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Abstract. This article describes the implementation of a simple wavelet-based
optical-flow motion estimator dedicated to continuous motions such as fluid flows.
The wavelet representation of the unknown velocity field is considered. This scale-
space representation, associated to a simple gradient-based optimization algorithm,
sets up a well-defined multi-resolution framework for the optical flow estimation.
Moreover, a very simple closure mechanism, approaching locally the solution by
high-order polynomials, is provided by truncating the wavelet basis at fine scales.
Accuracy and efficiency of the proposed method is evaluated on image sequences of
turbulent fluid flows.
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1. Introduction

Recent years have seen significant progress in signal processing techniques for fluid
motion estimation. The wider availability of image-like data, whether coming from ex-
perimental facilities (e.g. particle image velocimetry) or from larger-scale geophysical
study systems such as lidars or meteorological and oceanographical satellites, strongly
motivates the development of computer-vision methods dedicated to their analysis.
Correlation-based and variational methods have proven to be efficient in this context.
However, the specific nature of fluid motion highly complicates the process. Indeed,
one has to deal with continuous fields showing complex structures evolving at high ve-
locities. This is particularly problematic with optical flow methods, where the problem
non-linearity requires to resort to an ad-hoc multi-resolution strategy. Although lead-
ing to good empirical results, this technique is known to have a number of drawbacks.
Moreover, the underdetermined nature of the optical flow estimation problem imposes
to add some prior information about the sought motion field. In many contributions
dealing with rigid-motion estimation, first-order regularization is considered with suc-
cess. However, when tackling more challenging problems such as motion estimation
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of turbulent fluids, this simple prior turns out to be inadequate. Second-order regu-
larizers [5, 16, 17], or a first order regularizer [7] allowing to enforce physically-sound
properties of the flow, are considered; but their implementation raises up several issues.

In this paper, we propose an optical flow estimation procedure based on a wavelet
expansion of the velocity field. This approach turns out to offer a nice mathematical
framework for multi-resolution estimation algorithms, which avoids some of the draw-
backs of the usual approach. Note that algorithms based on wavelet expansion of the
data [1], of the velocity field [15] or even both [4] have been previously proposed. How-
ever, unlike the algorithm presented hereafter, their computational complexity and/or
lack of multiscale mechanism significantly limits their application to small images and/or
the estimation of the coarsest motion scales in [15], and might raise up issues when
dealing with large displacements in [4]. Finally, the multi-scale wavelet framework also
suggests a very simple regularization by neglecting smallest scales coefficients; it turns
out to be particularly adapted to “smooth enough” motions.

This article processes as follows: Sec. 2 recalls concepts behind optical flow estima-
tion. Sections 3 and 4 introduce the wavelet framework, then describe its integration
into the optical flow problem and the implementation of the resulting algorithm. Be-
havior and efficiency of the proposed estimator are finally assessed in Sec. 5 and 6,
using both synthetic and real flow visualization images.

2. Optic Flow Problem

The optical flow problem consists in estimating the apparent 2D displacement within
a 3D scene depicted by a sequence of images, e.g. obtained from a camera. The time-
and space-variations of an observable image quantity, e.g. its brightness, are used to
infer the underlying motion. In the following, we denote by I(x, t) the brightness of the
image at pixel x ∈ Ω, with Ω ⊂ R2 the image domain, and at a discrete time t ∈ N. The
optical flow, as a 2D vector field v(x, t) : Ω × N 7→ R2, is the projection on the image
plane of the actual 3D motion. It is a dense field, since it provides one velocity vector
per pixel of the input images. The optical flow estimation involves two main aspects:
the data term, which links the motion v to be estimated to the input data – here, image
brightness I –, and a regularization mechanism to overcome the ill-posedness of the
problem.

2.1. Data Term

Data terms are built upon assumptions on the behavior of the observed image quan-
tity. The most simple and most widely used is a conservation assumption of the image
brightness:

dI

dt
(x, t) =

∂I

∂t
(x, t) + v(x, t) · ∇I(x, t) = 0 . (2.1)

Its time integration leads to the well-known displaced frame difference (DFD). Let us
denote by I0(x) , I(x, t) and I1(x) , I(x, t + 1) the brightness of two consecutive
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images from the sequence. Under stable lightning conditions and the hypothesis of
conservative transport of the image brightness by a velocity field v(t) = v = (v1, v2)T

constant in the time range between the two consecutive images I0, I1, the velocity field
v satisfies the DFD equation:

∀x ∈ Ω, I0(x)− I1(x + v(x)) = 0 . (2.2)

The estimated optical flow is then obtained via a minimization problem of the form

v̂ = argmin
v

JDFD(I0, I1,v) , (2.3)

where the functional JDFD may write:

JDFD(I0, I1,v) =
1
2

∫
Ω

[I0(x)− I1(x + v(x))]2 dx . (2.4)

Alternatively to quadratic penalization, robust functions (so-called M-estimators) can
be used to penalize discrepancies with respect to the brightness conservation model [2].

2.2. Regularization Mechanisms

The estimation problem defined by (2.3) is under-constrained, as there are twice
much unknowns (two velocity components) as equations (at each pixel). A common ap-
proach to close the problem consists in enforcing some spatial coherence to the solution.

Explicit regularization consists in adding another term to the functional (2.4),
balanced by a parameter µ. The estimation problem then writes

v̂ = argmin
v

JDFD(I0, I1,v) + µJreg(v) . (2.5)

A first-order regularizer, encouraging weak spatial gradients for both components v1

and v2, is often used since its introduction by Horn & Schunck [9]:

Jreg(v) =
1
2

∫
Ω
|∇v1(x)|2 + |∇v2(x)|2 dx . (2.6)

In particular, it constitutes a relevant regularization model for rigid motions.

