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Ensemble based optimal control schemes combine the components of ensemble Kalman filters and
variational data assimilation (4DVar). They are trendy because they are easier to implement than
4DVar. In this paper, we evaluate a modified version of an ensemble based optimal control strategy for
image data assimilation. This modified method is assessed with a shallow water model combined with
synthetic data and original incomplete experimental depth sensor observations. This paper shows that
the modified ensemble technique is better in quality and can reduce the computational cost.
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1. Introduction

Data assimilation techniques aim at recovering the actual state
of a system by combining the system’s dynamics with noisy and
partial measurements of this system. These techniques fulfill
indeed a twofold objective. On the one hand, they provide a
denoising – or reconstruction – procedure of the data through a
given physical model, and on the other, they provide estimation
procedures for the unknown parameters of the dynamics.

The literature offers a wide range of data assimilation
techniques that can be divided into two main families. The first
family ensues from stochastic filtering principles with the particle
filter [1,2] and the Ensemble Kalman filter (EnKF) [3] as the princi-
ple representations. Both techniques are easy to implement
regardless of the system’s dynamics, however, this family suffers
from a so-called ‘‘curse of dimensionality’’ due to the gigantic state
space which has to be sampled with only very few samples for the
sake of computational cost. The second family of data assimilation
approaches, referred to as variational assimilation techniques, is
formulated as an optimal control problem [4,5]. In this framework
one seeks to estimate an optimal trajectory starting in the vicinity
of a background solution and leading to the lowest data
discrepancy. Minimization procedures relying on the adjoint
dynamics operator are required in this context. These methods
are efficient from a computational point of view, however the con-
struction and implementation of such adjoint model is often
tedious and cumbersome in practice. This technique is classically
referred to as 4DVar.

Recently, several schemes aiming at coupling the advantages of
ensemble methods and variational assimilation strategies have
been proposed. A first hybrid technique combining a fixed time
variational data assimilation approach, called 3DVar, with an
ensemble Kalman filter [6], was later extend to a hybrid technique
with temporal variational data assimilation, i.e. 4DVar [7]. Several
authors have proposed methods that express explicitly the solu-
tion as a linear combination of the square root of an empirical
covariance constructed from an ensemble of samples [8,9]. The
optimization often relies on ensemble Kalman filter update and
is sometimes coupled with an adjoint scheme [10].

In this work we chose to assess a method closely related to a
strategy proposed in [11,12], which will be referenced as
4DEnVar in the following. This technique introduces in its objec-
tive function an empirical ensemble-based background-error
covariance that avoids the building of the tangent linear and
adjoint model of the dynamics. The associated optimization is
conducted as a gradient descent procedure and does not rely on
iterative ensemble filtering updates exploiting equivalences
between Kalman smoothers and the a posteriori energy minimiza-
tion established only in the linear case [13]. An experimental
evaluation based on a shallow water model and Kinect depth
sensor image sequences was carried out in this study. Results of
the proposed 4DEnVar methods were compared with those given
by a classical 4DVar approach.
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Fig. 1. Schematic representation of the incremental variational data-assimilation
algorithm.

202 Y. Yang et al. / Computers & Fluids 115 (2015) 201–210
2. 4D variational data assimilation

Variational data assimilation technique aims at estimating the
best fit trajectory between the background trajectory, determined

by a dynamical model from a prior initial state Xb
0, and the mea-

surements Y of the system. In practice, the dynamics operator
involved is nonlinear and the variational assimilation procedure
can be improved by introducing a nonlinear least squares proce-
dure in the same spirit as a Gauss–Newton incremental strategy
[14]. In this strategy, the dynamics is linearized around the back-
ground trajectory and the optimization is performed in terms of
an optimal increment dX. The assimilation system reads

@tdXðt; xÞ þ @XMðXÞdXðt; xÞ ¼ 0; ð1Þ
dXðt0; xÞ ¼ Xb

0 � X0 þ g; ð2Þ
Yðt; xÞ ¼ HðutðX0ðxÞÞÞ þ �ðt; xÞ; ð3Þ

where @XMðXÞ denotes the tangent linear operator of the dynamics

operator M. Xb
0 is an arbitrary background condition, X0 is the initial

guess and g is some error of background covariance B. In the third
equation,

utðX0ðxÞÞ ¼ Xt ¼ X0 þ
Z t

0
MðxsÞds; ð4Þ

denotes the flow map. It depends only on a (possibly random) initial
condition. The state variables Xt and the measurements Y are linked
by an observation operator H, up to an observation error � assumed
to be a zero mean i.i.d. (independent and identically distributed)
Gaussian random field with covariance tensor R. In this study, for
simplification purpose, we will consider a linear observation opera-
tor set to the identity or to an incomplete identity operator when
only a part of the state is observable.

