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ABSTRACT
In the context of tackling the ill-posed inverse problem of motion estimation from
image sequences, we propose to introduce prior knowledge on flow regularity given by
turbulence statistical models. Prior regularity is formalized using turbulence power
laws describing statistically self-similar structure of motion increments across scales.
The motion estimation method minimizes the error of an image observation model
while constraining second order structure function to behave as a power law within a
prescribed range. Thanks to a Bayesian modeling framework, the motion estimation
method is able to jointly infer the most likely power law directly from image data. The
method is assessed on velocity fields of 2D or quasi-2D flows. Estimation accuracy
is first evaluated on a synthetic image sequence of homogeneous and isotropic 2D
turbulence. Results obtained with the approach based on physics of fluids outperforms
state-of-the-art. Then, the method analyzes atmospheric turbulence using a real
meteorological image sequence. Selecting the most likely power law model enables the
recovery of physical quantities which are of major interest for turbulence atmospheric
characterization. In particular, from meteorological images we are able to estimate
energy and enstrophy fluxes of turbulent cascades, which are in agreement with
previous in situ measurements.

1 Introduction

Images constitute important data for studying geophys-
ical flows since they can characterize a large range of spatial
scales in comparison to sparse information provided by stan-
dard point measurement techniques.

Correlation-based techniques are common inverse ap-
proaches to extract sparse velocity fields from image se-
quences. These methods penalize deviations from constant
flows over a spatial window and from the brightness preser-
vation of the tracer along its trajectory (Leese et al., 1971).
Such methods have demonstrated their robustness and
accuracy for velocity measurement in experimental stud-
ies (Adrian, 1991). However, correlation is not a physical-
based image observation model, and is particularly limited in
the context of geophysical flows (e.g., because of small scale
intermittency and three-dimensional effects). Moreover, the
assumption of local constant motion gives rise to an intrin-
sic measurement scale bound associated to the correlation
window size and an artificial regularity of the flow. In partic-
ular, for low-contrast observations such as satellite images,
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correlation-based methods are considerably limited and pro-
vide only very sparse motion fields.

In computer vision, estimating the projected apparent
motion of a 3D scene onto the image plane, refereed in the
literature as optical-flow, has been an intensive subject of
research since the 80’s and the work of Horn and Schunck
(1981). The inverse motion modeling proposed in this sem-
inal work is formulated in a differential framework enabling
the easy introduction of a physical-based direct observation
model (relying on brightness preservation, mass conserva-
tion, scalar transport, etc.) adapted to the particular image
data at hand (Fitzpatrick, 1988; Heas et al., 2007a; Heas
and Memin, 2008; Liu and Shen, 2008). The model links the
motion field to the image intensity function. However, these
models are insufficient for fluid flow estimation since they
are ill-conditioned, as they are generally constituted at each
point of a scalar equation for two unknowns. The introduc-
tion of regularization constraints is required to remove the
motion ambiguities and achieve inversion. Common spatial
regularizers may introduce measurement inaccuracy since
they impose in a small spatial neighborhood a prior smooth-
ness which may improperly describe the regularity followed
by fluid flows. Moreover, they strongly depend on a tuning
parameter weighting the amount of smoothing required to
cure the ill-posed nature of the inverse motion problem. For
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large values of this parameter (which is almost unavoidable
when facing noisy images or with low photometric contrast),
the solution tends to be too smooth and presents sometimes
lack of accuracy at large scales. Alternatively, dynamical
constraints embedded in variational assimilation frameworks
have recently been proposed for geophysical flow estimation
(Papadakis and Memin, 2008; Corpetti et al., 2009). Unfor-
tunately, these method rely only on a large scale dynamical
model, which is not valid at the pixel level.

This work aims at showing how it is possible to alle-
viate these limitations in coupling two main ingredients:
turbulence statistical modeling and Bayesian inference. In
the one hand, important advances have been done in the
statistical modeling of turbulence since the precursor work
of Kolmogorov in 1941 (see e.g., Kraichnan (1967); Frisch
(1995); Kurien et al. (2000); Falkovich et al. (2001); Lind-
borg and Cho (2001)). In particular, it has been shown from
the Navier-Stokes equations for different flows that turbulent
motion regularity can be characterized using some (assumed
universal) scaling properties of the Probability Distribution
Function (PDF) of motion increments. In the other hand,
Bayesian modeling enables the reconstruction of complex
physical processes in the presence of incomplete observations
and prior geophysical scalings (Berliner et al., 1999; Wikle
et al., 2001; Hoar et al., 2003). Moreover, this framework
results in the design of non-parametrical methods and pro-
vides reliable model selection tools given some data (Gull,
1989; MacKay, 1992; Jaynes, 2003; Robert, 2007).

To be more precise, in this work we propose a method
for motion estimation and turbulence characterization which
exploits simultaneously two ideas: the use of turbulence scal-
ing laws for motion regularization in optic-flow inverse prob-
lems; and the selection by Bayesian evidence maximization
of the most appropriate power law model describing the im-
age intensity function. The resulting frame-to-frame regu-
larization is built from the physics of fluids, and involves
neither dynamical constraints nor an adjoint model within
a variational assimilation framework. It is intrinsically mul-
tiscale as it controls the solutions within a prescribed scale
range. It is also non-parametric in the sense that it does
not involve the tuning of any smoothing parameters. Fi-
nally, it allows as a by product the recovery of some im-
portant quantities for turbulence characterization such as
energy flux across scales.

After validating the method using synthetic images
from numerical simulations of 2D turbulence, we use the
proposed regularization model to analyze data from meteo-
rological image sequences. Recovered atmospheric quantities
such as the energy and enstrophy flux are shown to be in
good agreement with in situ measurements. Moreover, re-
constructed second and third order structure functions and
PDFs of velocity increments are consistent with previous
analysis using aircraft data (Lindborg, 1999; Lindborg and
Cho, 2001). We believe that those first results demonstrate
the potential of image-based techniques in complementing
other measurements for geophysical studies.

The paper is organized as follows. In section 2, we briefly
overview optic-flow methods and review the motion scaling
properties developed in theoretical works on turbulence. In
section 3, self-similar regularizers are briefly introduced. Fi-
nally, the synthetic and real world experiments on mete-
orological image data are presented, followed by the con-

clusions. Details of the model, of the multiscale constraint
minimization problem, and of the use of Bayesian evidence
for the optimal selection of the prior self-similar model are
given in the Appendices.

2 Related work

2.1 Optic-flow methods

This section briefly describes some solutions for the
computation of velocity fields from image sequences. Inter-
ested readers may refer to an extended review (Heitz et al.,
2010) for a more complete account of different techniques
proposed in the literature and the description of some new
trends based on variational assimilation processes.

2.1.1 Image observation model: Motion perceived
through image intensity I(x, t) variations and the projec-
tion on the image plane of the velocity field v = (u, v) are
identical when considering rigid motion and stable lighting
conditions. In this situation, motion v respects the standard
Optical Flow Constraint (OFC) equation which reads:

dI

dt
=
∂I

∂t
+∇I · v = 0. (1)

For fluids, this equation remains valid in the theoretical case
of 2D incompressible flows. This case is relevant for many
geophysical applications which are quasi-2D, as e.g., in me-
teorology and oceanography (Pedlosky, 1987). For shallow-
water flows visualized in a projected image plane, authors
in Liu and Shen (2008) derived a physics-based image ob-
servation model using the scalar transport equation which
reads:

∂I

∂t
+∇I · v + I∇ · v = κ∆I. (2)

where κ denotes a diffusion coefficient. For layered geophys-
ical flows, based on the mass conservation principle, a non-
diffusive model analogous to (2) has been proposed in the
literature to link the image intensity function I to a verti-
cally averaged horizontal velocity field v (Heas et al., 2007a;
Corpetti et al., 2009): However, all these observation models
remain underconstrained, as they provide only one equation
for two unknowns (u, v) at each spatio-temporal location
(x, t).

