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Abstract. In this paper, we propose a particle filtering approach for tracking ap-
plications in image sequences. The system we propose combines a measurement
equation and a dynamic equation which both depend on the image sequence.
Taking into account several possible observations, the likelihood is modeled as
a linear combination of Gaussian laws. Such a model allows inferring an ana-
lytic expression of the optimal importance function used in the diffusion process
of the particle filter. It also enables building a relevant approximation of a vali-
dation gate. We demonstrate the significance of this model for a point tracking
application.

1 Introduction
When tracking features of any kind from image sequences, several specific problems
appear. In particular, one has to face difficult and ambiguous situations generated by
cluttered backgrounds, occlusions, large geometric deformations, illumination changes
or noisy data. To design trackers robust to outliers and occlusions, a classical way con-
sists in resorting to stochastic filtering techniques such as Kalman filter [13, 15] or se-
quential Monte Carlo approximation methods (called particle filters) [7, 10, 11, 16].

Resorting to stochastic filters consists in modeling the problem by a discrete hidden
Markov state process x0:n = {x0,x1, ...,xn} of transition equation p(xk |xk−1). The
sequence of incomplete measurements of the state is denoted z1:n = {z1, z1, ..., zn}, of
marginal conditional distribution p(zk |xk). Stochastic filters give efficient procedures
to accurately approximate the posterior probability density p(xk |z1:k). This problem
may be solved exactly through a Bayesian recursive solution, named the optimal filter
[10]. In the case of linear Gaussian models, the Kalman filter [1] gives the optimal
solution since the distribution of interest p(xk|z1:k) is Gaussian. In the nonlinear case,
an efficient approximation consists in resorting to sequential Monte Carlo techniques
[4, 9]. These methods consists in approximating p(xk|z1:k) in terms of a finite weighted
sum of Diracs centered in elements of the state space named particles. At each discrete
instant, the particles are displaced according to a probability density function named
importance function and the corresponding weights are updated through the likelihood.

For a given problem, a relevant expression of the importance function is a cru-
cial point to achieve efficient and robust particle filters. As a matter of fact, since this
function is used for the diffusion of the particle swarm, the particle repartition - or the
state-space exploration – strongly depends on it. It can be demonstrated that the op-
timal importance function in the sense of a minimal weight variance criterion is the
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distribution p(xk|xk−1, zk) [9]. As it will be demonstrated in the experimental section,
the knowledge of this density improves significantly the obtained tracking results for a
point tracking application.

However, the expression of p(xk|xk−1, zk) is totally unknown in most vision ap-
plications. In such a context, the importance function is simply fixed to the prediction
density p(xk|xk−1). This constitutes a crude model which is counterbalance by a sys-
tematic re-sampling step of the particles together with sound models of highly multi-
modal likelihood [7, 11, 16].

In this paper, an opposite choice is proposed. We investigate simpler forms of like-
lihood but for which the optimal importance function may be inferred. The considered
likelihood is a linear combination of Gaussian laws. In addition, such a modelization
allows expressing a validation gate in a simple way. A validation gate defines a bounded
research region where the measurements are looked for at each time instant.

Besides, it is interesting to focus on features for which none dynamic model can be
set a priori or even learned. This is the case when considering the most general situation
without any knowledge on the involved sequence. To tackle this situation, we propose
to rely on dynamic models directly estimated from the image sequence.

For point tracking applications, such a choice is all the more interesting that any
dynamic model of a feature point is very difficult to establish without any a priori
knowledge on the evolution law of the surrounding object. As a consequence, the sys-
tem we propose for point tracking depends entirely on the image data. It combines (i)
a state equation which relies on a local polynomial velocity model, estimated from the
image sequence and (ii) a measurement equation ensuing from a correlation surface be-
tween a reference frame and the current frame. The association of these two approaches
allows dealing with trajectories undergoing abrupt changes, occlusions and cluttered
background situations.

The proposed method has been applied and validated on different sequences. It has
been compared to the Shi-Tomasi-Kanade tracker [17] and to a CONDENSATION-like
algorithm [11].