The optimal increment dX0 at time t0 is obtained by minimizing
the following objective function reads

JðdX0Þ ¼
1
2
kdX0ðxÞk2

B þ
1
2

Z tf

t0

k@X H dXðt; xÞ � Dðt; xÞk2
Rdt; ð5Þ

where the innovation vector Dðt; xÞ is defined as

Dðt; xÞ ¼ Yðt; xÞ �HðutðX0ðxÞÞÞ: ð6Þ

The objective function involves the L2-norm with respect to the

inverse covariance tensor kfk2
A ¼

R
X f ðxÞA�1ðx; yÞf ðyÞdxdy.

The incremental variational data assimilation naturally leads to
an algorithm with two nested loops. The outer loop computes the
flow map trajectory, utðX0ðxÞÞ, through the nonlinear dynamics,
while the internal loop computes an optimal increment driven by
the tangent linear dynamics with respect to the trajectory.

It is possible to define different variants of this strategy depend-
ing on the point used for the linearization [14,15]. In both
approaches, a fixed background error covariance matrix is used
for the entire minimization process over successive outer loops.
In this paper, we want to face typical cases involved in remote
sensing where only bad quality backgrounds are available through
noisy images with possibly large areas of missing data. Hence, we
advocate for a slightly different approach. Since the background
state is poorly known, the background error covariance approxi-
mated at the beginning of one assimilation process should not be
used for additional outer loops. Indeed, we propose to update this
error covariance matrix (since this error is actually calculated
based on the increments produced by previous inner loop, it is
no longer the actual background error). This strategy will be elabo-
rated in the next section combined with the preconditioning
technique.
2.1. Standard incremental 4DVar assimilation with the adjoint
approach

In order to minimize the objective function (5), we need to can-
cel the gradient @dXJ. This comes to solve the following linear
system:

B�1 þ
Z tf

t0

@Xu�t @XH�R�1@XH@Xutdt
� �

dX0

¼
Z tf

t0

@Xu�t @XH�R�1Dðt; xÞdt; ð7Þ

where the left hand operator is the Hessian matrix, denoted asH. Its
expression involves the adjoint operators @Xu�t and @XH�. Due to the
dimension of the state space, the minimization requires an iterative
optimization strategy. An elegant solution to this problem consists
in relying on an adjoint formulation [4]. Within this formalism, the
gradient functional is obtained by a forward integration of the
dynamical system followed by a backward integration of an adjoint
variable, k, driven by the linear tangent of the dynamics’ operator.
The adjoint system is defined as:

�@tkðtÞ þ @XMð Þ�kðtÞ ¼
@XHð Þ�R�1ðDðt; xÞ � @X H @XutðX0ÞdX0Þ
kðtf Þ ¼ 0;

8><
>: ð8Þ

and the functional gradient at the initial time is given by,

@dXJðdX0Þ ¼ �kðt0Þ þ B�1dX0: ð9Þ

A schematic algorithm representation of the overall 4DVar assim-
ilation is provided in Fig. 1.

2.2. Preconditioning of the 4DVar assimilation

The possibly ill-conditioned nature of system (7) depends on
the condition number of the Hessian matrix. The larger the condi-
tion number, the more sensitive the system with respect to errors
in the estimate and the slower the inner loop convergence rate
[16]. A preconditioning of the variational incremental system con-
sists in applying a change of variable with the matrix square-root
of the background error covariance matrix B. This transformation
called the control variable transform (CVT) reads

dXt ¼ B
1
2dZt ð10Þ
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and leads to a new Hessian matrix eH ¼ B
1
2THB

1
2 possessing a lower

condition number [16]. As for the choice of the preconditioning
matrix, [17] introduced the use of B as the preconditioning matrix
and associated bi-conjugate gradient method (BiCG) as the mini-
mizing technique. In addition, they proposed the employment of a
truncated whole Hessian as the preconditioning matrix and argued
that it can achieve faster convergence.