2.1.2 Standard regularization constraints: To deal with
this underconstrained estimation problem, an additional set
of constraints have to be satisfied by the sought velocity
field.

In the standard computer vision literature, dealing with
frame-to-frame motion estimation in natural scenes, these
constraints are usually chosen to enforce some spatial reg-
ularity of the solution. Global regularization schemes are
convenient to enforce global coherence via local spatial de-
pendencies. More precisely, estimation is performed through
the minimization of an energy functional composed of two
terms:

f(I,v) = fd(I,v) + αfr(v). (3)

The first term, fd(I,v) is the observation model also called
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data term. Its minimization penalizes discrepancies from the
observation models. As an example, relying on the OFC
equation and a quadratic penalization results in a data term1

fd(I,v)=
1

2

∫
Ω

(
∂I

∂t
+ v · ∇I

)2

dx. (4)

The second term, fr(v) (the “regularization term”), acts as
a spatial prior enforcing the solution to follow some smooth-
ness properties. The coefficient α (> 0) is a regularization
parameter that balances between smoothness and global ad-
equacy to the observation model. In this framework, Horn
and Schunck (1981) proposed a first-order regularization of
spatial components u and v of velocity field v:

fr(v) =
1

2

∫
Ω

(
||∇u||2+||∇v||2

)
dx (5)

However, motion gradient penalization is not well suited for
fluid flows as it penalizes in a homogeneous way the curl and
the divergence (Corpetti et al., 2002).

In the context of geophysical flows, second order spa-
tial regularizers on motion vorticity and divergence have
been proposed to overcome these limitations (Corpetti et al.,
2002; Yuan et al., 2007; Heas et al., 2007a). It is important to
outline that these spatial regularization constraints do not
rely on physical kinematics properties. At best they mimic
qualitative regularity properties of the physical system of
interest, i.e., coherent blobs of vorticity and divergence. Re-
cently, Corpetti et al. (2009) proposed to rely on large scale
dynamical constraints enforcing the temporal coherence of
the solution, since in geophysics there exist some fair ap-
proximations of the physical equations governing the flows.
The authors introduced a 4D variational assimilation tech-
nique to solve the motion estimation problem on a whole
image sequence subject to layered shallow-water dynamical
constraints. Unfortunately, this choice of constraints does
not entirely remove the underdetermination of the estima-
tion problem and still yields an infinite set of solutions. To
close the problem, Corpetti et al. (2009) needed to rely on
an additional local spatial regularization on motion mea-
surements (Lucas and Kanade, 1981) in consistency with a
filtered version of shallow water dynamics. By doing so, they
restricted themselves to the determination of the solution at
large scales (on a grid of a 100 kilometer resolution).

In summary, in frame-to-frame estimation or variational
image assimilation, there is actually a lack of physical con-
straints to solve at small scales the underconstrained fluid
motion estimation problem. However, as we will show in
the following, turbulence statistical models can provide the
needed closure.

1 Let us outline that in the case of large displacements, the

brightness constancy model (1) is generally replaced by its time-

integrated form I(x + vdt, t+ dt)− I(x, t) = 0 linearized around
some initial solution x + vdt. For the sake of clarity we will not

describe the time-integrated model further even if its application

is in practice essential to recover long range velocity fields (see
Heitz et al. (2010) and references therein).

2.2 Turbulence statistical modeling

Since experimental results at the beginning of the 20th
century, and later Kolmogorov’s theoretical works, turbu-
lent motion increments have been known to be structured as
nearly scale invariant spatial processes. In many turbulence
models, a quantity of interest is the longitudinal velocity in-
crement, which, in the direction of a unitary vector nθ, is
given by

δv‖(`,x, θ) = [v(x + `nθ)− v(x)] · nθ, (6)

where the scalar ` represents a spatial increment. In turbu-
lent studies homogeneity and isotropy are often assumed;
that is to say, it is considered that statistical properties
of the velocity field are invariant under translation of spa-
tial location x and rotation of direction nθ

2. Consistently
with these assumptions, the dependence on x and θ can be
dropped and moments of order p of the PDF of velocity in-
crements p`(δv‖) can be approached by spatial integration:

Sp(`) =

∫ [
δv‖(`)

]p
p`
[
δv‖(`)

]
dδv‖(`)

≈ 1

2π|Ω|

∫
Ω

∫
[0,2π]

[
δv‖(`,x, θ)

]p
dθ dx (7)

in two dimensions, and where |Ω| denotes the spatial domain
area. Sp(`) are the so-called longitudinal structure functions.

For 3D isotropic turbulent flows, Kolmogorov (1941)
demonstrated from the Navier-Stokes equations that the
third order moment of the PDF p`(δv‖), namely the third or-
der structure function, is linear w.r.t. scale and follows the
well-known “4/5 law”: S3(`) = − 4

5
ε` in the inertial range

(see e.g., Frisch (1995) for details on this demonstration).
The inertial range is defined as the range of scales [η, `0],
where η represents the largest molecular dissipative scale
and where `0 is smaller than the diameter L of the largest
vortex. Within this range, an energy flux cascades from large
to small scales. The kinetic energy dissipation rate ε corre-
sponds to this energy flux passed across scales which is then
evacuated at small scales by molecular viscosity.

Analogously, for pure 2D turbulence with energy injec-
tion at scale `0, Kraichnan (1967) demonstrated that two
different cascades are coexisting: a direct cascade of enstro-
phy (the L2 norm of the vorticity ω = ∇ × v) which sat-
isfies S3(`) = εω`

3/8 within the inertial range [η, `0], and
an inverse cascade of energy where S3(`) = 3ε`/2 within
the range [`0, L]. An enstrophy flux εω passes in the direct
cascade from large to small scales, whereas an energy flux ε
passes in the inverse cascade from small to large scales.

In the case of atmospheric turbulence, the actual scal-
ing laws constitute still open questions. Lindborg (1999)
and Lindborg and Cho (2001) consider scaling laws inferred
from aircraft measurements and propose an answer to the
question: “can atmospheric flow statistics be explained by
two-dimensional turbulence?”. The authors showed that, un-
der some isotropy assumption, the self-similar processes ob-
served in the aircraft data (Nastrom et al., 1984) at small
and at large scales can be modeled by the superposition of a

2 The hypothesis of isotropy can be relaxed, see e.g. Taylor et al.

(2003). The method to recover isotropic statistics described there

motivates the use of different directions for the displacements in
Section 3.1
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3D direct energy cascade and a 2D direct enstrophy cascade
so that

S3(`) = −ε`+
1

8
εω`

3. (8)

Aside from the problems to determine direction of en-
ergy and enstrophy cascades in atmospheric turbulence, it
should be mentioned that there are still several indepen-
dent exact relations that hold for the third-order structure
function and which predict power law behavior for several
flows of interest in atmospheric sciences (Monin and Yaglom,
1971; Kurien et al., 2000).