2 Nonlinear Image Sequence Based Filtering

Classical formulation of filtering systems implies to a priori know the density p(xk+1|xk),
and to be able to extract, from the image sequence, an information used as a measure-
ment of the state. However, in our point of view, feature tracking from image sequences
may require in some cases to slightly modify the traditional filtering framework. These
modifications are motivated by the fact that an a priori state model is not always avail-
able, especially during the tracking of features whose nature is not previously known.
A solution to this problem may be devised relying on an estimation from the image
sequences data of the target dynamics [2, 3]. In that case, it is important to distinguish
(i) the observation data which constitute the measurements of the state from (ii) the data
used to extract such a dynamics model. These two pieces of information are of different
kinds even if they are both estimated from the image sequence – and therefore depend
statistically on each other. In this unconventional situation where dynamics and mea-
surements are both captured from the sequence, it is possible to build a proper filtering
framework by considering a conditioning with respect to the image sequence data.
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2.1 Image Sequence Based Filtering
Let us first fix our notations. We note Ik an image obtained at time k. I0:n represents the
finite sequence of random variables {Ik, k = 0, ..., n}. Knowing a realization of I0:k,
our tracking problem is modeled by the following dynamic and measurement equation:

xk = f I0:k

k (xk−1,w
I0:k

k ),

zk = hI0:k

k (xk,vI0:k

k ).

At each time k, a realization of zk is provided by an estimation process based on image
sequence I0:k. Functions f I0:k

k and hI0:k

k are assumed to be any kind of possibly nonlin-
ear functions. These functions may be estimated from I0:k. The state noise w

I0:k

k and
the measurement noise v

I0:k

k may also depend on I0:k as well, and are not necessarily
Gaussian. We assume that the associated probability distributions are such that

p(xk |x0:k−1, z1:k−1, I0:n) = p(xk|xk−1, I0:n),

p(zk |x0:k, z1:k−1, I0:n) = p(zk|xk, I0:n).

By analogy with the classical filtering formulation the Markovian assumption, as well
as the conditional independence of the observations are maintained conditionally to
the sequence. A causal hypothesis with respect to the temporal image acquisition is
added. Such an hypothesis means that the state xk and the measurement zk are as-
sumed to be independent from Ik+1:n. The optimal filter’s equations can be applied
to the proposed model. The expected posterior reads now p(xk |z1:k, I0:k). Supposing
p(xk−1|z1:k−1, I0:k−1) known, the recursive Bayesian optimal solution is:

p(xk |z1:k, I0:k) =
p(zk|xk, I0:k)

∫

p(xk |xk−1, I0:k) p(xk−1|z1:k−1, I0:k−1) dxk−1
∫

p(zk|xk , I0:k) p(xk|z1:k−1, I0:k) dxk

.

To solve this conditional tracking problem, standard filters have to be derived in a con-
ditional version. The linear version of this framework, relying on a linear minimal con-
ditional variance estimator, is presented in [2, 3]. The nonlinear version is implemented
with a particle filter and is called Conditional NonLinear Filter.

2.2 Conditional NonLinear Filter
Facing a system with a nonlinear dynamic and/or a nonlinear likelihood, it is not possi-
ble anymore to construct an exact recursive expression of the posterior density function
of the state given all available past data. To overcome these computational difficulties,
particle filtering techniques propose to implement recursively an approximation of this
density (see [4, 9] for an extended review). These methods consist in approximating the
posterior density by a finite weighted sum of Dirac centered on hypothesized trajecto-
ries – called particles – of the initial system x0:

p(xk|z1:k, I0:k) ≈

N
∑

i=1

w
(i)
k δ(x0:k − x

(i)
0:k).

