity profile and another with
a half bell-shape (square-cosinus) inlet velocity profile leading to a more complex free surface
flow dynamic. Both expanding flume flow configurations were simulated with the shallow-
water numerical model in a computational domain ´ = ´L L L L2 2x y discretized on a

Figure 4. Results for the collapse of a water column, for twoObs at =t t 9.51:0 left,
elevation component errors  ;ĥ right, velocity components errors u v,¯̂ ¯̂ as defined in
(12). From top to bottom, errors as a function of: the non-dimensional level of noise
s hoobs with =p 0.1out and  = 0.1;init the rate of outliers pout with s =h 0.1obs 0 and
 = 0.1;init the rate of initial perturbation init with =p 0.1out and s =h 0.1.obs 0
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Figure 5. Error maps for the water column collapse at time =t t 6.34:0 (a), with
increasing additive noise level s Îd 0.01, 0.04, 0.08 ;obs 0 [ ] (b), with increasing
perturbations of the initial condition  Î 0.1, 0.2, 0.3 .init [ ] First rows: elevation errors

- h h in mm .˜ ( ) Second rows: velocity errors - - w w in cm s 1˜ ( ).

Fluid Dyn. Res. 47 (2015) 051404 B Combés et al

15



square grid of ´ = ´n n 200 200x y points and with a time step D =t u L 0.006,0 where
=u g H .0 in

The true inflow states ¼x tin,0˜ were varying periodically in elevation and in velocity. For
the assimilation methods, the variations in time of the inflow conditions were considered as
unknown and in practice were fixed to their mean values Hin andU .in We stress the fact that to
show the ability of the stochastic model (3) to handle unexpected situations, the inflow
components were not considered as an unknown vector parameter of an augmented model
system like in Gronskis et al (2013), but just as state variable inlet values. Moreover we
considered the case, named stochastic forcing, where we add a random large scale extra
component to the state vectors when generating true states ¼x t0˜ before each time integration.
Hence, each true state included the stochastic forcing transported by the dynamical model
during one time stepDt and more. This was done to mimic the complexity of real free surface
flows which cannot be simulated with the deterministic shallow water model (1a)–(1c). In
contrast with DA methods considering ‘perfect’ models, the stochastic DA scheme (5) carried
out in this study better modeled such complex situations. The noisy observations ¼y t1 were
built from the true state elevation component taken every Dt u L40 ,0 thus leading to an
observations Strouhal number = D =St L t u40 4.17.obs 0( )

Results showing the particle filter estimations for an homogeneous inlet velocity profile
are given in figure 7 together with the true states. The free surface elevation and motion were
reconstructed well for all the time steps considered, but were in less agreement near the inlet
area especially when the surface dynamic was more complex due to the stochastic forcing. As
reflected in figure 8 this behaviour was emphasized with more a complex half-bell shape inlet
velocity profile. The errors of the estimations performed in the configuration with stochastic
forcing and uniform inlet velocity profile are displayed in figure 9. In the inlet region the
highest errors reached 20% and 43% for the elevation and for the motion, respectively.
However, the use of two observations (twoObs) instead of only one (oneObs) improved
significantly the agreement for both the elevation and the motion. This demonstrated the
capability of the proposed particle filter scheme to deal with complex free surface flow
configurations, and as it was expected, the use of more observations was necessary to
reconstruct better the flow. Table 1 summarizes the influence of the inlet velocity profile
shape, of the stochastic forcing and of the number of observations considered, on the esti-
mations accuracy. These results also indicate the gain obtained using the observations driving
the model instead of running the model alone. The ratios between assimilation and free-run

Figure 6. Schematic view of the suddenly expanding flume for two inflow
configurations: left, uniform inlet velocity profile; right, half bell-shape inlet velocity
profile.
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Figure 7. Comparisons of elevation colormaps in millimeters and of free-surface
motion vector fields, for the suddenly expanding flume flow with uniform inlet velocity
profile: (a) without stochastic forcing; (b) with stochastic forcing; top row, estimations
using twoObs; bottom row, true states; from left to right, time =t u L 1.19,0

=t u L 1.570 and =t u L 1.98.0
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Figure 8. Comparisons of elevation colormaps in millimeters and of free-surface
motion vector fields, for the suddenly expanding flume flow with half-bell shape inlet
velocity profile: (a) without stochastic forcing; (b) with stochastic forcing; top row,
estimations using twoObs; bottom row, true states; from left to right, time

=t u L 1.19,0 =t u L 1.570 and =t u L 1.98.0
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Figure 9. Error maps for the suddenly expanding flume flow with stochastic forcing:
(a), estimations for oneObs; (b), estimations for twoObs. Left, =t u L 1.19.0 Right,

=t u L 1.98.0 First rows: elevation errors  in  % .h ( )ˆ Second rows: velocity errors
 in  % .u v, ( )¯̂ ¯̂
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errors for the velocity  U V U V, ,ˆ ˆ and for the elevation  h hˆ increased with the complexity of
the flow and decreased when using two observations instead of one. This illustrates the
importance of coupling the data and the dynamical model to reconstruct the overall flow state
(elevation and motion) with a single partial observation (elevation at the inflow location at a
given time).