Implicit regularization aims at reducing the number of unknowns by adopting a
parametric formulation for the optical flow motion: v(x) , Φ(x,Θ), where Φ is a
function parametrized by Θ. Estimation of the motion field v is then replaced by the
estimation of its parameters Θ, and the use of a low-order parametric representation
(such as piece-wise polynomials) drastically reduces the number of unknowns. The
solution then writes

v̂ = Φ
(
argmin

Θ
JDFD (I0, I1,Φ(Θ))

)
. (2.7)
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2.3. Known Drawbacks or Limitations

Previously introduced data model functional (2.4) is non-linear w.r.t. the velocity
field v, which in particular makes difficult the problem of large displacements estima-
tion. Therefore estimation of optical flow requires a specific optimization approach. A
standard method to tackle non-linearity is to rely on an incremental multi-resolution
strategy. This approach consists in choosing some sufficiently coarse low-pass-filtered
version of the images at which the linearity assumption is valid, and to estimate a
first displacement field assumed to correspond to a coarse representation of the motion.
Then, a so-called Gauss-Newton strategy is used by applying successive linearizations
around the current estimate, together with a warping procedure accordingly to a hier-
archical image representation of increasing resolution. More explicitly, let us introduce
the following incremental decomposition of the displacement field at resolution† 2j :

vj = ṽj + v′j (2.8)

where v′j represents the unknown incremental displacement field at resolution 2j and
ṽj ,

∑
i<j Pj(v′i) is a coarse motion estimate computed at the previous scales; Pj(v′i)

denotes a projection operator which projects v′i onto the grid considered at resolution
2j . In order to respect the Shannon sampling theorem, the coarse scale data term is
derived by a low-pass filtering of the original images with a kernel‡ Gj , followed by a
subsampling of period 2j . Using (2.8), at coarse scale, image Ij(x) and the motion-
compensated image Ĩj(x) are then defined as:{

Ij(x) =↓2j ◦ (Gj ? I0(x))
Ĩj(x) =↓2j ◦ (Gj ? I1(x + ṽj(x))) ,

(2.9)

where ↓2j denotes a 2j-periodic subsampling operator. It yields a functional J j
DFD

de-
fined as a linearized version of (2.4) around ṽj(x):

J j
DFD

(Ij ,v′j) =
1
2

∫
Ωj

[
Ĩj(x)−Ij(x) +v′j(x) · ∇Ĩj(x)

]2
dx . (2.10)

Finally, the sought motion estimate v̂ is given by solving a system of coupled equations
associated to resolutions increasing from 2C to 2F :

v̂ = v′F + ṽF = v′F +
F−1∑
i=C

PF (v′i) ,

v′j = argmin
v′

J j
DFD

(Ij ,v′) ,∀j ∈ {C, · · · , F} .
(2.11)

where the finest scale s = 2−F corresponds to the pixel whereas the coarsest scale is
noted s = 2−C . In practice, equations in (2.11) are usually solved successively, starting

†In this paper, we shall use the following convention: indices j ≥ 0 represent the resolution 2j . Corre-
sponding scale is 2−j .
‡A Gaussian kernel of variance proportional to 2j is commonly used.
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from the coarsest to the finest scale. This coarse-to-fine approach has the drawback of
freezing (i.e. leaving unchanged), at a given scale, all the previous coarser estimates.
Moreover, the major weakness of this strategy is the arbitrary approximation of the
original functional in (2.4) by a set of coarse scale data terms (2.10), which are defined
at different resolutions by a modification of original input images with (2.9) and by a
linearization of model (2.2) around the previous motion estimate. Authors in [3] have
nevertheless successfully given a theoretical formulation of the warping strategy. In the
next sections, we will see that the framework of wavelet representations also offers an
mathematically-sound formulation, as already investigated in [15].

3. Wavelet Formulation

The wavelet framework introduces a decomposition of a signal into several sets of
details at various scales and a remaining coarse approximation. The projection of the
two components v1, v2 of the velocity field v onto such multi-resolution approximation
spaces proves to be efficient within the context of optical flow estimation, enabling to
handle large displacements while providing a simple implicit closure to the problem
(Sec. 2.2). Let us first recall the main characteristics of the wavelet formalism for real
scalar signals.

3.1. Wavelet Formalism

Multiresolution approximations We consider a multi-resolution approximation of
L2(R) a sequence {Vj}j∈Z of closed subspaces, so-called approximation spaces, notably
verifying§

Vj ⊂ Vj+1 ;

lim
j→−∞

Vj =
+∞⋂
j=−∞

Vj = {0} ;

lim
j→+∞

Vj = Closure

 +∞⋃
j=−∞

Vj

 = L2(R) .

Since approximation spaces are sequentially included within each other, they can be
decomposed as Vj+1 = Vj ⊕Wj . Those Wj are the orthogonal complements of approx-
imation spaces, they are called detail spaces.