At each time instant (or iteration), the set of particles {x(i)
0:k, i = 1, ..., N} is drawn

from an approximation of the true distribution p(x0:k |z1:k, I0:k), called the importance



4 E. Arnaud, E. Mémin

function and denoted π(x0:k |z1:k, I0:k). The closer is the approximation from the true

distribution, the more efficient is the filter. The particle weights w
(i)
k account for the de-

viation with regard to the unknown true distribution. The weights are updated according
to importance sampling principle:

w
(i)
k =

p(z1:k|x
(i)
0:k, I0:k)p(x

(i)
0:k |I0:k)

π(x
(i)
0:k |z1:k, I0:k)

.

Choosing an importance function that recursively factorizes such as:

π(x0:k |z1:k, I0:k) = π(x0:k−1|z1:k−1, I0:k−1) π(xk|x0:k−1, z1:k, I0:k)

allows recursive evaluations in time of the particle weights as new measurements zk

become available. Such an expression implies naturally a causal assumption of the im-
portance function w.r.t. observations and image data. The recursive weights read then:

w
(i)
k = w

(i)
k−1 p(zk |x

(i)
k , I0:k) p(x

(i)
k |x

(i)
k−1, I0:k)/π(x

(i)
k |x

(i)
0:k−1, z1:k, I0:k).

Unfortunately, such a recursive assumption of the importance function induces an
increase over time of the weight variance [12]. In practice, this makes the number of
significant particles decrease dramatically over time. To limit such a degeneracy, two
methods have been proposed (here presented in the conditional framework).

A first solution consists in selecting an optimal importance function which mini-
mizes the variance of the weights conditioned upon x0:k−1, z1:k and I0:k in our case.
It is then possible to demonstrate that p(xk|xk−1, zk, I0:k) corresponds to this optimal
distribution. With this distribution, the recursive formulation of wk becomes then:

w
(i)
k = w

(i)
k−1 p(zk|x

(i)
k−1, I0:k). (1)

The problem with this approach is related to the fact that it requires to be able to sample
from the optimal importance function p(xk |xk−1, zk, I0:k), and to have an expression
of p(zk|xk−1, I0:k). In vision applications, the optimal importance function is usual-
ly not accessible. The importance function is then set to the prediction density (i.e.
π(xk |x0:k−1, z1:k) = p(xk|xk−1)). Such a choice excludes the measurements from the
diffusion step.

A second solution to tackle the problem of weight variance increase relies on the use
of re-sampling methods. Such methods consist in removing trajectories with weak nor-
malized weights, and in adding copies of the trajectories associated to strong weights,
as soon as the number of significant particles is too weak [9]. Obviously, these two solu-
tions may be coupled for a better efficiency. Nevertheless it is important to outline that
the resampling step introduces errors and is only the results of the discrepancy between
the unknown true pdf and the importance function. As a consequence, the resampling
step is necessary in practice, but should be used as rarely as possible. It can be noticed
that setting the importance function to the diffusion process and resampling at each it-
eration leads to weight directly the particles with the likelihood. This choice has been
made in the CONDENSATION algorithm [11].

As mentioned previously, it may be beneficial to know the expression of the optimal
importance function. As developed in the next section, it is possible to infer this function
for a specific class of systems.
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3 Gaussian Systems and Optimal Importance Function
Filtering models for tracking in vision applications are traditionally composed of a sim-
ple dynamic and a highly multimodal and complex likelihood [3]. For such models, an
evaluation of the optimal importance function is usually not accessible. In this section,
we present some filtering systems relying on a class of likelihoods (eventually multi-
modal) for which it is possible to sample from the optimal importance function.

3.1 Gaussian System with Monomodal Likelihood
We consider first a conditional nonlinear system, composed of a nonlinear state equa-
tion, with an additive Gaussian noise, and a linear Gaussian likelihood:

xk = f I0:k

k (xk−1) + w
I0:k

k , w
I0:k

k ; N (wI0:k

k ;0, QI0:k

k ) (2)

zk = HI0:k

k xk + v
I0:k

k , v
I0:k

k ; N (vI0:k

k ;0, RI0:k

k ). (3)