4. Experimental demonstration

We now characterize the ability of the proposed WEnKF scheme, to reconstruct free surface
real flows geometry and motion, given only Kinect based measurements of the elevation.

4.1. Kinect depth sensor

Capturing the geometry of a 3D object is of great interest for many applications. Different
strategies (e.g. stereovision, shape from deformations) handling different technologies (e.g.
binocular system, structured light) have lead to a large variety of sensors having different
characteristics. We report the reader to the work of Herbort and Wöhler (2011) for an
introduction to depth sensors. Note that recently stereoscopic particle images velocimetry
approaches have been proposed to estimate simultaneously morphology and velocity of
moving free surfaces (Turney et al 2009, Chatellier et al 2013, Gomit et al 2013). In this
work, we choose to use the Kinect sensor to estimate the geometry of a free surface flow for
the first time (Combès et al 2011). More recently Mankoff and Russo (2013) introduced the
Kinect sensor to the earth science community. This depth sensor has the advantage of being
cheap (about 150 €), to provide high-level programming interfaces and not to need any
specific calibration. These three characteristics make it a good candidate for practical use. It is
partly composed of a 320 × 240 RGB sensor at 30 Hz, a 320 × 240 infrared sensor at 30 Hz
and an infrared pattern projector. Range images are obtained from the so-called light-coding
technique: the projection of the infrared pattern on the object under study is captured by the
infrared sensor and the analysis of this projection is used to recover the geometry of the
object. This approach is close to the optical profilometry technique proposed by Cobelli et al
(2009) for the measurement of water waves and in practice provides range images of
640 × 480 pixels at 30 Hz. To the best of our knowledge, the Kinect sensor is not well-
documented and the main information available is shared by users from the web. Note that in
the paper of Mankoff and Russo (2013) hardware and software are described and a code for
data processing is provided.

Table 1. Ratios between assimilation and free-run errors for the suddenly expanding
flume flow at time =t u L 1.98.0

Inlet velocity profile Stochastic forcinga oneObs twoObs

 h hˆ  u v u v, ,¯̂ ¯̂ ¯ ¯  h hˆ  u v u v, ,¯̂ ¯̂ ¯ ¯

Homogeneous No 0.05 0.08 0.04 0.06
Homogeneous Yes 0.19 0.21 0.16 0.19
Hall-bell shape No 0.17 0.25 0.15 0.26
Hall-bell shape Yes 0.30 0.57 0.20 0.53

a
Included in the true states ¼x t0˜ and therefore in the observations ¼y .t1
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In this work, we do not focus on the technology of the Kinect and of its subsequent
limitations and facilities but use it, as best as we can, in a ‘black-box’ way. For that purpose,
we investigated its accuracy to estimate range images of solid and liquid smooth surfaces.
Liquid’s light diffusivity was enhanced by the addition of white dye for the use of the Kinect
sensor. For a sake of simplicity, our study was restricted to surfaces located between 680 and
780 mm from the device. However, note that the devise is able to estimate depth data up to
13 m leading to an observable surface of about ´10 m 14 m with a magnification of about
2 cm near the optical axis and 20 cm at the periphery of the observable window. A more
complete description of our experiments can be found in Combès et al (2011). The main
conclusion of our studies were the following: On solid surface, the Kinect sensor displayed a
measurement uncertainty of 0.9 mm for both flat and sinus-like surfaces; The sensor captured
successfully sinus-like varying elevations with spatial periods smaller than 20 mm and
amplitudes smaller than 2 mm; Measurement errors coming from observations of solid and
liquid surfaces were comparable when the attenuation coefficient of the liquid was larger than
113 -m 1 . As an illustration, figure 10 shows a 3D temporal reconstruction of a water wave
moving in a rectangular flat bottom tank, captured by the Kinect.