In practice, signals have a finite number of samples. We consider those signals to
be defined on a discretization of unit segment [0, 1]; the resolution of this discretization
increasing with the number of samples. Let w[k] be an 2F -sample approximation, i.e.
∈ VF , of signal w(x):

w[k] = w(
k

2F
) = w(xk) , ∀ 0 ≤ k < 2F . (3.1)

§See [12] for a complete presentation of wavelet bases.
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Then, applying recursively the decomposition of approximation spaces Vj ,

w ∈ VF = VC ⊕WC ⊕WC+1 ⊕ · · · ⊕WF−1 ⊂ L2([0, 1]) , (3.2)

where C ∈ [0; · · · ;F − 1] denotes the coarsest scale considered, and F is the finest.

Wavelet bases The projection of w onto the set of spaces in (3.2) writes:

w(x) =
2C−1∑
k=0

〈w, φC,k〉L2 φC,k(x) +
F−1∑
j=C

2j−1∑
k=0

〈w,ψj,k〉L2 ψj,k(x) , ∀x ∈ [0, 1] . (3.3)

Here, {φC,k}k and {ψj,k}k are orthonormal bases of VC and Wj , respectively. They are
defined by dilations and translations¶ of the so-called scale function φ and its associated
wavelet function ψ. The representation of a signal projected onto the multi-scale wavelet
basis is given by the set of coefficients appearing in (3.3): aC,k , 〈w, φC,k〉L2 and
dj,k , 〈w,ψj,k〉L2 are approximation and detail coefficients, respectively.

Those results are extended to the case of 2D signals, in order to obtain separable
multi-scale orthonormal bases of L2([0, 1]2). With the isotropic 2D wavelet transform,
basis functions are obtained by dilations and (2D) translations of:

φ(x) , φ(x1)φ(x2); ψ1(x) , φ(x1)ψ(x2);

ψ2(x) , ψ(x1)φ(x2); ψ3(x) , ψ(x1)ψ(x2) .
(3.4)

3.2. Wavelet Data Term

Each scalar component vi of the velocity field is projected onto the multi-scale
wavelet basis. We denote by Θi the set off all coefficients – both approximation and
details – related to component vi, and ΘT =

(
ΘT

1 ,Θ
T
2

)
the superset of all coefficients

related to motion v. The reconstruction operation in (3.3) – from the wavelet basis to
the canonical basis – is linear, we denote by Φ its operator and write:

v(x) = Φ(x)Θ . (3.5)

One may already recognize the parametric form introduced in Sec. 2.2, although up to
now the number of unknowns does not change: there are as much coefficients in Θ as
scalar values in v. From there, we insert (3.5) into DFD equation (2.2), and the optical
flow estimation problem finally writes: v̂ = ΦΘ̂ ∈ VF

Θ̂ = argmin
Θ

JDFD(I0, I1,Θ) . (3.6)

¶Written in a general form fj,k(x) = 2j/2f(2jx− k).
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3.3. Implicit Regularization

In order to close the minimization problem, the number of unknowns has to be low-
ered. A very simple way to achieve this reduction consists in formulating the motion es-
timation problem on a truncated wavelet basis, i.e. by neglecting coefficients correspond-
ing to smallest scales. As a consequence, the solution v̂ belongs to a lower-resolution
space VL ⊂ VF . Details coefficients corresponding to the neglected detail scales (Wj ,
with L ≤ j ≤ F − 1) are set to zero. Writing Θ|j to describe the unknown coefficients
vector Θ having all finer scales than j cancelled, so that v = ΦΘ|j ∈ Vj ⊂ VF , the now
regularized optical flow problem reads:

v̂ = ΦΘ̂|L ∈ VL , L < F

Θ̂|L = argmin
Θ|L

JDFD(I0, I1,Θ|L) . (3.7)

From the dyadic structure of the wavelet decomposition, the number of coefficients is
multiplied by 4 whenever a new detail scale is added. As a consequence, it is theoretically
possible to estimate coefficients up to the penultimate small scale (Sec. 2.2), i.e. v ∈
VF−1. In practice, this remains often impossible due to underdeterminations in regions
of poor luminance contrast, or in areas where photometric gradients are aligned. As
a consequence, a lower value must be imposed. Obviously, adaptive strategies relying
on some sparsity constraint could be proposed; this requires however to setup schemes
allowing to fix locally the corresponding scales. This will not be explored in this study,
so we stick here to a global thresholding methodology. Finally, a full-scale estimation
(v ∈ VF ) requires the use of explicit smoothing terms, as previously mentioned in Sec.
2.2. The design of high-order regularization schemes for the proposed wavelet-based
estimator has been investigated in [10] and led to promising results; its description is
however out of the scope of this paper.

3.4. Properties of the Solution

The choice of the wavelet basis is of major importance, especially since smallest
scales are neglected. Indeed, the regularity of the solution, as well as the quantity of
energy “lost” from small scales cancellation, may highly depends on the wavelet basis,
through the number of vanishing moments.

Vanishing moments The notion of vanishing moments (VM) simply reflects the
orthogonality of a given wavelet function to polynomials up to a certain order:

ψ has n VM ⇔ 〈ψ, xp〉L2 =
∫
ψ(x)xpdx = 0 , ∀ 0 ≤ p < n . (3.8)

The number of VM is linked to the size of the support of basis functions φ, ψ: the
higher the number of VM, the wider the support. Hence it is also related to the wavelet
basis ability to cope with the previous underdetermination problem (referred to as the
“aperture problem” in optical flow literature).
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3.4.1. Polynomial approximations

From (3.8), a wavelet with n VM is hence orthogonal to any polynomial of degree
n − 1. Consequently, piecewise‖ polynomials of degree n − 1 belonging to VF are ex-
actly described in VF−1, since the elements of the basis that belong to its orthogonal
complement WF−1 have vanishing coefficients. Therefore v̂ ∈ VL, solution of (3.7), is a
piecewise polynomial of order n− 1 in VL+1 over the support of scaling functions.