For these models the analytic expression of the optimal importance function may be
inferred. As a matter of fact, noticing that:

p(zk |xk−1, I0:k) =

∫

p(zk |xk, I0:k) p(xk|xk−1, I0:k) dxk , (4)

we deduce:

zk|xk−1, I0:k ; N (zk ; Hkfk(xk−1), Rk + HkQkHt
k), (5)

which yields a simple tractable expression for the weight calculation (1) (for the sake
of clarity, the index I0:k has been omitted). As for the optimal importance function we
have:

p(xk |xk−1, zk, I0:k) = p(zk|xk , I0:k) p(xk|xk−1, I0:k)/p(zk|xk−1, I0:k) (6)

and thus,

xk |xk−1, zk, I0:k ; N (xk ; µk, Σk), (7)

with

Σk = (Q−1
k + Ht

kR−1
k Hk)−1

µk = Σk (Q−1
k fk(xk−1) + Ht

kR−1
k zk).

In that particular case, all the expressions used in the diffusion process (7), and in the
update step (5) are Gaussian. The filter corresponding to these models is therefore par-
ticularly simple to implement. The unconditional version of this result is described in
[9].

3.2 Extension to Multimodal Likelihood
Considering only one single measurement can be too restrictive facing ambiguous situa-
tions or cluttered background. We describe here an extension of the previous monomodal
case to devise a multimodal likelihood.
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Let us now consider a vector of M measurements zk = {zk,1, zk,2, ..., zk,M}. As
it is commonly done in target tracking [6] and computer vision [11], we assume that
a unique measurement corresponds to a true match and that the others are due to false
alarms or clutter. Noting Φk a random variable which takes its values in 0, ..., M , we
designate by p(Φk = m) the probability that measurement zk,m corresponds to the true
measurement at time k; p(Φk = 0) is the probability that none of the measurements
corresponds to the true one. Denoting pk,m = p(Φk = m|xk , I0:k), and assuming that
∀m = 1, ..., M , the measurements zk,1:M are independent conditionally to xk, I0:k and
Φk = m, then the likelihood can be written as:

p(zk|xk , I0:k) = pk,0 p(zk |xk, I0:k, Φk = 0)

+

M
∑

m=1

{pk,m p(zk,m|xk , I0:k, Φk = m)
∏

j 6=m

p(zk,j |xk, I0:k, Φk = m)}.
(8)

In order to devise a tractable likelihood for which an analytic expression of the opti-
mal importance function may be derived, we make the following hypothesis. We assume
that (i) the set of mode occurrence probabilities {pk,i, i = 1, · · · , M} is estimated from
the images at each instant ; (ii) the probability of having no true measurement is set
to zero (pk,0 = 0). Such a choice differs from classical tracking assumptions [6, 11]
and may be of problematic in case of occlusions. Nevertheless, as we will see it, this
potential deficiency is well compensated by an efficient estimation of the measurement
noise covariances. We also assume that (iii) considering zk,m as being the true target-
originated observation, it is distributed according to a Gaussian law of mean Hk,mxk

and covariance Rk,m. As a last hypothesis (iv), we assume that the false alarms are
uniformly distributed over a measurement region (also called gate) at time k. The total
area of the validation gate Vk will be denoted |Vk |.

All these assumptions lead to an observation model which can be written as a linear
combination of Gaussian laws:

zk|xk , I0:k ;

M
∑

m=1



pk,m N (zk,m; Hk,m xk, Rk,m)
∏

j 6=m

11zk,j∈Vk

|Vk |





=
1

|Vk|M−1

M
∑

m=1

pk,m N (zk,m; Hk,m xk, Rk,m).

(9)

In the same way as for the monomodal measurement equation (§3.1), it is possible
for such a likelihood associated to a Gaussian state equation of form (2) to know the
optimal importance function. Let us remind that in our case the considered diffusion
process requires to evaluate p(zk |xk−1, I0:k) and to sample from p(xk |xk−1, zk, I0:k).
Applying identity (4), with expression (9), the density used for the weight recursion
reads:

zk|xk−1, I0:k ;

1

|Vk|M−1

M
∑

m=1

pk,mN (zk,m; Hk,mfk(xk−1), Hk,mQkHt
k,m + Rk,m).