Going further, Kolmogorov assumed that the longitu-
dinal velocity increments were strictly self-similar to ex-
plain the scaling laws observed in many experiments. If this
is true, the normalized PDF of motion increments is self-
similar through scales. This implies that, in a given cascade,
the p-th order structure function follows a power law:

γp`
ζp ∼ Sp(`) = [S3(`)]p/3 ∼ γp` pζ3/3, (9)

with universal exponents ζp depending on space dimension,
and where the prefactors γp are a function of energy flux
ε (or enstrophy flux εω in two dimensions). A corollary of
the strictly self-similar assumption is that in inertial range
any 3D turbulent flow has a uniform Lipschitz regularity
of ζ1 = 1/3, while a 2D turbulent flow is characterized by
ζ1 = 1 (i.e., it is regular). However, it is now well known
that for 3D turbulence and for the direct cascade range of
2D turbulence, the Kolmogorov assumption deviates from
reality because of intermittency (tendency of the flow to
develop strong gradients at small scales). As a consequence,
only non-strict self-similarity can in reality be assumed. It
results that deviations on exponent values can be expected
for p 6= 3, although power law behavior in inertial range
still holds. The special case of the inverse cascade of 2D
turbulence must be remarked, as growing evidence indicates
that it is self-similar (Benzi and Scardovelli, 1995; Bernard
et al., 2006).

Finally, another result that is used in the following
sections is that any 2D or 3D turbulent flow is regular in
the dissipative range; using Taylor expansion we then have
S2(`)∼ `2 within ` ∈ [0, η]. All these general power law de-
pendencies motivate the use of self-similar priors for motion
estimation as discussed in the next section.

3 Regularization of motion increments

Exhibiting self-similarity properties of fluid flows en-
ables to define prior spatial regularization functionals. Be-
sides providing a closure for motion estimation, power-
law priors have several advantages compared to traditional
smoothing functions: they constitute physical sound regular-
izers for fluid motion and they provide intrinsic multi-scale
prior models which structures motion across scales. In this
section we discuss the use of the self-similar regularization of
motion increments with a prior power law, and postpone to
section 4 how Bayesian modeling is used to select the most
appropriate power law from the images (instead of imposing
one).

3.1 Self-similar constraints

Let us first formalize the use of self-similar constraints
to specify regularization functionals. Although there is
no exact prediction on its scaling law for non-strictly
self-similar flows, we chose to use the second order structure
function S2(`) because it constitutes a convenient quadratic
constraint for our purpose. Also, this quantity is related
with the energy spectrum and the two-point correlation
function, quantities of interest in experiments and simula-
tions. Since the exponent of the power law is unknown, we
take into account in section 4 deviations from the predicted
laws by selecting the most likely power law defined by the
two parameters γ2 and ζ2 given the image data (γ and ζ
for simplicity in the following).

S2(`) is an expectation which can be obtained by spatial
integration over the image domain and over all directions
as presented in Eq. (7). A self-similar constraint is then de-
fined at each scale ` as the difference between the 2-nd order
structure function and (for the moment) a given power law
depending on some parameters γ and ζ:

M(`, γ, ζ) = γ`ζ . (10)

An estimated motion field should thus respect the self-
similar constraint:

g`(v,M) =
1

2
[S2(`)−M(`, γ, ζ)] = 0. (11)

This constraint replaces the usual smoothness constraints
used in the minimization problem discussed in Sect. 2.1.

3.2 Constrained motion estimation problem

Referring to section 2.1, the minimization of the ill-
conditionned optic-flow estimation problem can be written
as

(v̂) = arg min
v
fd(I,v). (12)

Adding the self-similar constraints, we obtain the closed con-
straint optic-flow minimization problem:

minv fd(I,v), v(x) ∈ R
subject to the constraints:
g`(v,M) = 0, ∀` ∈ I

(13)

where I is the scale range of the given power law. The system
(13) is discretized on a discrete set of scales, and the veloc-
ity field is recovered from the image intensity solving the
constrained minimization using the Lagrangian formalism.
It yields the optimal solution:

v∗ = arg min
v
L(v,λ∗) (14)

where the Lagrangian function is given by L(v,λ∗) =
fd(I,v) +

∑
` λ
∗
`g`(v,M) and where λ∗ = {λ∗`} represent

the Lagrangian multipliers. Further details are given in A.

4 Selection of a prior power law

So far, the proposed model recovers motion from images
conditioned by some prior power law modelM(γ, ζ) for the
second order structure function. This power law can be given
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by turbulence statistical models describing the self-similar
structure of turbulence, which is assumed universal in the
works of Kolmogorov (1941), Kraichnan (1967), Lindborg
and Cho (2001). However, we now want to relax this uni-
versal assumption by allowing ζ and γ to change, and select
the most appropriate power law model for motion estimation
given only the image data. With this prior model selection
we cope with uncertainties in turbulence theoretical predic-
tions associated to, e.g., intermittency effects. Moreover, it
will enable us to reveal directly from the images important
physical quantities in turbulence such as power law expo-
nents, flux across scales, or energy and enstrophy dissipation
rates. To this end, we now reformulate the constrained mo-
tion estimation problem in a probabilistic framework, and
we show how probability of the prior modelM can be evalu-
ated given image data. Bayes’ rule provides a nice framework
to evaluate this model probability.

4.1 Probabilistic model

A probabilistic reformulation of the global motion es-
timation problem yields a model relating the image inten-
sity function variable I, the motion field variable v, an ob-
servation model variance β−1, and finally a prior power
law modelM(ζ, γ). Noticing conditional independances, the
joint probability can be factorized in three primary statisti-
cal models yielding the Bayesian hierarchical model:

p(I,v, β,M) = p(I|v, β)︸ ︷︷ ︸
likelihood

p(v|M)︸ ︷︷ ︸
motion prior

p(β)p(M)︸ ︷︷ ︸
model prior

(15)

where p(I|v, β) represents the image observation PDF or
likelihood, p(v|M) denotes the motion prior PDF, and
where p(β) and p(M) denote the prior PDF on respectively
the likelihood hyper-parameter and the power-law model.
Let us note that Bayesian hierarchical model can also be
used to decompose multidimensional probability distribu-
tions of complex spatio-temporal processes in geophysics
(Berliner et al., 1999; Wikle et al., 2001; Hoar et al., 2003).
Using hierarchical models, it is then possible to infer the
joint Maximum A Posteriori (MAP) estimate by maximiza-
tion of the joint probability p(I,v, β,M) with respect to v,
β and M. However, it is well-known in Bayesian analysis
that selection with a joint MAP estimator tends to over-fit
the data, i.e., to favor models with large degrees of freedom
(Robert, 2007). Bayesian analysis suggests to rely instead on
marginalized posterior distributions for model and hyper-
parameter selection. Therefore, by successive marginaliza-
tion of the joint posterior distribution p(I,v, β,M), we per-
form three levels of inference yielding estimates of: 1) the
velocity field, 2) the variance of the observation model er-
ror, and 3) the power law model. Although, variable β does
not affect the first level of inference, we will see that it is
necessary to consider the variance of the observation model
to perform model selection. In the following for notational
convenience, the dependence of the Lagrangian multipliers
to model M will be omitted. The three levels are detailed
in the next sections.