3.4.2. Truncation error

Because of the energy conservation provided by the wavelet transform, truncating small
scales coefficients certainly introduces an error. Using the Lipschitz regularity of the
estimated motion, it is possible to obtain a bound for the number of VM, above which the
truncation error no longer depends on the number of VM, but on the motion regularity
only.

Lipschitz regularity The Lipschitz regularity gives a measure of the local regularity
of a given signal. A function w(t) is pointwise-Lipschitz α ≥ 0 at t0 if there exists a
local polynomial Pt0(t) of degree n = bαc and K constant such that

|w(t)− Pt0(t)| ≤ K|t− t0|α (3.9)

It is then uniformly-Lipschitz α over [a, b] if it satisfies (3.9) for any t0 ∈ [a, b], with K
independent of t0.

Coefficients decay and vanishing moments The uniform Lipschitz regularity of a
signal can be related to the decay across scales of its wavelet coefficients amplitude. Let
us consider a signal w ∈ L2([0, 1]), uniformly Lipschitz α over [0, 1], and its projection
on a wavelet basis. The wavelet has n vanishing moments and is Cn with fast decay
derivatives. At fine scales,

• if n < α, the decay of coefficient amplitude depends on n:∣∣∣〈w,ψjp〉L2

∣∣∣ = |dj,p| ∼ 2−j(n+1/2) ;

• if n ≥ α, it depends on α [12]:

∃A > 0 such that |dj,p| ≤ A2−j(α+1/2) .

‖On the support of {φF−1,k}.
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Consequences of the truncation The amplitude of truncated small-scales coeffi-
cients depends on either α the signal regularity, or n the number of vanishing moments
of the analyzing wavelet. Therefore the amount of energy lost by neglecting small scales
will depend either on the wavelet basis, when n < α, or on the signal regularity if n ≥ α.

Consequently, using a “high enough” number of vanishing moments should ensure
that the amount of neglected energy does not depend on the wavelet basis. The interest
of this simple rule however has to be balanced, since the increase of VM also results in
a significant increase of the computational burden, due to the wider support of basis
functions.

4. Implementation

4.1. Minimization

Multi-scale estimation Coefficients are estimated sequentially from the coarsest
scale C to the chosen finest one L < F , using a gradient-descent algorithm for the
minimization of the functional. At current scale j, C ≤ j ≤ L, the unknown vector
Θ|j includes all coefficients from coarse scale C to j, coefficients estimated at previous
coarser scales (C to j− 1) being used as the initialization point of the gradient descent.
This strategy enables to update (to correct) those coarser coefficients while estimating
“new” details at current scale j. In other words, the solution is sequentially sought
within higher resolution spaces VC ⊂ VC+1 ⊂ · · · ⊂ VL, which recalls the subspace
correction methods investigated in [14]. This way, the projection of the current solution
v̂ ∈ Vj onto every coarser space Vp with C ≤ p < j is constantly updated, contrary to
the standard incremental approach.

Gradient-descent algorithm At each refinement level j, minimization of functional
JDFD is efficiently achieved with a gradient-based quasi-Newton algorithm (l-BFGS)
[13], to seek the optimum Θ̂|j . For any coefficient θi,p ∈ Θi ⊂ Θ, it is straightforward
to show that

∂JDFD

∂θi,p
(I0, I1,Θ) =

〈
∂I1

∂xi
(·+ Φ(·)Θ) [I1(·+ Φ(·)Θ)− I0(·)] ,Φp

〉
L2([0,1]2)

(4.1)

where Φp is the wavelet basis atom related to θi,p. As a consequence, components of the
spatial gradient of the data-term functional are simply given by the coefficients resulting
from the projection on the considered wavelet basis of the two following terms:

∂I1

∂xi
(x + Φ(x)Θ) [I1(x + Φ(x)Θ)− I0(x)] , i = 1, 2 .

Note that conversely to the algorithm proposed in [15] which involves the Hessian matrix
to minimize an incremental quadratic error, here only the gradient is required; its
computation is efficiently achieved via the fast wavelet transform presented hereafter.
Therefore, the overall reasonable complexity of this algorithm does not restrict motion
estimation to the very coarsest scales and/or to images of small size.
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4.2. Fast Wavelet Transform

Evaluation of JDFD gradient and value requires the computation of motion-compensated
image I1(x + v(x)). Therefore each evaluation involves:

• two inverse wavelet transforms (one per scalar component), from Θ to v, in order
to compute I1(x + v(x));

• two forward wavelet transforms to compute gradient components, from (4.1).

The fast wavelet transform (FWT) uses the two-scales relation verified by scaling
and wavelet functions:

φ(x) =
√

2
∑
k∈Z

h[k]φ(2x− k) ; ψ(x) =
√

2
∑
k∈Z

g[k]φ(2x− k) . (4.2)

Sequences h[k] = 〈φ(x),
√

2φ(2x− k)〉 and g[k] = 〈ψ(x),
√

2φ(2x− k)〉 are called conju-
gate mirror filters. Those filters, as well as their time-reverses∗∗ h̄ and ḡ, enable the fast
implementation through filter banks of forward and inverse wavelet transforms using
decimation, expansion and (circular) convolution operations. For a given 2D signal of
N = 2F × 2F pixels and filters h, g of length K, forward and inverse transforms are
computed with fewer than 8

3KN operations – App. A.