(10)
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The optimal importance function is deduced using identity (6) and expression (10):

xk|xk−1, zk, I0:k ;

N (xk ; fk(xk−1), Qk)
∑M

m=1 pk,mN (xk ; H−1
k,mzk , H−1

k,mRk,mH−1t
k,m)

|Vk |M−1 p(zk |xk−1, I0:k)

Through Gaussian identities this expression reads as a Gaussian mixture of the form:

xk |xk−1, zk, I0:k ;

M
∑

m=1

pk,m

αk,m

S
N (xk ; µk,m, Σk,m) (11)

with


























Σk,m = (Q−1
k + Ht

k,mR−1
k,mHk,m)−1

µk,m = Σk,m (Q−1
k fk(xk−1) + Ht

k,mR−1
k,m zk,m)

S = |Vk|
M−1 p(zk|xk−1, I0:k)

αk,m =
|Σk,m|

1

2

2π|Rk,m|
1

2 |Qk|
1

2

exp(−
1

2
(‖fk(xk−1)‖

2
Q

−1

k

+ ‖zk,m‖2
R

−1

k,m

− ‖µk,m‖2
Σ

−1

k,m

))

Let us point out that the proposed systems lead to a simple implementation as the
involved distributions are all combinations of Gaussian laws. In addition, as described
in the next subsection, such systems allow to define a relevant validation gate for the
measurements.

3.3 Validation Gate
When tracking in cluttered environment, an important issue resides in the definition of a
region delimiting the space where future observations are likely to occur [6]. Such a re-
gion is called validation region or gate. Selecting a too small gate size may lead to miss
the target-originated measurement, whereas selecting a too large size is computationally
expensive and increases the probability of selecting false observations.

In our framework, the validation gate is defined through the use of the probability
distribution p(zk |z1:k−1, I0:k). For linear Gaussian systems, an analytic expression of
this distribution may be obtained. This leads to an ellipsoidal probability concentration
region. For nonlinear models, the validation gate can be approximated by a rectan-
gular or an ellipsoidal region, whose parameters are usually complex to define. Brei-
dt [8] proposes to use Monte Carlo simulations in order to approximate the density
p(zk|z1:k−1, I0:k), but this solution appears to be time consuming. For the systems we
propose, it is possible to approximate efficiently this density by a Gaussian mixture.
The corresponding validation gate Vk consists in an union of ellipses. Observing that:

zk|z1:k−1, I0:k ;

∫

p(zk |xk−1, I0:k) p(xk−1|z1:k−1, I0:k−1) dxk−1,

and reminding that an approximation of p(xk−1|z1:k−1, I0:k−1) is given by the weight-
ed swarm of particles (x

(i)
k−1, w

(i)
k−1), the following approximation can be done:

p(zk |z1:k−1, I0:k) '
∑

i

w
(i)
k−1 p(zk|x

(i)
k−1, I0:k). (12)
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Introducing expression (10) in (12) leads to an expression of p(zk|z1:k−1, I0:k) as a
combination of N × M Gaussian distributions (N is the number of particles). As con-
sidering N × M ellipses is computationally expensive, we approximate the density by
a sum of M Gaussian laws. We then finally obtain an approximation of Vk as an ellipse
union Vk =

⋃

m=1:M Ψm = {εm : (εm − ξk,m)tC−1
k,m(εm − ξk,m) ≤ γm} with the first

and second moments defined as:


























ξk,m =
∑

i

w
(i)
k−1 Hk,m fk(x

(i)
k−1)

Ck,m =
∑

i

w
(i)
k−1[Hk,mQkH

t
k,m+R

(i)
k,m+Hk,mfk(x

(i)
k−1)f

t
k(x

(i)
k−1)H

t
k,m]−

(
∑

i

w
(i)
k−1Hk,m fk(x

(i)
k−1))(

∑

i

w
(i)
k−1Hk,m fk(x

(i)
k−1))

t.