Applying the CVT (10) to the function (5), we get a modified
objective function,

JðdZ0Þ ¼
1
2
kdZ0k2 þ 1

2

Z tf

t0

k@X H @Xu tðX0ÞB
1
2dZ0

� Dðt; xÞk2
Rdt: ð11Þ

This modified cost function removes B�1 from the background term.
Hence no cross-variable correlation is anymore involved in the con-
trol vector dZ0. Note this change of variable can also be viewed as a
whitening filtering of the background error. Despite a better
conditioning, the resulting system remains in general difficult to
solve and requires the use of the adjoint minimization setups.

Let us note that ideally we should use the actual background
error covariance matrix to precondition the system. However, in
our case, this matrix is badly known due to a noisy reference.
Instead of using a fixed model to formulate the background matrix,
we suggest to use an empirical approximation of this covariance
matrix defined from the current solution (Eq. (12)).

Bk ¼ ðXk�1
0 � X0

k�1ÞðXk�1
0 � X0

k�1Þ
T
; ð12Þ

where k is the outer loop index and the operator f ðtÞ takes the mean

value of f ðtÞ and X0
0 ¼ Xb

0. We assume this approximation is suffi-

ciently close to the actual covariance matrix to have ðBkÞ
�1

B � I.
This approximation becomes better and better along the succession
of external loops. In the following we show how to set a low rank
approximation of this matrix through an ensemble of realizations.
Since we are dealing with the preconditioned form of the cost
function, this successive approximation of the background error
covariance matrix actually constitutes a change of the preconditioning

matrix B
1
2 shown by Eq. (10). Note that such a change of the

preconditioning matrix only effects the subspace to which the
increments belong. Similar to the original algorithm proposed in
[14], the whole convergence of the minimization toward a global
minimum is not guaranteed.

3. Ensemble-based 4DVar

3.1. Low rank approximation of the background error covariance
matrix

The ensemble-based 4D variational assimilation scheme is
defined within the framework of preconditioned incremental
variational system (11) while handling an empirical approximation
of the background covariance matrix [8,11]. This low rank approx-
imation of the background covariance matrix is directly inspired
from the Ensemble Kalman filter where the covariance terms are
estimated from the spread of an ensemble of samples. Denoting

hf ðtÞi ¼ N�1PN
1 f ðiÞðtÞ as an empirical ensemble mean of a quantity

f ðtÞ through N samples, the empirical background covariance
matrix is

B � 1
N � 1

XN

i¼1

ðXðiÞ;b � hXbiÞðXðiÞ;b � hXbiÞ
T
: ð13Þ

Noting A0b :¼ 1ffiffiffiffiffiffiffi
N�1
p ðXð1Þb0 � hXb

0i; . . . c;XðNÞb0 � hXb
0iÞ, the perturbation

matrix gathering the N zero mean centered background ensemble
members as a low-dimensional approximation of the background
matrix. Introducing the background covariance approximation in
the preconditioned cost function (11), we get

JðdZ0Þ ¼
1
2
kdZ0k2 þ 1

2

Z tf

t0

k@X H @XutðX0ÞA0bdZ0 � Dðt; xÞk2
Rdt:

ð14Þ

The whole term @XutðX0ÞA0b corresponds to a forecast by the
dynamical model of the centered square-root background covari-
ance matrix. As we rely here on an empirical description of this
matrix from a set of samples, we can observe that integrating these
samples in time provides us immediately an empirical expression of
a low-rank approximation of the background covariance trajectory
and of its square root. This avoids thus the employment of the
adjoint operator. We set hence:

eB1
2
t ¼ @Xu tðX0ÞA0b: ð15Þ

The gradient of the cost function is now given by:

@gJ ¼ dZ0 þ
Z tf

t0

eB1
2T
t @XHð Þ� R�1ð@X H eB1

2
tdZ0 � Dðt; xÞÞdt: ð16Þ

and its Hessian is:

eH ¼ Iþ
Z tf

t0

eB1
2T
t @XHð Þ� R�1@X H eB1

2
t dt: ð17Þ

Once the minimizer cdZ0 estimated, the analysis reads:

Xa
0 ¼ Xb

0 þ eA0bcdZ0: ð18Þ

Let us emphasize that, as the covariance matrix eB is at most of rank
N � 1, the control variable has at most N � 1 non null components
in the eigenspace. Compared to the full 4DVar approach, the control
variable’s degrees of freedom are thus considerably lowered and the
minimization computational complexity is significantly decreased.
Indeed, this ensemble version has a lower computation cost if the
ensemble forecasting step is distributed on a grid computing.
3.2. Preconditioning matrix update