Optimizing wavelet transform From the implicit regularization introduced in Sec.
3.3 and the sequential estimation process in 4.1, we see that most of wavelet transforms
(to reconstruct v or to compute gradient) involve several fine scales with null coefficients.
A very simple optimization consists in using “smart” filter banks which do not take null-
coefficients scales into account, thus saving 62.5% of operations at each step – see App.
A. Figure 1 shows the typical gain obtained thanks to the use of this modified filter
bank.

4.3. Pseudo-Code

Pseudo-code of the sequential estimation is presented Fig. 2. Contrary to local
approaches (patches) such as the well-known Lucas and Kanade [11], motion is searched
globally so the process can not be parallelized. However, the convolution-based wavelet
transforms makes it likely to be suitable for a GPU implementation. Furthermore, as
each pair is processed independently, long image sequences can be processed efficiently
on multicore computers. At the moment, this algorithm has been implemented in
C++, using libLBFGS [13] for the optimization routines, CImg for the image processing
aspects and a custom wavelet library. Much low-level optimization is still to be done;
computation time for a single image pair is of order 5− 30s for 256× 256px images of
Sec. 5.

∗∗More explicitly, f̄ [n] = f [−n].
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Figure 1: Typical gain observed by the use of a modified filter bank, to save computa-
tions by excluding null-coefficients scales. When one scale only is empty, the observed
gain is ' 55%, below the theoretical 62.5%.

//−−−parameters
I0 , I1 ; // input images o f s i z e 2F × 2F

L ; //motion f i n e s t e s t imated sca l e , 0 ≤ L < F
C; //motion coa r s e s t s c a l e cons idered , 0 ≤ C ≤ L

//−−−l oop over s c a l e s
for ( s=C; s<=L ; s++){

Θ|s,0 := ( s>C)? Θ̂|s−1 : 0 ; // s t a r t i n g po in t
Θ̂|s := l−BFGS_min(JDFD(I0, I1,Θ|s) ,Θ|s,0 ) ;

}
return ΦΘ̂|L ;

Figure 2: Sequential Estimation Pseudocode

5. Validation with Synthetic Data

Influence of parameters L (finest estimated motion scale), C (coarsest scale consid-
ered) and n (number of vanishing moments) on the estimated motion are characterized
by several experiments in Sec. 5.2, 5.3 and 5.4. The choice of the wavelet family is then
discussed in Sec. 5.5. Finally two image sequences of 100 frames long are processed.
Results are compared to other state-of-the-art estimators.

5.1. Input Data

This algorithm has been originally designed to extract motions from sequences of
fluid flow images such as satellite and lidar imagery or fluid flow visualization tech-
niques, e.g. particle imagery velocimetry (PIV), Schlieren photography or laser-induced
fluorescence (LIF). The following experiments investigate the capacities of the proposed
algorithm, when applied to images resulting from two characteristic types of flow visual-
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ization methods: flows seeded with particles (hereafter referred to as “particle images” or
as PIV) and passive scalar advection (called “scalar images”). Particle images are highly
textured (see Fig. 3a for a synthetic image or Fig. 10b for a real one), hence particularly
well suited to the optical flow computation. On the contrary, scalar advection-diffusion
pictures (synthetic example Fig. 3c) present much more almost-constant-value areas.
Besides, the brightness conservation assumption (2.1) is not respected due to the diffu-
sion process; this makes scalar images far more difficult to process.

The first data set used for evaluation is a synthetic sequence of PIV images of size
256× 256 pixels (i.e. finest scale available F=8), representing small particles (of radius
smaller than 4 pixels) advected by a forced 2D turbulent flow with periodic boundary
conditions. The dynamic of the fluid flow is supplied by a numerical simulation of
2D Navier-Stokes equations at Re = 3000, using the vorticity-velocity formulation and
the Lagrangian equation for non-heavy particles transported by the flow (simulation
details can be found in [8]). This simulated flow has a null-divergence by construction.
It features relatively small displacements, with a maximum magnitude of 3.5 pixels.
Most of the following experiments used the two first frames of the sequence; the whole
100-frame sequence being processed at last. First image I0 is displayed in Fig. 3a. The
underlying ground-truth flow motion, that is supposed to be recovered from optical flow
estimation, will be referred to as vref hereafter; its vorticity (i.e. the curl of the velocity
field) is displayed in Fig. 3b. Estimated velocity field evaluation is based on the Root
Mean Square end-point-norm Error (RMSE).

The second dataset consists in a synthetic sequence of images depicting the advection-
diffusion of a passive scalar transported by the same 2D flow described above. A sample
frame is presented Fig. 3c.

5.2. Influence of the Truncation

The finest estimated scale parameter L fixes the approximation space VL ∈ VF in
which the solution is sought. Its choice is a tradeoff between the need to reduce the
number of unknowns, in order to close the estimation problem, and the will to estimate
the finest scales of the motion. Figure 4 presents a 2D-plot of RMSE values as a
function of the number of VM and the finest scale L. For this benchmark, it appears
that minimum of RMSE are obtained in the region corresponding to L=5 and 6. As
expected from remarks in Sec. 3.3, best results are obtained with L = 6 = F − 2, i.e.
v̂ ∈ V6 (and a number of VM n > 4, the influence of which being discussed in Sec. 5.4).
This corresponds to a number of unknowns reduced by 87.5%.