4.2 First inference level: motion field estimation

In this first level of inference, we consider the maximiza-
tion of the joint probability with respect to v given some

data realization I0, the hyper-parameter estimate β̂ and the
selected scaling model M̂:

v∗ = arg max
v

p(v, I0, β̂,M̂) = arg max
v

p(v|I0, β̂,M̂)

We obtain the MAP estimate v∗. Let us show that solving
the problem (P ) introduced in the previous section is equiv-
alent to infering a velocity field v∗ according to a MAP
criterion. This can be shown using Bayes’ relation in order
to define the motion field posterior PDF:

p(v|I, β,M)=
p(I|v, β)p(v|M)

p(I|β,M)
=

likelihood×prior

evidence

∝ p(I|v, β)p(v|M) (16)

where the likelihood, the prior and the posterior are Gibbs
PDF. More precisely, the quadratic observation model fd
represents the energy of an uncorrelated Gaussian likelihood
PDF with constant variance β−1:

p(I|v, β) =
exp{−βfd(I,v)}

Zfd(β)
, (17)

where Zfd(β) denotes a normalization constant also called
partition function. The constraints {g`} weighted by inverse
variances {βλ∗`} form the energy of a multiscale prior PDF:

p(v|M) =
exp{−

∑
` βλ

∗
` g`(v,M)}

Zg`(M)
, (18)

where Zg`(M) denotes the partition function. At the
point λ∗, the Lagrangian function L(v,λ∗) = fd(I,v) +∑
` λ
∗
`g`(v,M) thus defines, up to a multiplicative factor,

the energy of the posterior PDF:

p(v|I, β,M)=
exp{−βL(v,λ∗)}

ZL(β,M)
, (19)

where ZL(β,M) denotes the associated partition function.
It is now obvious that the maximum v∗ of the posterior is
reached at the minimum of the Lagrangian:

v∗ = arg max
v

p(v|I, β,M) = arg min
v
L(v,λ∗), (20)

which constitutes also the solution (14) of the constrained
motion estimation problem presented in section 3.2.

4.3 Second inference level: estimation of observation
model variance

A second level of inference considers the maximization
with respect to β of the joint posterior PDF, marginalized
over v, given the data realization I0 and the selected scaling
model M̂:

β̂ = arg max
β

∫
Rn
p(v, I0, β,M̂)dv = arg max

β
p(β|I0,M̂)

yielding the hyper-parameter estimate β̂. Using again Bayes’
relation one can write:

p(β|I,M)=
p(I|β,M)p(β)

p(I|M)
∝ p(I|β,M)p(β). (21)

Assuming a flat prior on variables β, the MAP β̂ of (21) is
simply the Maximum Likelihood (ML) estimate, or in other
words the maximum of the evidence PDF p(I|β,M). This
probability is defined by a marginalization w.r.t. the velocity
field:
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6 P. HÉAS, E. MÉMIN, D. HEITZ, P. D. MININNI

p(I|β,M) =

∫
Rn
p(I|v, β,M)p(v|β,M)dv. (22)

Let us recall that the evidence is also the normalization con-
stant (w.r.t. velocity field v) which has been ignored in the
first level of inference (Eq. 16). Therefore, we can rewrite
the evidence as a partition function ratio:

p(I|β,M)=
likelihood×prior

posterior
=

ZL(β,M)

Zfd(β)Zg`(M)
, (23)

Assuming the energy of the evidence is convex (at least
locally), the variance estimate β̂−1 maximizing the evidence
is obtained by canceling out its derivative.

β̂ = arg max
β

p(I|β,M)⇔ ∂p(I|β̂,M)

∂β
= 0 (24)

The analytical expression of the evidence probability, of its
derivate and of the variance estimate is detailed in appendix
B.

4.4 Third inference level: selection of power law

A third level of inference considers the maximization
with respect to M of the joint posterior PDF, successively
marginalized over v and β, given some data realisation I0:

M̂ = arg max
M

∫
R

∫
Rn
p(v, I0, β,M)dvdβ = arg max

M
p(M|I0).

Again, Bayes’ relation is used to select the model:

p(M|I) =
p(I|M)p(M)

p(I)
∝ p(I|M)p(M). (25)

The data-dependent term, the likelihood p(I|M) forM (also
called evidence forM) appeared earlier as the normalization
constant of the second level of inference (Eq. 21). Its evalu-
ation implies marginalizing out variable β:

p(I|M)=

∫
R
p(I|β,M)p(β)dβ. (26)

This integral (26) can be approached by Laplace’s approx-
imation, and depends on the estimate β̂ as detailed in ap-
pendix C. The model maximizing the posterior probability
(26) of the power law model:

M̂ = arg max
M

p(M|I) = arg max
M

p(I|M)p(M) (27)

is obtained by uniform sampling in R2 of the power law
parameters (γ, ζ).

As a result, it is important to outline that, a priori,
no particular power law is imposed on the data, but rather
the second order structure function is constrained to fol-
low some power law in some range of scales (which can be
selected). If the smallest resolved scales in the images corre-
spond to the dissipative scales of the flow, the constraint re-
duces to a multiscale first-order smoothing, as in that range
S2(`)∼`2. This kind of smoothing function constitute a mul-
tiscale generalization of regularizer (5) computed with finite
differences. On the other hand, if the smallest resolved scales
in images are in the inertial range of the turbulent flow, the
constraint gives a better representation of the physics of the
problem than adhoc regularizers. Finally, note that since

laminar flows possess vanishing increments, their structure
functions can be modeled with power laws with prefactors
equal zero (γ = 0). Appendix D shows with a toy exam-
ple how the proposed methodology succeeds to recover this
particular case. Therefore, the proposed methodology can
be expected to improve the physical representation of the
flow in turbulent cases, and enforces smooth solutions if the
hidden flow is smooth or laminar.

5 Numerical and experimental validation

5.1 Synthetic turbulence of horizontal velocity fields

To evaluate the performance of the reconstruction of
the horizontal velocity field from intensity images using
the proposed self-similar regularization, synthetic image se-
quences were generated based on forced 2D turbulence ob-
tained from direct numerical simulations (DNS) of the 2D
and incompressible Navier-Stokes equations with a Reynolds
number of 3000. The pseudo-spectral code used for this
study solved the vorticity conservation equation and the
Lagrangian equation for particle tracers transported by the
flow or, in the case of scalar images, the advection-diffusion
equation i.e., model (2) in the case of divergence-free veloc-
ities, with a Pecklet number of 2100 . The flow was stirred
by an external forcing acting between wavenumbers k = 5
and 10. Figure 1 shows the isotropic (angle averaged) energy
spectrum and the energy flux for one snapshot of the veloc-
ity field. A flat spectrum is observed at scales larger than
the forcing scale, resulting from an incipient inverse cas-
cade of energy. The direct cascade range shows a spectrum
steeper than ∼ k−3 expected from Kraichnan phenomenol-
ogy, which is not unusual in numerical simulations of 2D
turbulence, and which in this particular case can also be
associated to the moderate spatial resolution and Reynolds
number considered (the slope is in fact close to−5). The sim-
ulation shows positive enstrophy flux towards small scales
for wavenumbers larger than the forcing wavenumbers, and
a few wavenumbers with negative energy flux associated to
the beginning of the inverse cascade. Also, the energy flux in
the direct cascade range is negligible when compared with
the enstrophy flux (see Boffetta (2007) for examples of en-
ergy and enstrophy fluxes in high resolution simulations of
2D turbulence). A precise description of the simulation can
be found in Carlier and Wieneke (2005). This database has
proven its relevance in previous studies in the field of fluid
flow estimation Yuan et al. (2007); Heas et al. (2007b); Pa-
padakis and Memin (2008); Heas et al. (2009).