As mentioned earlier, in this study we focus on situations where
the background state is only poorly known. It is hence essential to
allow in the estimation process a substantial deviation from the
background state. So unlike typical incremental ensemble-based
variational methods which keep a fixed background covariance
and apply a single outer loop of the Gauss–Newton minimization,
we propose to update the approximation of this associated error
covariance between two consecutive outer loops. The update of
the error covariance can be either derived from the ensemble of
analysis based on perturbed observations or by a direct trans-
formation of the background ensemble perturbations. The first
method relies on a perturbed ensemble of observations, generated
with an additional noise with the same standard deviation than in
Eq. (3):

Y j ¼ Y þ � j; j ¼ 1; . . . c;N: ð19Þ

At the kth outer loop iteration, the innovation vector of the jth

member of the initial ensemble XðjÞ;k0 is defined as,

DðjÞ;kðt; xÞ ¼ Y jðt; xÞ �HðutðX
ðjÞ;k
0 ÞÞ; j ¼ 1; . . . c;N: ð20Þ
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with XðjÞ;00 ¼ XðjÞ;b0 . Thus a parallel realization of minimization with
regard to each member of initial ensemble is conducted,

dZðjÞ;k0 ¼ ðA0kb Þ
�1

dXðjÞ;k0 ; j ¼ 1; . . . c;N:

JðdZðjÞ;k0 Þ ¼
1
2
kdZðjÞ;k0 k

2 þ 1
2

Z tf

t0

k@X H @XutðX0ÞA0kb dZðjÞ;k0

� DðjÞ;kðt; xÞk2
Rdt:

ð21Þ

Finally the updated initial ensemble field and its perturbation
matrix read:

XðjÞ;kþ1
0 ¼ XðjÞ;k0 þ A0kb ddZ0

ðjÞ;k; j ¼ 1; . . . c;N:

A0kþ1
b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ðXð1Þ;kþ1

0 � hXkþ1
0 i; . . . c;XðNÞ;kþ1

0 � hXkþ1
0 iÞ:

ð22Þ

The direct transformation approach corresponds to a linear trans-
formation of the initial error’s ðXb � XtÞ covariance. This approach
can take many forms as the transformation matrix is not unique,
here we opt for a mean preserving transformation as used in
Ensemble Transform Kalman filter, the updated background ensem-
ble perturbations reads,

A0kþ1
b ¼ A0kb fIþ

Z tf

t0

eB1
2T
t @XHð Þ� R�1@X H eB1

2
t dtg

�1
2;k

V: ð23Þ

It corresponds to the Hessian square root computed from previous
perturbation matrix at outer loop iteration k.1 As the minimization
algorithm LBFGS relies on an approximation of the inverse Hessian
matrix H�1, we can use this byproduct to evaluate Eq. (23). At the
initial time, the background matrix is fixed from the initial random
conditions chosen. The arbitrary orthogonal matrix V is used to cen-
ter the posterior ensemble on the updated initial condition/analysis.
In this approach a single minimization process is conducted with
respect to the background state in opposition to previous cases
where the minimization has to be done with respect to each member
of the ensemble plus the background state. Finally the updated ini-
tial ensemble fields are,

XðjÞkþ1
0 ¼ bXk

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

A0ðjÞkþ1
b ; j ¼ 1; . . . c;N ð24Þ

where bXk
0 corresponds to the updated initial state at the kth outer

loop,

bXk
0 ¼ Xk

0 þ A0kb ddZ0
k ð25Þ

Both variants of the update will be assessed in the experimental
section.

3.3. Localization issues

The previous ensemble method relies on a low rank approx-
imation of the background matrix. This empirical approximation
built from only very few samples, compared to the state space
dimension, leads in practice to spurious correlations between dis-
tant points. For ensemble Kalman techniques, it is customary to
remove these long distance correlations through localization pro-
cedure. There are generally two methods to filter the pseudo-
correlations.