The parameter γm is chosen in practice as the 99th percentile of the probability for zk,m

to be the true target-originated measurement.
In addition to a simple and optimal sampling process, the possibility to build a rel-

evant approximation of a validation gate constitutes another advantage of the Gaussian
models we propose. In order to demonstrate experimentally their significance, these
systems have been applied to a point tracking application.

4 Application to Point Tracking
The objective of point tracking consists in reconstructing the 2D point trajectory along
the image sequence. To that purpose, it is necessary to make some conservation assump-
tions on some information related to the feature point. These hypotheses may concern
the point motion, or a photometric/geometric invariance in a neighborhood of the point.

The usual assumption of luminance pattern conservation along a trajectory has led
to devise two kinds of methods. The first ones are intuitive methods based on corre-
lation [5]. The second ones are defined as differential trackers, built on a differential
formulation of a similarity criterion. In particular, the well-known Shi-Tomasi-Kanade
tracker [17] belongs to this latter class.

In this paper, the proposed approach for point tracking is also built on the basis of
luminance pattern consistency. In this application, each state xk represents the location
of the point projection at time k, in image Ik. In order to benefit from the advantages
of the two class of method, we propose to combine a dynamic relying on a differential
method and measurements based on a correlation criterion. The system we focus on
is therefore composed of measurements and dynamic equations which both depend on
I0:k. The noise covariance considered at each time is also automatically estimated on
the image sequence. To properly handle such a system, the point tracker is built from
the filtering framework presented in § 2.

4.1 Likelihood
At time k, we assume that xk is observable through a matching process whose goal is to
provide the most similar points to x0 from images I0 and Ik. The result of this process
is the measurement vector zk. Each observation zk,m corresponds to a correlation peak.
The number of correlation peaks (or components of zk) is fixed to a given number.
Several matching criteria can be used to quantify the similarity between two points.
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The consistency assumption of a luminance pattern has simply led to consider the sum-
of-squared-differences criterion.

As in [18] the correlation surface, denoted rk(x, y) and computed over the valida-
tion gate Vk, is converted into a response distribution: Dk

4

= exp(−c rk(x, y)), where c
is a normalizing factor, fixed such as

∫

Vk
Dk = 1. This distribution is assumed to repre-

sent the probability distribution associated to the matching process. The relative height
of the different peaks defines the probability pk,m of the different measurements zk,m.
The covariance matrices Rk,m are estimated from the response distribution on local
supports centered around each observation. A Chi-Square “‘goodness of fit” test is re-
alized, in order to check if this distribution is locally better approximated by a Gaussian
or by a uniform law [3]. An approximation by a Gaussian distribution indicates a clear
discrimination of the measurement, and Rk,m is therefore set to the local covariance of
the distribution. At the opposite, an approximation by a uniform distribution indicates
an unclear peak detection on the response distribution. This may be due to an absence
of correlation in presence of occlusions or noisy situations. In this case, the diagonal
terms of Rk,m are fixed to infinity, and the off-diagonal terms are set to 0. Finally, in
this application, matrices Hk,m are set to identity.

4.2 Dynamic Equation
As we wish to manage situations where no a priori knowledge on the dynamic of the
surrounding object is available, and in order to be reactive to any unpredictable change
of speed and direction of the feature point, the dynamic we consider is estimated from
I0:k. The state equation describes the motion of a point xk−1 between images k−1 and
k, and allows a prediction of xk. A robust parametric motion estimation technique [14]
is used to estimate reliably a 2D parametric model representing the dominant apparent
velocity field on a given support R. The use of such a method on an appropriate local
support around xk−1 provides an estimate of the motion vector at the point xk−1 from
images Ik−1 and Ik. As R is a local domain centered at xk−1, the estimated param-
eter vector depends in a nonlinear way on xk−1. The noise variable wk accounts for
errors related to the local motion model. It is assumed to follow a zero mean Gaussian
distribution of fixed covariance .

5 Experimental Results
In this section, we present some experimental results on four different sequences to
demonstrate the efficiency of the proposed point tracker.