A similar analysis carried out on scalar images gives L = 5 as the optimal value
of this parameter. As previously mentioned, scalar diffusion images have much more
low-gradient areas (Fig. 3c). Uncertainties due to these low gradients arise sooner than
with particle images (as we proceed towards finer scales), therefore it is not surprising to
find that the optimum solution space is coarser with scalar images than with particles.
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5.3. Importance of Multiscale Bases

Having chosen the fine scale parameter L, we may now wonder whether the vari-
ous equivalent bases of space VL lead to identical solutions. Indeed, thank to wavelet
formalism (3.2), several multiscale decompositions of VL may be considered:

VL = VL−1 ⊕WL−1

= VL−2 ⊕WL−2 ⊕WL−1

= · · ·
= VC ⊕WC ⊕ · · · ⊕WL−1

= V0 ⊕W0 ⊕W1⊕ · · · ⊕WL−1.

(5.1)

Parameter C (coarsest scale considered) fixes the number of scales comprised within
coarse approximation space VC , and the number of remaining detail scales (L−C). The
closer is C to L, the lesser is the number of detail scales to be estimated sequentially
(algorithm Fig. 2). This choice has two main consequences:

(i) with C close to L, there are less steps in the sequential optimization process.
Moreover, forward and inverse wavelet transforms require less operations, resulting
in an overall much faster process;

(ii) however, in the presence of strong non-linearities, in particular for large displace-
ment, a high value of C will result in the impossibility to capture those high-
amplitude motions.

This is studied by adding a mean displacement of magnitude ' 8.5 pixels to the
reference motion vref presented above (Sec. 5.1). This large-magnitude motion will be
referred to as ṽref hereafter. Figure 5 shows plots of RMSE as a function of parameters
(L,C) for both motions estimated on a 5 VM wavelet basis, according to observations
from Sec. 5.2.

Experiments confirm previous results (Sec. 5.2): optimum is obtained for L = 6
for both cases. Regarding vref estimation (reasonably small displacements), estimated
motions v̂ are identical for any C ∈ [0; 5]. From above remark (i), the best choice of
parameters is therefore (L,C) = (6, 5), i.e. a coarse approximation and 1 scale of details
only. However, those same parameters used for ṽref estimation (large displacements)
result in a complete failure, which confirms remark (ii). Here the available range is
C ∈ [0, 2], the optimum choice being (L,C) = (6, 2), i.e. 4 detail scales considered. This
lower value of C results in a twice longer computation time.

These results suggest that a sequential estimation on a multiscale basis is always
preferable to a single-step estimation on the equivalent (monoscale) basis. Indeed es-
timating vref directly in V6 (parameters (6, 6)) fails, but choosing instead a 2-step es-
timation in V5 ⊕W5 = V6 (parameters (6, 5)) leads to proper convergence. Moreover,
the choice of coarse approximation space VC strongly influences the success of the es-
timation process. With larger displacements, it is necessary to consider low values for
C: basis functions with a larger support are required to capture the high-amplitude
motions.
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5.4. Influence of the Number of Vanishing Moments

From remarks in Sec. 3.4, the number of vanishing moments influences the regularity
of the solution as well as the reconstruction error and the computation time.

Figure 6 takes estimated motions v̂ ∈ V6 and projections of vref onto V6: vref|6 ,
PV6(vref) (by canceling small scales coefficients in W6 and W7), obtained using different
numbers of VM. Those two motions are compared to the ground truth motion vref , in
terms of RMSE and kinetic energy. RMSE values (Fig. 6a) rapidly decrease as the
number of VM increases, converging towards 0.089 and 0.014 pixels for v̂ and vref|6,
resp. Regarding the kinetic energy (Fig. 6b), the percentage w.r.t. vref of kinetic energy
contained by motions v̂ and vref|6 also rapidly converges towards 98.5% and 99.98%,
resp.

Those results indicate that vref|6 is a “reasonably good” approximation of vref , using
a wavelet with n > 4 VM, since in that case the two finest scales that were cancelled
by the projection contain only ' 0.02% of the overall kinetic energy. However, it
appears that our estimations v̂ never manage to reach the quality of vref|6, either in
terms of RMSE or energy. This remaining gap can be explained by looking at maps
of end-point-norm error obtained for n = 1 and n = 20 VM – Fig. 7. Only small
structures, tube-shaped, are not estimated using n = 20. This is notably due to a lack
of information at small scales in the input images: the smallest motion structures are
not necessary “visible” (detectable) from particles displacement. Those small structures
might need more elaborate, physically-sound regularization terms to be recovered.

Figure 8 shows the evolution of the computation time as a function of the number
of VM n, for couples (L,C) = (6, 5) and (6, 0) and using either usual or “smart” filter
banks (Sec. 4.2). As already pointed out in Sec. 5.3 - (i), picking C = 5 instead of
C = 0 results in a significative drop of the computational burden (∼ 60% decrease) .
Reducing n by 1 has a much lower impact (∼ 5% decrease). The use of smart filter
banks also contributes to reduce the computational burden, from a ∼ 10% decrease at
small VM up to 50% for higher values.

5.5. Influence of the Wavelet Family

Several orthogonal wavelet families have been implemented for this study:

(i) Daubechies wavelets, known for having the shortest compact support for a given
number of VM (less computations);

(ii) Coiflets, which feature a compact support as well as interpolating scaling func-
tions;

(iii) Battle-Lemarié wavelets, polynomial splines with fast decay but no compact sup-
port.