The first approach introduces a Schur element-wise product
between the background correlation matrix and a local isotropic
correlation function: Pb ¼ C � B. The spatial correlation function
can be simply defined as a matrix Cðkx� yk=LÞ in which we set
1 Note that the relationship between the Hessian and the covariance matrix holds
rigorously in a linear sense; in a nonlinear scenario, this relationship is only an
approximation.
Cxy ¼ 0 when the distance between x and y exceeds the cutoff dis-
tance L. Polynomial approximations of a Gaussian function with
compact support and a hard cutoff are often employed [18] to that
end. They lead to sparse correlation matrices, which is
computationally advantageous. In order to incorporate the
localized background error matrix into our system, we
approximate the square root of Pb by a spectral decomposition of
the isotropic correlation function and keep only the r first leading
Fourier modes

C0 ¼ En�rk
1=2
r�r : ð26Þ

The modified perturbation matrix is then provided by

P0b ¼ ðdiagðA0
ð1Þ

b ÞC
0; . . . c;diagðA0

ðNÞ

b ÞC
0Þ: ð27Þ

Here the diag operator sets the vector X0b;k as the diagonal of a
matrix. This localized perturbation matrix is used to precondition
the assimilation system associated with (14)–(16). Remark that this
approach is incompatible with the deterministic update of back-
ground error covariance matrix. This is due to the inconsistency
of matrix dimensions when updating the background ensemble
based on Eq. (24). As the dimension of P0b is n� N � r instead of
n� N, the ensemble perturbation matrix cannot be recovered from
its localized counterpart.

A variant of covariance localization approach based on [7] is
implemented in [19] along with other localization schemes. [19]
also highlights the importance of the dimension of the control vec-
tor which is directly related to the cost of the minimization
algorithm.

Another localization technique proposed by [20] employs local
ensemble. This approach involves a transformation Ml from state
space Rn to local space Rl, the local vector is defined as:

Xl ¼MlXn; ð28Þ

Then the analysis process is done in local space Rl around each grid
point only incorporating the model points and observations within
a certain range. This certain range, denoted as l, which corresponds
to the concept of cut-off distance aforementioned, determines the
size of local space. This localization strategy is ideally compatible
with the method of direct transformation approach associated with
the update of background error covariance matrix. The great advan-
tage of this combination is its low computational cost when imple-
mented with properly parallelized minimization procedures.
However, good performances can only be reached with a small local
space.

All these elements (i.e. CVT, localization and incremental/back-
ground error covariance matrix update) associated with a LBFGS
minimization strategy constitute the proposed ensemble method.
The algorithm descriptions of the overall methods are presented
in Figs. 2 and 3. We point out that this assimilation system –com-
posed of perturbed observations, one outer loop and localization
via a modified covariance matrix– is equivalent to the 4DEnVar
method proposed by [11,21]. If direct ensemble transformation
update is used, it is hence close to the 4D-LETKF method [9] and
the IEnKS method [22] but with a minimization performed on a
variational basis.
4. Experimental evaluation and comparison

4.1. Flow configuration and comparison tools

We chose to assess our method with both synthetic and experi-
mental observations with analogous setups. The simulated and real
experiments carried out in this study consisted in observing the
free surface of a fluid contained in a rectangular flat bottom tank



Fig. 2. Schematic representation of the complete ensemble based incremental
variational data assimilation algorithm with localize covariance approach.

Fig. 3. Schematic representation of the complete ensemble based incremental
variational data assimilation algorithm with local ensemble approach.

Fig. 4. Initial free surface heights to simulated trajectories of (a) the background
and (b) the reference free surface.
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of size Lx � Ly ¼ 250 mm� 100 mm. More specifically we observed
the evolution of a unidirectional wave generated by an initial
height difference Dh of the free surface as illustrated in Fig. 4. In
the following the characteristic velocity U is considered as an

approximation of wave phase velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDhLx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

x þ Dh2
qr

due to

Dh the initial difference of maximum and minimum surface height.
4.1.1. RMSE analysis
The Root Mean Square Error (RMSE) is a way of measuring of

the differences between values predicted by a model or an estima-
tor and the values actually observed. The RMS between a predicted

state X f and the observed state Xobs is defined by:

RMSE ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðX f � XobsÞ

2
r

; ð29Þ

When we deal with the synthetic data, we will base our analysis on
the comparison of the background, observation and assimilated
states’ RMSE with respect to the true solution. Furthermore, the
observations time step is many times bigger than the numerical
time step, thus we will be able to assess the results on a very small
amount of observations. We will also consider the RMSE compar-
ison on a semilogarithmic graph.
4.2. Dynamical model

Within this context, the flow was well described by the follow-
ing shallow water model relating the flow height h and the free
surface velocity field ðu;vÞT