Figure 2 presents a sample of the synthetic particle and
scalar images of 256×256 pixels generated using the numer-
ical simulation. The corresponding DNS velocity field is also
presented in Fig.2. The motion estimates were obtained by
minimizing discrepancies to the brightness consistency (1)
(resp. to the scalar diffusion equation, i.e., model (2) in the
case of divergence-free velocities) for particle images (resp.
for scalar images) under power-law constraints. The self-
similar regularizer was applied only in the range of I = [1, 8]
pixels (corresponding either to dissipation or to the end of
the inertial range). A multi-resolution approach was used to
cope with large displacements (Bergen et al., 1992). Motion
estimates can be compared with the DNS motion fields, and
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POWER LAWS AND INVERSE MOTION MODELING 7

with the operational correlation-based software from LaVi-
sion company in Fig. 2. The true and reconstructed veloc-
ity fields look similar. It can also be noticed that although
correlation-based methods are accurate measurement tools
for particle imagery, they usually perform badly for scalar
imagery. Quantitative details of the estimation are given be-
low.

5.1.1 Evaluation of power law selection A flat prior was
chosen on the power law parameters in (27) and therefore,
inference was performed by maximizing the evidence prob-
ability (26) w.r.t. γ and ζ. This probability was evaluated
by sampling the exponent ζ near the theoretical value of 2
(the value expected for a dissipative range or for a direct
enstrophy cascade from the theoretical predictions), and by
sampling the prefactor γ around a first guest given for in-
stance by a Least Square (LS) fitting of the solution of a
rough Horn and Schunck (1981) estimation.

Fig. 3 shows the shape of the evidence according to
the power-law model parameters. The model probability
global maximum is located at the coordinates ζ = 0.0030,
γ = 1.975 (resp. ζ = 0.00275, γ = 1.850) for the parti-
cle (resp. scalar) images. Three observations assess exper-
imentally the Bayesian criterion used for model inference.
First, Fig. 3 shows that, specially for particle images, the
parameters yielding high model probabilities correspond to
low Root Mean Square (RMS) motion reconstruction errors.
Second, this correspondence is not so remarkable in the case
of scalar images, because minimizing an RMS error criterion
does not always lead to the underlying power law. Indeed,
as shown in the plots of Fig. 4, the inferred power-law pa-
rameters are for both experiments very close to the values
ζ = 0.003, γ = 1.948 obtained by a least square fit on the
ground truth motion field, whereas on the contrary in the
case of scalar images, choosing the power-law minimizing
the RMS error induces a slight bias. Remarkably, the re-
constructed structure functions S2(`) in x- and y-directions
(horizontal and vertical in the images) as well as in the diag-
onal directions adjust well the structure functions computed
directly from the simulation (indicated by the straight lines)
in a wide range of scales, and well beyond the range used
for the regularizer. Third, between 1 and 8 pixels, the power
law of all structure functions is close to ∼ `2, which is the
expected value from the theory in the inertial or dissipative
range. It is also observed that the simulation approaches
isotropic statistics at small scales since structure functions
calculated in horizontal-vertical and in diagonal directions
are nearly identical.

Therefore, maximizing the model evidence constitutes
a theoretically sound and reliable criterion for selecting the
prior power law.

5.1.2 Evaluation of motion estimation A comparison
with state-of-the-art methods based on the RMS reconstruc-
tion error3 is provided in figure 5. Based on this criterion,

3 In order to compute RMS error on the pixel grid, true velocity

fields have been interpolated since they are given on a shifted (by
half a pixel) grid by direct numerical simulation .

the proposed method outperforms in average most accurate
operational correlation-based techniques, first order (Horn
and Schunck, 1981), and div-curl (Corpetti et al., 2002; Yuan
et al., 2007) regularizers.

To assess quantitatively the accuracy of the reconstruc-
tion of the velocity increment PDFs, we plotted in Fig. 6 the
exponents and the prefactors of structure functions w.r.t.
their order. The exponents correspond to the dissipative
range as they were computed by LS fitting of the recon-
structed motion fields for increments of the structure func-
tions between 1 and 8 pixels. Analyzing the DNS motion
field, it can be noticed that, in this range, the field is smooth
and the exponents are on a straight line, as the structure
function of order p, Sp(`), goes as ∼ `p. The other esti-
mates introduce spurious deviations from the straight line
that may be incorrectly interpreted as intermittency. It is
striking that the proposed method provides a very good
estimation of the exponents and prefactors while all other
methods fail to characterize exponents above the 5th order.
This is a testimony of the power of the proposed motion
estimation methods in recovering accurately the multiscale
structure of turbulence.

5.2 Atmospheric turbulence

We now assess the inverse motion modeling approach
using power laws on real data. The objective of this section
is to estimate atmospheric parameters from satellite images,
even when limitations associated to images and to required
approximations may only give orders of magnitude of
quantities of interest. We also compare results with previ-
ous observations using in situ techniques. The analysis is
done using METEOSAT Second Generation meteorological
image sequences acquired above the north Atlantic Ocean
at a rate of an image every 15 min during part of one day
(5-June-2004), from 12h00 to 14h30 UTC (universal time,
similar to GMT, the Greenwich Mean Time). Image spatial
resolution is 3 × 3 km2 at the center of the whole Earth
image disk. This benchmark data, which has been provided
by the EUMETSAT consortium, is composed of images
of top of cloud pressure and cloud-classification images.
Cloud-classifications were used to segment images into two
broad layers, at low and intermediate altitude4. Following
the methodology described in Heas et al. (2007a) and in
Corpetti et al. (2009), a set of sparse pressure difference
images of 256 × 256 pixels associated to a stack of layers
(low and intermediate altitude) was derived. Resulting set
of input images is displayed in figure 7. As discussed before,
an observation model is required for the inversion problem
(see Sect. 2.1). An identical direct observation model as
in (Heas et al., 2007a) was used. It is based on layer mass
conservation to relate image intensity function to vertically

4 Stratus and stratocumulus (resp. altostratus, atltocumulus and
nimbostratus) are classified in the lower layer (resp. the interme-

diate layer).
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averaged horizontal wind fields5.

In the following, based on the work of Lindborg and
Cho (2001), we first introduce prior knowledge on the sought
power law using the Bayesian relation (27). The power law
is chosen to model the longitudinal structure function of in-
differently the zonal and meridional horizontal winds. Power
law selection reduces then in this case to estimating the en-
ergy flux of the direct energy cascade towards small scales.
We then relax this assumption, and perform model selection
considering a flat prior distribution on both unknowns: the
power law prefactor and the power law exponent. Finally,
we provide some statistical analysis and compare wind fields
obtained with the two methods.

5.2.1 Power law selection with a Lindborg’s prior In
this section, we assume that the scaling ζ = 2/3 predicted
by Lindborg in the direct energy cascade holds in the
range I = [1, 4] pixels, equivalent to I = [3, 12] km (the
direct energy cascade is visible in the 2-nd order structure
function for separations of about 10 kilometers in the data
of Lindborg (1999)). This hypothesis can be formulated in
the Bayesian relation of (27) by choosing a prior such as
p(M) = δ(ζ − 2/3)U(γ), where δ and U denote respectively
the Dirac and the flat distributions. We thus only need to
infer the parameter γ. Note that no power law is imposed
for separations larger than 12 km.