4.2. Wave in a rectangular flat bottom tank

The real experiments carried out in this study consisted in observing the free surface of a fluid
contained in a rectangular flat bottom tank of size ´ = ´Lx Ly 250 mm 100 mm as illu-
strated in figure 10. More specifically we observed the evolution of a unidirectional wave
generated by an initial free surface height difference =h 1 cm.0 In the following the char-
acteristic velocity u0 is considered as an approximation of wave phase velocity g h .0 The
wave propagation was simulated with the shallow-water numerical model in a computational
domain ´L Lx y discretized on a square grid of ´ = ´n n 222 88x y points and with a time
step D =t u L 0.0042.x0

The Kinect depth observations were characterized by a high level of noise and exhibited
large regions of missing data on the boundaries due to light reflections on the tanks wall. The

Figure 10. 3D water surface geometry estimated with a Kinect sensor: left, picture of
the experimental setting when observing a moving wave in a water tank; right, 3D
reconstruction of the wave moving in the tank from Kinect acquisitions at
=t 0.15, 0.3, 0.45 and 0.6 s. All spatial scales are in millimeters. Reproduced with

permission from Combès et al (2011).
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observed free surface behaved roughly as an unidirectional wave along the x axis. The initial
state xinit was considered with a flat surface and a null velocity although the real state was a
moving wave. The observations ¼y t1 were assimilated every Dt u L10 ,0 leading to an
observations Strouhal number = D St L t u10 24,obs 0( ) that was rather high. We tested
ensemble size from 20 to 200 and in practice when >N 100 we do no more observe any
significant reduction the estimation error. As a result, we use N = 100. Assimilating each
observation took about 10 min on a standard personal computer.

Figure 11 shows estimated free-surface elevation colormap and motion vector fields for a
water wave propagating in a rectangular flat bottom tank. This time sequence in a plan view
exhibits one back and forth of the wave. The reconstructed height sequence is a compromise
between noisy Kinect observations and an imperfect dynamical model, exhibiting the spa-
tiotemporal complexity of the free surface motion. The predicted free surface motion fields
indicated the highest velocities on the wave crest and recirculation regions on either side
upstream and downstream of the wave. Providing a physically consistent initial state for such
a real flow was not straightforward: we could use the measured elevation however the
associated motion fields was difficult to model. Interestingly, although we initiated the
assimilation process with a flat surface and a null velocity, as time proceeds the particle filter

Figure 11. Elevation colormaps in millimeters and free-surface motion vector fields for
a wave in a rectangular flat bottom tank. From left to right and top to bottom, snapshots
of the estimation displayed every 20 time step Dtu L .x0
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rapidly provided accurate estimations. The whole free surface geometry dynamics was
remarkably reconstructed from noisy measures of the elevation only.

5. Conclusion and perspectives

Most of the time there are only temporal sequences of sparse data coming from lagrangian or
eulerian measurements of the flow elevation to characterize a free surface flow dynamics.
Although sparse and noisy, these observations when properly coupled with a shallow water
model contain enough information to reconstruct the whole free surface flow dynamics.

This paper has presented the first free surface flow reconstruction using Kinect based
depth measurements only. The Kinect sensor was able to capture observations of wave-like
surfaces with wavelengths and amplitudes sufficiently small to support applications such as
flow monitoring or medium to large scale flows characterization. The sequential DA algo-
rithm, based on a particle filter stochastic approach, has been validated on two numerical
cases and a real experiment in laboratory. Results have shown remarkable reconstruction of
both elevation and velocities of the free surface flows. In addition, the influence of noise and
outliers in the input depth data has been assessed, indicating that the method has exhibited
good robustness properties up to large deteriorations of the data quality. Another feature of
the proposed WEnKF scheme has been the quasi non-sensitivity to the initial state pertur-
bation levels. When starting from flat surface and null velocity the technique has rapidly and
accurately recovered the dynamics of complex free surface flows. The enhancement of the
particle filter with two observations instead of classically using only one has improved
significantly the agreement for both the elevation and the motion. Finally, in contrast with DA
methods considering ‘perfect’ models, the stochastic DA scheme carried out in this study has
yielded remarkable estimations, given the complexity of the flow configurations and the
limitations of the dynamical model.

Note that all the presented results characterized acquisitions within an area near the image
center and from a short range. Future works will consist in investigating the DA technique
over larger ranges (we recall that the Kinect is able to estimate depth data up to 13 m leading
to an observable surface of about ´10 m 14 m with a magnification of about 2 cm near the
optical axis and 20 cm at the periphery of the observable window) and under more practical
conditions such as discharge estimation. Future works will also consist in estimating para-
meters of the model such as the bed roughness in addition to the model noise term in order to
reduce the departure of our model to the actual dynamic of the fluid and ultimately to estimate
more accurately the states of the system.
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