Previous experiments used Daubechies wavelets, since filters are available for a wide
range of VM. Tab. 1 shows RMSE obtained using those three wavelet families, for
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(L,C) = (6, 0) and VM n = 2, 4, 6. The improvement brought by the use of more
elaborate bases is somewhat negligible (' 2%), regarding especially the computation
time which increases very quickly due to much larger supports (e.g. +55% with Battle-
Lemarié instead of Daubechies wavelets, n = 6 VM).

Family \ VM 2 4 6
Daubechies 0.11 0.091 0.090
Coiflets 0.096 0.091 0.089
Battle-Lemarié 0.092 0.088 0.088

Table 1: RMSE obtained using different wavelet families, for n = 2, 4, 6 VM.

5.6. Comparison to State-of-the-Art

A total of 100 frames from both sequences of particle (Fig. 3a) and scalar advection-
diffusion (Fig. 3c) images have been processed. Figure 9 compares results, in terms of
RMSE, of the proposed wavelet-based estimator using parameters (L,C) = (6, 5) and
() and n = 20, to those of several state-of-the-art estimators. Results are projected
to the null-divergence space when necessary, in order to compare all methods on the
same basis; this applies as well to our estimator. Regarding the particle image se-
quence, our algorithm clearly outperforms most of other estimators and compete on
par with [7] which use a far more complex self-similarity prior. However, results of
the scalar advection images are worse than those obtained by any other estimator, ex-
cept the correlation-based method. Scalar advection pictures are much less textured
than particle ones, thus more difficult to process due to the aperture problem. More
elaborate regularization mechanisms, using for instance the aforementioned prior on
self-similarity [7], on the power spectrum [6] or exact high-order regularization [10] are
required in order to obtain more acceptable estimates.

6. Results on Real Images

Performances of the algorithm are then assessed on actual PIV images, which were
acquired and kindly provided by D. Heitz and A. Guibert, from IRSTEA Rennes. The
sequence of 1024 × 1024 pixels frames depicts the classical case of a cylinder wake at
Reynolds number Re = 3900. Configuration of the experiment and a sample frame
subregion are shown Fig. 10. The whole sequence has been processed; several estimated
motions corresponding to a single image pair are compared in Fig. 11. No ground truth
is available here. In order to highlight the differences between the different solutions,
estimated motions are compared on the basis of their vorticity. This differential quantity
enlightens the structures of the flow and also emphasizes its local variations. Several
estimates with n = 10 VM and decreasing parameter L are presented, as well as an
estimate obtained from a similar yet more elaborate wavelet-based estimator featuring
explicit second-order smoothing terms [10], and a last estimate given by correlations
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method. With L = 5 (Fig. 11a), motion structures look too coarse when compared
to the estimate with explicit smoothing (Fig. 11e). However we can see this solution
corresponds quite well to the motion provided by the correlations technique (Fig. 11f),
but with much more regularity. Setting L = 6 enables to retrieve more structures than
the correlations, yet structures still look too coarse. Increasing further the number
of estimated scales (L = 7, 8) enables to recover some finer structures, however the
vorticity now presents an increasing noisy aspect. It corresponds to local variations
of the motion field that are consequences of poorly-estimated fine scale coefficients,
due to the ambiguities arising from the aperture problem. Consequently, taking the
vorticity aspect as a quality criterion, the use of an explicit smoothing term (Fig. 11e)
is mandatory in order to properly estimate finest scales. Here, the best compromise
with our simple estimator is probably L = 6. It is remarkable to note that this estimate
has exactly the same number of unknowns as the correlation results (Fig. 11f): 2×4096,
i.e. 0.4% of the total unknowns for a full fine-scale estimation. Yet structures are better
shaped and the whole vorticity field is not too noisy.

This sequence is made of 3072 frame pairs in total. Processing such a large amount
of data takes a long time, hence it might be advantageous to optimize parameter C
prior to start working on the whole sequence. How to proceed, when no ground truth
is available? Having fixed fine scale parameter L = 5, we may solve, for a single image
pair, the optical flow problem for every coarse scale parameter C ∈ [L; 0]. Then, we
compare these various solutions between each other. Under the hypothesis that there
exists a range for parameter C for which the solution is identical, the upper bound of
this range gives as a rule of thumb the optimal parameter in terms of computing time.
Indeed, experiments on a single image pair give identical estimates for C ∈ [0, 3]. Hence
C = 3 is the optimal parameter, since it minimizes the number of steps and the cost of
wavelet transforms: computing time drops by 58% with respect to C = 0 solution.

Conclusions

We introduced an optical flow estimation algorithm based on the wavelet expan-
sion of the velocity field. The multi-scale framework brought by the wavelet formalism
enables to design a simple multi-scale motion estimation algorithm, without requiring
to resort to the standard incremental approach. A simple closure is provided by ne-
glecting small scales coefficients, the truncation error being independent of the number
of vanishing moments. The use of a gradient-based optimization method avoids the
cumbersome computation of the Hessian matrix, hence enabling to process large images
up to relatively fine scales. Evaluation of the gradient is done through forward wavelet
transforms, the later being optimized to reduce computations. The proposed method is
evaluated on fluid flows image sequences; it proves to be surprisingly efficient on particle
images, but fails to process less textured scalar-advection pictures. This algorithm is
however generic enough and should not be restricted to fluid flow images processing;
it shall be well-adapted to estimation of any kind of “relatively smooth” motions for
which the small-scales truncation is relevant. The main issue remains the choice of
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the truncation scale; a criterion could probably be derived from the analysis of input
image gradients. More complex estimators, allowing a full estimation up to finer scales
and featuring explicit high-order regularization schemes based on wavelet coefficients
properties, are being investigated [10].
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A. Gain from Smart Filter Banks