The first result is presented to demonstrate the interest of the optimal importance
function. To that purpose, we have chosen to study an occlusion case, on the Garden
sequence. This sequence shows a garden and a house occluded by a tree. Let us focus
on a peculiar feature point located on the top of a house roof. This point is visible in the
two first images and stays hidden from frame #3 to frame #15. Two algorithms have
been tested for the tracking of this point. Both of them rely on the same filtering system
(the one described in section § 3.2). The first one is the method we propose (namely the
Conditional NonLinear Filter (CNLF), with the use of the optimal importance function),
whereas the second one is a CONDENDATION-like algorithm, for which the considered
importance function is identified to the diffusion process. Figure 1 presents the obtained
results. The use of the optimal importance function allows us to recover the actual point



10 E. Arnaud, E. Mémin

location after a long occlusion. This shows clearly the benefit that can be obtained when
taking into account the measurement in the diffusion process.

initial conditions frame #0

(a) Conditional NonLinear Filter (with optimal importance function) #0,13,18,30

(b) CONDENSATION-like algorithm (without optimal importance function) #13,18,30

Fig. 1. Interest of the optimal interest function in case of occlusion. Tracking results obtained
with (a) the Conditional NonLinear Filter, with the use of optimal importance function and
(b) a CONDENSATION-like algorithm, without the use of optimal importance function. For both
algorithms, the considered filtering system is the one described in §3.2. Black crosses present
the estimates. White and gray crosses corresponds to the observations, and the ellipses to their
associated validation gates. The white crosses show the measurement of highest probability.

The second sequence, Corridor, constitutes a very difficult situation, since it com-
bines large geometric deformations, high contrast, and ambiguities. The initial points
and the final tracking results provided by the Shi-Tomasi-Kanade (STK) tracker, and
the CNLF are presented in figure 2. In such a sequence, it can be noticed that the STK
leads to good tracking results only for a small number of points. On the opposite, for the
CNLF, the trajectories of all the feature points are well-recovered. Let us point out that
for this sequence, considering one or several observations per point leads nearly to the
same results. Another result of the CNLF, with a multimodal likelihood, is presented on
the sequence Caltra. This sequence shows the motion of two balls, fixed on a rotating
rigid circle, on a cluttered background. Compared to STK (fig.3), the CNLF succeeds in
discriminating the balls from the wall-paper, and provides the exact trajectories. Such
a result shows the ability of this tracker to deal with complex trajectories in a cluttered
environment.
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(a) initial points (b) CNLF (c) STK

Fig. 2. Corridor sequence

initial points # 0 Conditional NonLinear Filter (# 7,20,30,39)

CNLF trajectories Shi-Tomasi-Kanade tracker (# 7,20,30)
Fig. 3. Caltra sequence

The last result on the hand sequence demonstrates that considering several obser-
vations improves the tracking results in case of ambiguous situations. This sequence
presents finger motions of one hand. Figure 4 illustrates the results obtained with the
CNLF, considering a monomodal likelihood (a) and a multimodal likelihood (b). As
it can be observed, considering only one correlation peak per point leads here to mistake
the different fingers. This confusing situations are solved by taking into account several
(here, 3) observations.

6 Conclusion
In this paper, we proposed a Conditional NonLinear Filter for point tracking in image
sequence. This tracker has the particularity of dealing with a priori-free systems, which
entirely depend on the image data. In that framework, a new filtering system has been
described. To be robust to cluttered background, we have proposed a ‘¡peculiar class of
multimodal likelihood. Unlike usual systems used in vision applications within non lin-
ear stochastic filtering framework, we deal with system which allows an exact estimate
of the optimal importance function. The knowledge of the optimal function enables to
include naturally measurements into the diffusion process and authorizes to build a rel-
evant approximation of a validation gate. Such a framework, applied to a point tracking
application, enables to significantly improve the result of traditional trackers. The re-
sulting point tracker has been shown to be robust to occlusions and complex trajectories.
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