@thþ @xðhuÞ þ @yðhvÞ ¼ 0;

@tðhuÞ þ @xðhu2Þ þ @yðhuvÞ þ 1
2 g@xh2 ¼ 0;

@tðhvÞ þ @xðhuvÞ þ @yðhv2Þ þ 1
2 g@yh2 ¼ 0;

8><
>: ð30Þ

where g is the standard gravity and where the Coriolis force and the
bottom friction were neglected. The system of Eq. (30) was solved in
a computational domain Lx � Ly ¼ 5Dh� 2Dh discretized on square
grid of nx � ny ¼ 101� 41 points. Finite volume numerical schemes
were used to evaluate all spatial derivatives [23]. Time integration
was performed with a third-order Runge–Kutta scheme. A fixed
time step was used equal to DtU=Lx ¼ 0:003 to ensure the
Courant-Friedrich-Levy condition. The no-slip condition at the
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boundaries was imposed directly via a Dirichlet boundary
condition.

The tangent and adjoint models corresponding to the numerical
shallow water model and necessary for the 4DVar approach were
constructed with the automatic differentiation tool Tapenade [24].

To evaluate the performance of the proposed approaches we
carried out twin experiments with simulated observations from
the shallow water model described in Section 4.2. Hence in these
experiments, the model used to create the simulated data was
(a)

(b)

Fig. 5. RMSE comparisons between an incremental 4DVar and 4DEnVar assimilation app
free surface height; (b), fully observed system (i.e. free surface height and velocity field
the same as the model used for the assimilation. However, the ini-
tial conditions used to generate the background trajectory were
different from the initial conditions used for the reference tra-
jectory. The initial background height field was fixed as a smooth
slope tilted along the x-axis by 20% and the initial background
velocity field was fixed as zero. Whereas for the reference tra-
jectory, the initial reference height was a smooth slope tilted along
the x-axis and y-axis by respectively 21% and 10%, and the initial
reference velocity field was fixed as a Gaussian field with a
roaches for two types of observations: (a) partially observed system through noisy
s).
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standard deviation of 1 mm=s. Fig. 4 illustrates the initial surface
heights used to simulate background and reference trajectories.
Here the initial height difference was equal to Dh ¼ 20%Lx ¼
50 mm and the characteristic wave velocity was equal to
U ¼ 694 mm=s.

The synthetic observations were generated by adding i.i.d.
Gaussian noise perturbations to the reference free surface’s height
and velocity fields at each grid points and every 50 time steps. A
single assimilation window containing five observations uniformly
distributed in time was adopted. The assimilation trajectory lasted
0:895Lx=U.

In order to construct the background error covariance matrix,
we used different strategies with respect to the incremental
4DVar and the group of ensemble-based variational techniques.
For the incremental 4DVar, we adopted a static diagonal matrix
B ¼ r2

bI, where rb was optimally tuned as the standard deviation
Table 1
Comparisons of the CPU time (2 � 2.66 GHz Quad-Core Intel Xeon) and memory
demands (16 GB in total) with 105 level of state size between different methods.

CPU time (s) Memory

4DVar 3200 Small
4DEnVar-PP (N = 8, no localization) 120 Small
4DEnVar-LC (N = 32) 2400 Huge
4DEnVar-LE (N = 32) 600 Small

Fig. 6. Sensitivity analysis of the standard deviation of the backgrou
between the true solution and the background initial state. For
the 4DEnVar, as the background error covariance is derived from
the ensemble fields, it is crucial that the initial ensemble repre-
sents correctly the background errors. Here, if no other suffix is
indicated, the default case in the figures is the Gaussian per-
turbation approach. This approach with zero mean Gaussian error
is nevertheless biased and the bias must be estimated as well
([25]). Considering that the reference solution deviates strongly
from the a priori configuration, we experimented a parameter per-
turbation strategy, consisting in defining the initial members from
a random drawing of different free surface height slopes. This
approach is indicated by the ‘‘PP’’ suffix in the figures. We also
highlighted the method of [11] (indicated by ‘‘Liu-et-al’’ suffix in
figures) using perturbed observations, a single outer loop and
localized covariances. Other proposed strategies with several outer
loops, localized covariances or local ensemble are indicated by
suffix ‘‘OL’’, ‘‘LC’’ and ‘‘LE’’ respectively. Note that the initial state
(perturbed surface height and null velocity field), was integrated
for a few time steps before we started the assimilation process.
This provided us the guaranty of balanced velocity perturbations
that complied well with the nonlinear dynamic model.