We consider filters h, g of length K and a current approximation aj at a given scale
j ≥ 0 (i.e. with 2j × 2j coefficients). Applying one step of the decomposition filter bank
requires 8K22(j−1) multiplications, using the factorized form:

(i) for each of the 2j rows:

• 2(j−1) convolutions with h̄;

• 2(j−1) convolutions with ḡ;

which give 4K22(j−1) multiplications;

(ii) for each of the 2× 2(j−1) columns:

• 2(j−1) convolutions with h̄;

• 2(j−1) convolutions with ḡ;

giving again 4K22(j−1) multiplications;

So that the grand total is 8K22(j−1) multiplications. For an input image of N = 2F ×2F

pixels, iteration of the filter bank to reach coarse scale C gives an upper bound of 8
3KN

operations. Then, by dropping computation of details dij :

(i) for each of the 2j rows:

• 2(j−1) convolutions with h̄;

which give 2K22(j−1) multiplications;

(ii) for each of the 2(j−1) columns left:

• 2(j−1) convolutions with h̄;

which give K22(j−1) multiplications;

then the total number of required multiplications drops down to 3K22(j−1), hence saving
62.5% of multiplications at each step involving useless details. A step of the reconstruc-
tion filter bank to get aj from aj−1 (and eventually {d1

j−1, d
2
j−1, d

3
j−1}) requires the same

amount of operations for both cases.
In practice, several scales – at least 2 – of null-coefficients are considered. These

coefficients of the 2 finest scales represent 87.5% of the total, therefore the overall
decrease in computation brought by the use of those detail-less filter banks is significant
– Fig. 1.



NM 19

(a) (b) (c)

Figure 3: The first frame of the synthetic PIV image sequence (a) with the vorticity
of the underlying reference velocity field vref (b). A sample frame from the synthetic
passive scalar advection-diffusion sequence (c).

(a) (b)

Figure 4: RMSE between estimated v̂ and reference motion vref as a function of the
number of vanishing moments (VM) and the finest scale L, with C = 0 here. Region of
interest, with RMSE < 0.1 pixel, is colored in red. It corresponds to L = 5; 6. Fig. (b)
plots slices from Fig. (a) taken at L = 5 (red) and 6 (blue).
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Figure 5: RMSE between estimated v̂ and reference motions vref and ṽref as a function
of parameters L (finest motion coefficients scale 2−L, horizontal axis) and C (coarsest
motion coefficients scale 2−C , vertical axis), with L ≥ C. Low RMSE regions are
colored in red. Left graph shows results obtained for vref (reference motion), right
graph presents results for ṽref (large magnitude). Optimum couples of parameters, in
terms of RMSE and computing time, are indicated for both cases by yellow stars.

(a) (b)

Figure 6: Experiments on the influence of the number of VM, for a given couple
(L,C) = (6, 0). Estimation results v̂ and “truncated” reference motion vref|6, both ∈ V6,
are compared to ground truth motion vref . Fig. sub6a compares RMSE of estimations
(red) and truncated truth (blue). We observe a rapid convergence towards asymptots
at 0.089 and 0.014 pixels for estimation and truncated truth, resp. Fig. (b) shows the
kinetic energy of v̂ (red) and vref|6 (blue) as a percentage of vref energy. We observe
again a rapid convergence towards 98.5% and 99.98% for estimation and truncated
truth, resp.
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(a) (b)

Figure 7: Experiments on the influence of the number of VM. End-point-norm error
maps obtained for estimates with (L,C) = (6, 0), n = 1 (left) or n = 20 (right). Only
small, tube-shaped structures remain un-estimated with n = 20.

Figure 8: Experiments on the influence of the number of VM on the estimation com-
puting time, using usual filter banks (blue) or “smart” ones (red), for (L,C) = (6, 5)
(solid line) and (6, 0) (dashed line). Estimated motions are almost the same, in terms of
RMSE, for any number of VM n > 4, any of the two couples (L,C) and of course any of
the filter bank employed – the part of the graph located right of the vertical black line.
Computation times are normalized w.r.t. optimum parameters, i.e. (L,C)=(6,5), n = 5
and smart filter bank. This reference time corresponds to Using usual filter banks, the
computational burden rapidly increases with the number of VM, especially with low C
(dashed blue line). This can be tempered by the use of smart filter banks (dashed red)
and/or by choosing a higher value for C (solid lines).
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Figure 9: The two sequences introduced in Sec. 5.1 are processed with parameters
(L,C) = (6, 5) and n = 20 for particles, (L,C) = (5, 5) and n = 5 for scalar images.
Results (in thick brown) are compared, in terms of RMSE, to those of other estimators
from state-of-the-art: correlation (gray), first order regularization [9] (green), div-curl
regularization [16] (blue), multi-scale regularization [7] (purple). Fig. (a) shows particles
images results, Fig. (b) concerns passive scalar advection.
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Figure 10: Configuration of the cylinder wake experiment (a); a 256 × 256 pixels sub-
region (1/16 of the total area) of a sample of PIV image (b).

(a) L = 5 (b) L = 6

(c) L = 7 (d) L = 8

(e) Order 2 smoothing (f) Correlations

Figure 11: Vorticity comparison. Estimates (a), (b), (c), (d) are obtained with proposed
estimator, varying parameter L. Motion (e) is obtained with a more evolved estimator
featuring explicit smoothing terms [10]. Last estimate (f) is a reference given by the
correlation-based method.