5.2.1.1 Direct energy flux estimation: The model proposed
in Lindborg (1999) provides power law models for the 2-nd
order structure function as:

S2(`) = C2ε
2
3 `

2
3 + b `2 − c `2 log `, (28)

where b and c denote parameters and C2 ≈ 6 is a Kol-
mogorov constant. The energy flux ε (which is equal to the
energy dissipation rate) can be related in the scale range I

to the power law prefactor by γ = C2ε
2
3 . Therefore, maxi-

mizing the power law posterior probability also reveals the
most likely energy flux. Figure 8 shows that this probability

is maximized for power laws M̂ = C2ε̂
2
3 `

2
3 with energy flux:{

ε̂low ' (1.00± 0.87)× 10−5m2s−3

ε̂mid ' (1.00± 0.87)× 10−6m2s−3 , (29)

which correspond to estimates at low and intermediate alti-
tudes. These estimates have the same order of magnitude as
previously reported results based on aircraft data analysis6.
The agreement is very good considering the measure is only

5 Let us remark that one can not guarantee that the data model

which has been proposed in Heas et al. (2007a) is valid for regions

where the model assumptions are violated (e.g., for non-layered
structures) or for too noisy input observations (e.g., due to cloud

classification errors or pressure retrieval errors). However, the lo-

cal weakness of the observation model is balanced in our approach
by the introduction of the relevant prior information on turbulent

motion regularity.
6 A collection of other air-craft measurements (Nastrom et al.,
1984) shows a typical value in the troposphere close to ∼ 3 ×
10−6m2s−3 (Lindborg, 1999). Nevertheless, note that analo-

gously to stratospheric observations (Dewan, 1997; Nastrom and

based on image data. It should be noted that in the proposed
estimation approach, as the evidence maximization does not
depend on motion variables, energy flux is obtained directly
from the image intensity function, conversely to other ap-
proaches, which need to first extract motion observations
from the images and then estimate power-law parameters.
One of the main results of the studies of Lindborg (1999)
and Lindborg and Cho (2001) was to determine the direc-
tion of the energy cascade from the third order structure
function from in situ data. The third order structure
function can be reconstructed from the image-based motion
measurements. Figure 9 shows this function for the lower
and the intermediate layer. A direct cascade with linear
dependence ∼ −ε̂low` can be identified in the scale range
[10, 40] km, and the agreement of the structure function
for larger scales with the theoretical prediction seems
reasonable.

5.2.1.2 Direct enstrophy flux estimation. A least square es-
timate of the enstrophy flux ε̂ω can be obtained by fitting
w.r.t. ε̂ω the third order structure function to its model given
by Eq. (8) in the converged scale range (` > 50 km). In
particular, at the upper range of the cascade, positive cubic
power laws can be observed for both layers. The least square
average enstrophy flux estimates are{

ε̂lowω ' (6.75± 0.13)× 10−15s−3

ε̂midω ' (11.9± 0.18)× 10−15s−3.
(30)

These results are also consistent with previously published
results7. Third order structure function models obtained
by LS estimation are displayed in Fig. 9. Second order
structure function and energy spectrum models given by
Eq. (28) can also be adjusted in a LS sense, and the
parameters b and c can be estimated for scales ` > 50 km.
Figure 9 thus also shows the 2-nd order structure functions
and the energy spectra together with their corresponding
models.

5.2.1.3 Moments convergence: In order to verify that we
obtained converged statistics for the evaluation of the struc-
ture functions, we follow Gotoh et al. (2002) and examine
the convergence towards a flat curve of the accumulated mo-
ments

Cp(z, `) =

∫ z

0

∣∣δv‖(`)′∣∣p p′ [δv‖(`)′] dδv‖(`)′, (31)

where p′[δv‖(`)
′] = σ`p`[δv‖(`)/σ`] is the PDF of the nor-

malized increments δv‖(`)
′ = δv‖(`)/σ` with σ` denoting

the standard deviation. To check convergence of the second
and third order structure functions, we examine the accumu-
lated moments and see if there is convergence towards flat
curves for increments associated to the tails of the PDF.
Curves C2(z, `) and C3(z, `) show that second and third or-
der moments are reasonably converged. However, we observe

Eaton, 1997; Cho and Lindborg, 2001), one should consider a

significant variability in measurements
7 These values agree well with an early estimate of ∼ 10−15s−3

obtained in Charney (1971). Authors in Tung (2003) then re-

obtained this same result from simulations. Note however that

enstrophy flux is slightly lower than the estimate ∼ 10−13s−3 of
Lindborg (1999) using Nastrom et al. (1984) air-craft data.
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that accumulated moments show a faster convergence for
the lower layer motion. This obviously results from sparsity
of image data which increases with altitude. Furthermore,
curves show that the third order moments are better con-
verged for large scale increments (` &50 km) than for small
scale increments (` .50 km). This is in agreement with the
fact that the normalized PDFs of velocity increments show
stronger tails as the scale studied is decreased. These tails,
which depart from Gaussian behavior, are the result of inter-
mittency: turbulence comes in gusts, and scarce regions with
strong gradients develop in the flow as the result of nonlin-
earities. The development of these strong events also make
the convergence of high order moments slower, as more data
is needed to have enough statistics to resolve the impulsive
(but scarce) events. An extension of the present study to
consider more images may enhance convergence.

5.2.2 Power law selection with a flat prior In this section,
we now relax the previous scaling assumption and consider
instead a uniform prior p(M) defined on the bidimensional
parameter space (γ, ζ) ∈ R2 of the power law. Thus, we
now also infer the most likely exponent ζ̂ of the power law
together with the prefactor γ̂. Figure 10 shows that the se-
lected prefactor (i.e., the energy flux) has the same order
of magnitude as in the previous case. However, the selected
power law exponent does not correspond to the model in
(Lindborg and Cho, 2001). Indeed, the 2nd order structure
function maximizing the evidence probability does not scale

as ∼ `
2
3 but rather as `2 (at least, in the range of scales in

which the constraint is applied; as will be shown next the
structure functions scale in a similar way at scales larger in-
dependently of whether a scaling assumption or a uniform
prior are used). Moreover, note that the model in (Lindborg
and Cho, 2001) still corresponds to a region of high prob-
ability, i.e., a valley of the probability energy (marked by
an iso-contour in Fig.10). In the absence of ground truth,
it is not obvious to decide whether one power law model
is better than the other. One may conclude that using the
images alone favors (in the particular case of these type of
images) the choice of a low-complexity model which does
not over-fit the data. In other words, the scaling of a regu-
lar motion is preferred, although more complex scaling are
not drawn aside. When prior knowledge is available, the
Bayesian modeling framework is able to enforce relevant re-
gions of lower probability and recover accurately complex
turbulence scaling laws.

5.2.3 Comparison of wind field estimates Deviation from
strict self-similarity of the two motion estimates can be eval-
uated based on the behavior w.r.t. their order of the struc-
ture function exponents (obtained by LS fitting of the re-
constructed motion fields in the scale range of 1 to 6 pix-
els, corresponding to 3 to 18 km). Analyzing the results in
Fig. 11, it can be seen that we obtain a stronger deviation
from linearity with the model of Lindborg and Cho (2001).
However, in both cases the motion field is multifractal and
not strictly self-similar.

Exponents in Fig. 11 were computed for a similar range
of scales as the one used for power law selection (3 to 12
km). It is thus not surprising that the second order exponent

changes substantially (as well as the other exponents), as in
that range the method with the flat prior selected the scaling
∼ `2. This change in the exponents should be understood in
the same light as the change in the reconstructed power law
of the second order structure function: images are favoring
a model of lower complexity with regular motion at small
scales.