The assimilation techniques were first evaluated with partially
observed systems where only the free surface height was available,
and then with a fully observed system, i.e. with height and
velocities. The RMSE curves corresponding to these two cases are
gathered in Fig. 5a and b. In both cases, the ensemble technique
nd Gaussian perturbation filed (a) and the cut-off distance (b).
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was efficient when the initial noise complied with the physics of
the observed phenomenon (i.e. random slopes drawing-para ver-
sus gaussian noise). As indicated in Table 1, this configuration
was also the fastest. For non-physical initial noise, the localization
is mandatory and the cutoff distance was set as 20%Lx (the same
value was used to define the size of local space). For partially
observed system, the 4DEnVar assimilation technique globally
led to better results compared to the standard 4DVar. The initial
free surface was strongly corrected in both methods, however
the unobserved velocity components were well corrected only
for the ensemble technique. For this peculiar configuration where
only the free surface height was observed, three general remarks
can be drawn. First, 4DVar results could be improved with a better
description of the background error covariance matrix. Moreover,
several outer loops clearly improved the results highlighting the
pertinence of the background covariance update. Finally, the
method with local ensemble yielded slightly better results than
the method with localized covariance.

For a fully observable system, the advantage of ensemble
methods were less notable than in the previous case. In that
Fig. 7. Comparisons of height fields h=Dh colormaps for from top to bottom: observat
column at t � U=Lx ’ 0:065, right column at t � U=Lx ’ 0:586.
context, the impact of background covariance matrix design was
weaker. This might be due to the fact that each state variable
was mainly corrected by the corresponding measurements rather
than indirectly from other observed components. With a low num-
ber of samples, the LE approach gave better results than the LC
approach. When increasing the sample numbers, the difference
between the two localization approaches diminished. This can be
explained by the local space used in the LE method that was
already rather small compare to the full state space, so the curse
of dimensionality effect induced by few ensemble numbers was
less severe in this case. The computational time of the different
methods is indicated in Table 1. The parameter perturbation
approach provided the best performances in terms of CPU time
and memory demanding, which was expected as no localization
was applied. Nevertheless, it should be noted that when
considering real observations, finding the compatible parameter
perturbation formalism corresponding to initial error statistics is
not a trivial task. Between the two localization techniques, the cost
of LE approach was lower but with expected limitations. The local
space was restricted to a small size as increasing the local space led
ions, background, 4DVar, 4DEnVar-Liu-et-al, 4DEnVar-OL-LC, 4DEnVar-OL-LE; left
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to both quadratic increasing computation cost and worse localiza-
tion. On the other hand, the LC approach maintained a nearly con-
stant computational cost in terms of the cut-off distance despite its
rather high CPU time and huge memory appetite.

4.3. The experimental case

We carried out another evaluation on a real world experiment
in which the free surface of a fluid contained in a rectangular flat
bottom tank of size Lx � Ly ¼ 250 mm� 100 mm was observed.
Following the work of [26,27], we used the Kinect sensor to
observe the evolution of a unidirectional wave generated by an ini-
tial free surface height difference Dh ¼ 1 cm on a grid of 222� 88
pixels. The flow surface was located between 680 and 780 mm
from the device. When the attenuation coefficient of the liquid is
larger than 113 m�1, the Kinect sensor displays a mean measure-
ment error of 0.5 mm with standard deviations of about 0.5 mm
for both flat and sinus-like surfaces. The sensor captures success-
fully sinus-like varying elevations with spatial periods smaller than
20 mm and amplitudes smaller than 2 mm. In the following the
characteristic velocity U is considered as an approximation of wave

phase velocity
ffiffiffiffiffiffiffiffiffi
gDh

p
.

In terms of the observation errors: for a point in the unobserved
region, we set the observation error as a function of the distance
from the closest observed point. Thus, the longer the distance,
the larger the error. The observation error is however bounded
by a maximal value of 60% of the height difference Dh. Within
the observed region, we set the observation error homogeneously
to the instrument error ro ¼ 0:5%Dh.

In this case, the initial background was completely unknown
hence, it was set to a filtered observation with interpolated values
Fig. 8. Mean surface height of the wave crest region as a function of time – c
on the missing data regions at the initial time on a 248� 98 grid.
The observed free surface behaved roughly as an unidirectional
wave along the x-axis. Thus, we set the initial velocity field as a
smooth linear slope with a velocity at the top of the wave equal
to 23% of the wave velocity U, and a null velocity at the bottom
of the wave.