However, structure functions show similar slopes and
features for both reconstructions outside the range used for
power law selection (e.g., for scales larger than 40 to 80 km
depending on the altitude). It is not the motivation of our
work to do a detailed analysis of scaling exponents at inter-
mediate scales for atmospheric data, but just as an example,
in Fig. 11 and 12 we show the third-order structure func-
tions for low and mid altitude using both methods, and the
scaling exponents at larger scales (10 to 30 pixels, or 30 to 90
km) for the model of Lindborg and Cho (2001) and for a flat
prior. Two features are worth mentioning. In Fig. 12, note
that not only amplitude of structure functions is similar in
both cases (as already mentioned, as the amplitude of these
functions is associated to the energy flux), but also that
structure functions change sign at similar scales. In Fig. 11,
exponents are similar at intermediate scales independently
of the method used to reconstruct the field.

Figure 13 compares motion fields obtained with our
method (prior power law in `2) with a vector field obtained
by a correlation-based method. It is conspicuous that, for
these very sparse and noisy images, correlation yields spu-
rious and incoherent motion estimates while our approach
yields a coherent and physically plausible reconstruction.
Scaling in `2 tends to produce vortex and divergent struc-
tures of larger magnitude than for scaling in `2/3. Motion
fields may present what could be interpreted as local abrupt
discontinuities when visualized at larger scales. Indeed, the
proposed optic-flow method provides a velocity vector per
pixel. Therefore, small vortex and divergent structures of
only a few pixels size may be confused with noise. In order
to remove the confusion, we plot results at the pixel level. As
shown in Fig. 14 and Fig. 15, velocity fields at this resolution
appear to be very smooth and structured. In particular, vor-
tex, sinks and sources are coherent structures of comparable
order as claimed in (Lindborg, 2007).

6 Conclusions and perspectives

In this study, we presented a physically-based, multi-
scale method that does not involve any tuning of regular-
ization parameters for fluid motion modeling from images.
It relies on a Bayesian hierarchical model which simultane-
ously provides optimal solutions for two problems: motion
estimation and regularization model selection. The regular-
ization models arise from Kolmogorov’s work on turbulent
flow self-similarity and recent results in the study of tur-
bulent flows. Structure functions are used to exhibit some
regularity in velocity field reconstruction, without a priori
imposed power law. Besides achieving motion inversion, the
method recovers several quantities of physical interest in tur-
bulence. Moreover, for images of turbulent flows (or for lam-
inar flows) where dissipative range is resolved, small scales
are smooth and the proposed method reduces in fact to a
smoothing with, e.g., null second order structure function,
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or with the second order structure function proportional to
the square of the spatial increment. Experiments on a syn-
thetic sequence shows that the method is more accurate than
the best fluid-dedicated motion estimators. As a result, we
believe the method constitutes a valuable tool for physical
characterization of turbulence from images. In particular,
we were able to recover consistent flux across scales in at-
mospheric turbulence at different altitudes from a meteo-
rological image sequence. Results are also consistent with
theoretical predictions and with previous studies using in
situ measurements.

We believe this work opens interesting perspectives for
observational characterization of turbulence. Characteriza-
tion of turbulence cascades could also be performed by an-
alyzing other meteorological (or laboratory) images, depict-
ing for instance evolution of passive scalars, water vapor, or
temperature fields. Of course, the method requires a proper
direct image observation model for each problem of interest,
and as a result may have to be complemented with other
measurement techniques for validation. However, we believe
that the results presented here are promising and give a
useful tool to complement other measurements in the dif-
ficult problem of turbulence characterization. Inferring di-
rectly the scale range on which the prior power-law should
be exhibited according to the observed images represent an
interesting perspective which is in principle straightforward
considering a Bayesian framework. It would present the ad-
vantage to extend the set of possible power-law multi-scale
models considered for selection to traditional single scale
regularizers, which represent power-law particular cases. An-
other interesting perspective could concern the addition of
a prior dynamical model to ensure dynamical consistency
along time. Several works relying on variational image as-
similation techniques have recently been proposed in this di-
rection (Papadakis and Memin, 2008; Corpetti et al., 2009).

APPENDIX A: Solution of the constrained motion
estimation problem

In this appendix, we show how to solve optimally the
constrained problem given by Eq. (13).

A1 Problem discrete formulation

Let us first express this problem in its discrete form. The
derivatives ∇vfd(I,v) related to any quadratic data term
w.r.t motion v (e.g., the model of (4)) can be expressed in
the matricial form A0v−b0, when discretized on an image
grid S of m points. The two discretized components of v ∈
Rn now represent a field of n = 2m variables supported
by the grid S, A0 is n × n symmetric positive-definite, and
b0 ∈ Rn represents a vector of size n. The discrete data term
can then be rewritten as:

fd(I,v) =
1

2
vTA0v − bT0 v + c0, (A1)

where c0 ∈ R denotes a scalar. The discretization of the
self-similar constraints defined in Eq. (11) implies the dis-
cretization of the second order structure function defined
in Eq. (7). The integral over θ yields a sum on 8 direc-
tions: 4 horizontal-vertical directions nh = {(−1, 0), (1, 0)}

and nv = {(0, 1), (0,−1))} and 4 diagonal directions√
2nd = {(1, 1), (1,−1), (−1,−1), (−1, 1)} of the bidimen-

sional plane. The continuous motion field discretization
yields to rewrite the integral over the spatial domain Ω with
a sum over the pixel grid S. On this regular grid, the lon-
gitudinal velocity increment function is available at scale `
either for ` ∈ N+ on horizontal nh and vertical nv direc-
tions, or for

√
2` ∈ N+ on diagonal directions

√
2nd. To

avoid using boundary conditions, we exclude of the sum the
grid points S(`) which belongs to image borders of width `.
A node subset S` = {S − {S(`)}} is thus defined depend-
ing on scale. Therefore, at scale `, the discrete second order
structure function reads S2‖(`) =:

1
4Γ

∑
s∈S`

{∑
nh

[u(s)−u(s+`n)]2+
∑
nv

[v(s)−v(s+`n)]2

}
, if `∈N+

1
4Γ

∑
s∈S`

∑
nd

[u(s)−u(s + `n) + v(s)− v(s + `n)]2, if √̀
2
∈N+

(A2)
where we have denoted the number of nodes of the grid S`

by Γ = |S`|. The quadratic constraint derivatives can be
expressed in the vectorial form A`v−b`, where A` are sym-
metric positive semi-definite matrices and b` are vectors of
size n. Indeed, manipulating the derivative of the expecta-
tion of Eq. (A2) w.r.t. the motion field v, one obtains for
grid points in the subset S` a new expression for the s-th
component of the constraint derivatives ∇v(s)g`(v) = −2Γ−1`2

[
D`
xxu(s), D`

yyv(s)
]T

, if ` ∈ N+

−Γ−1`2
[
L`π

4
u(s) +D`

xyv(s), D`
xyu(s) + L`π

4
v(s)

]T
if √̀

2
∈ N+

(A3)

where L`π
4

represents a discrete laplacian operator with a

centered 2-nd order finite difference scheme defined on a
grid rotated of π/4 with mesh point spacing equal to ` and
where D`

xx, D`
yy and D`

xy are similar to the discretization
of 2-nd order spatial derivatives in a centered 2-nd order
finite difference scheme on a mesh with spacing of `. The
constraints can finally be written in their discrete form as

g`(v) =
1

2
vTA`v = 0, ∀` ∈ I, (A4)

where A`v = ∇vg`(v). Let us remark that the discretization
of the self-similar constraints does not rely on any approxi-
mation, conversely to standard regularization schemes such
as in Horn and Schunck (1981) where continuous spatial
derivatives have to be approached by discrete operators. The
self-simlar model introduced here consists thus in a multi-
scale generalization of the first order regularizer where the
smoothing parameters are in this case related to the power
law and given by the Lagrange multipliers. The constraint
motion estimation problem defined in Eq. (13) can thus be
rewritten in its discrete form as,