The assimilation scheme was adapted to sliding assimilation
windows to avoid long range temporal correlations. Five windows
over nine observations in times were adopted, each window con-
sisted in five observations and started successively form the 1st
up to the 5th observation. The lengthy of a single window is chosen
to fit 5 observations in order to keep consistency with the synthetic
case. Similarly to the synthetic case, the assimilation started at the
second image in order to construct balanced ensemble through the
integration between the two first images of a set of members.
Those ensemble members are defined beforehand by adding to
the background state a Gaussian perturbation fields with standard
deviation rb. In addition, the localized covariance technique
requires the preset of the cutoff distance before proceeding the
assimilation process. Both of these parameters have been cali-
brated through a sensitivity analysis. Fig. 6 presents the evolution
of the cost function final value with respect to rb and to the cut-off
distance while the other parameters (e.g. ensemble members,
window length etc.) were kept fixed. The plot shows that the cost
function decreased with rb. In addition we observed that the
numerical model instability increased with rb. That led to an opti-
mal range for rb in ½3:6%Dh;14:4%Dh�. The best compromise
within this interval was rb ¼ 3:6%Dh.

Likewise, the optimal cutoff distances belonged to the interval
½10%Lx;20%Lx�. Any value which was larger than 20%Lx or smaller
than 10%Lx could be detrimental to the system. This range is
omparisons of different variational data assimilation approaches results.
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reasonable since longer cutoff distances were inclined to in-corpo-
rate spurious long correlations while shorter cutoff distance could
result in an underestimation of the error covariance. Note that such
sensitivity study provides only rough indications as these optimal
values are subject to change if other conditions of the assimilation
system vary. Finally we chose rb ¼ 3:6%Dh, the cutoff distance as
well as the size of local space were fixed as 15% of the length Lx.

The results obtained by both assimilation techniques are dis-
played in Fig. 8 in terms of the averaged wave crest surface height
as function of the time. This is quite intuitive as we were dealing
here with a single wave simulation. Thus, we are particularly inter-
ested in the wave crest’s region rather than other quite flat regions.
We observed that the 4DVar and the 4DEnVar could both follow
the observation trajectory tendency. While the 4DVar tended to
underestimate the surface height at the beginning of the assim-
ilation window, the group of 4DEnVar yielded very similar results
between the first and fourth image. After the fifth image, the result
of 4DEnVar by Liu et al. diverged from the observation trajectory.

We also compared the free surface height distribution in Fig. 7.
According to these free surfaces, we can see that the 4DVar solu-
tion showed some difficulties to handle the discontinuities at the
boundaries of the regions in which the data have been extrapo-
lated. Discontinuities in the 4DVar solution between the observed
regions and the very noisy region appeared clearly. The 4DEnVar
provided much more satisfying results on the boarders. They were
smoother and corresponded clearly to a better compromise
between the observation and the model. An alternative approach
using the limited-memory bundle method (LMBM) to deal with
non-smooth observation operators is proposed in [28] with imple-
menting code file available in [29].

5. Conclusions and perspectives

In this paper we proposed and evaluated the performance of an
enhanced ensemble-based optimal control strategy for noisy situa-
tion such as the one encountered in image data assimilation.
Comparisons between a standard 4DVar technique and two
ensemble-based 4DVar methods were carried out with a shallow
water model and with simulated and real observation image
sequences.

The proposed ensemble-based methods show great potential in
handling incomplete and noisy observations. With partial state
variable observations, the ensemble technique outperformed the
standard 4DVar at reconstructing the unobserved components
with a lower computational cost. With very noisy and spatially
incomplete observations, the ensemble methods offered better
physical consistent background error covariances. Both advantages
make ensemble methods a perfect tool to assimilate image data.
Results outlined the efficiency of a physical noise compared to
non physical noise requiring a localization procedure.

In a future work, we will apply this ensemble-based 4DVar
method to directly assimilate SST (Sea Surface Temperature) image
data with a surface quasi-geostrophic (SQG) model. We will also
introduce a stochastic shallow-water model [30], since in the
framework of image assimilation the resolution of observation
space is normally quite high. The use of a stochastic model could
be computationally more advantageous by carrying out the
dynamics on coarser grids.
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