(P )


minv fd(I,v) = 1

2
vTA0v − bT0 v + c0.

s.t. g`(v) = 1
2
vTA`v = 0, ∀` ∈ I

v ∈ Rn.
(A5)

A2 Dual problem and optimal solution

We are now interested in defining optimality conditions
taken into account the constraints. To this end, the La-
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grangian function L(v,λ) is introduced as

L(v,λ) = fd(I,v) +
∑
`

λ`g`(v), λ = {λ`}. (A6)

In the Lagrangian duality formalism, the optimal solutions
of the so-called primal problem P are obtained by searching
saddle points of the Lagrangian function. The saddle points,
denoted by (v∗,λ∗), are defined as the solutions of the so-
called dual problem D, with

(D)

{
L(v∗,λ∗)=maxλ w(λ)=maxλ{minvL(v,λ)}
λ` ∈ R, ∀` ∈ I

, (A7)

where w(λ) denotes the dual function. As the functions fd
and g` are convex and as the constrained group is not empty,
for positive Lagrangian multipliers λ`, L is convex and the
minimization problem (P ) has a unique saddle point, i.e., an
optimal solution v∗ which is unique. More details of convex
functionals and the convergence of the related minimiza-
tion problems can be found in Weickert and Schnörr (2004).
Lagrangian multipliers {λ`}, which represent the regulariza-
tion parameters at scales {`}, are then optimally given by
the coordinates of the saddle point. Note that for negative
Lagrangian multipliers, the convexity of the functional is
no longer insured, and there is no guarantee of the solution
unicity. Nevertheless, there still exist local optimal solutions.

A3 Convex optimization

We focus now in the strategy to obtain the saddle point
solution of the constrained estimation problem. The mini-
mum v̂′ of a locally convex Lagrangian function at point λ
can be obtained by canceling the gradient

∇vL(v,λ) = ∇vfd(I,v) +
∑
`

λ`∇vg`(v) = 0, (A8)

which reduces (using (A1) and (A4)) to solving the large
linear system

(A0 +A)v̂ = b0, (A9)

with A =
∑
` λ`A`. In appendix A1 we showed that the

linear system components A` are constituted by the super-
position of a collection of discrete operators obtained in a
centered 2-nd order finite difference scheme on a grid of mesh
`, which corresponds to 2-nd order derivatives at different
scales. Since we have no guarantee that the matrix A0 +A is
positive-definite depending on the sign of Lagrangian multi-
pliers λ`, the solution of the large system given by Eq. (A9)
is efficiently achieved using a Conjugate Gradient Squared
(CGS) method with an incomplete LU preconditioner. The
dual function is then given by

w(λ) =
1

2
v̂T
(
A0 +A

)
v̂ − bT0 v̂ + c0. (A10)

The dual function is by definition concave and possesses
so-called sub-gradients equal to g`(v̂). We employ a clas-
sical gradient method to find λ∗ which maximizes the
dual function and thus obtain the solution v∗. Finally, the
constrained motion estimation method results in a Uzawa
algorithm, which is used to converge towards the saddle
point (v∗,λ∗), i.e., the optimal motion estimate under
self-similar constraints. An important remark is that once
the regularization coefficient vector λ∗ has been estimated

for two consecutive images of the sequence, assuming
motion stationarity, only one step of the Uzawa algorithm
is needed to process the following image pairs. Therefore,
the complexity of the algorithm reduces to the resolution
of the linear system by CGS, that is O(κn), where κ is the
conditioning number of A0 + A. The Uzawa algorithm is
briefly presented herefater.

• Iterate until convergence from point λ(k=0) 6= 0:

– At iteration k, compute motion v̂ solution of
Eq. (A9).

– Define λ(k+1) by a gradient ascent step:

λ(k+1) = λ(k) + ρ(k)P(k)g(v̂),

• At convergence: (v∗,λ∗) = (v̂,λ(k=∞)).

where g(v̂) represents a vector whose components are
g`(v̂), and where ρ(k) and P(k) denote the step size and a
positive-definite matrix defined at iteration k. The latter
parameter and matrix can be fixed at each iteration in or-
der to formalize a Quasi-Newton algorithm satisfying the
strong Wolf conditions (Nocedal and Wright, 1999).

Uzawa algorithm converging towards saddle point (v∗,λ∗).

APPENDIX B: Maximum likelihood estimate of
the observation model error variance

In order to obtain an analytical expression of the vari-
ance β̂−1 of the observation model error maximizing the
evidence, we first detail analytically the three different par-
tition function composing the evidence, then give an analyt-
ical expression of its derivate w.r.t. β, and finally provide an
expression for the maximum likelihood estimate β̂ canceling
out the evidence derivative.

B1 Evaluation of the evidence for β

First, the likelihood PDF p(I|v, β) energy related to a
quadratic observation model βfd(I,v) is composed of the
energy of a multidimensional Gaussian with m uncorrelated
components of variance β, where m is the number of point
composing the image grid. Its partition function reads:

Zfd(β) =

(
2π

β

)m/2
. (B1)

Therefore, we obtain:

− logZfd(β) = −m
2

log(2π) +
m

2
log(β) (B2)

Secondly, the partition function ZL(β,M) of the posterior
PDF of (19) is an integral which can be calculated using
Laplace’s approximation (see for example MacKay (2003)):
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ZL(β,M)=

∫
Rn

exp{−βL(v,λ∗)}dv (B3)

' exp{−β(fd(I,v∗)+
∑
` λ

∗
` g`(v

∗,M))}

2π
n
2 det{β(A0+

∑
`

λ∗`A )̀}−
1
2 .

where we recall that v∗ is the MAP estimate, and λ∗ is
the associated set of Lagrangian multipliers. Noting that the
term

∑
` λ
∗
`g`(v

∗,M) vanishes since constraints are fulfilled,
this yields:

− logZL(β,M)=βfd(I,v
∗)− n

2
log(2π) +

n

2
log(β)

+
1

2
log det{A0+

∑
`

λ∗`A }̀ (B4)

where n = 2m denotes the number of unknown velocity
variables. For Gaussian distributions, the Laplace equal-
ity is exact and for other mono-modal distributions it
still constitutes a good approximation (Gull, 1989). The
determinant of such large and sparse matrices can be ef-
ficiently approximated via an incomplete LU decomposition.

Finally, the partition function Zg`(M) of the self-similar
prior of (18) does not exist since the PDF is degenerated and
has an infinity set of maxima, corresponding to the infinite
set of admissible velocity field solutions respecting the self-
similar constraint. To make this prior well-defined, we use
Dirichlet boundary conditions for evaluating the evidence8.
Considering these boundary conditions, we get a Hessian
matrix A which has a slightly changed form but which is full
rank. As previously, the partition function can be calculated
using Laplace’s approximation:

Zg`(M)=

∫
Rn

exp{−β
∑
`

λ∗`g`(v,M)}dv (B5)

= max
v

(
exp{−β

∑
` λ

∗
` g`(v,M)}

)
2π

n
2 det{β

∑
`

λ∗`A`}−
1
2

As the set of admissible solutions for the self-similar con-
straint is not empty, the maximum value of the exponential
term in (B5) is equal to 1, and one gets:

− logZg`(M)= −n
2

log(2π) +
n

2
log(β) +

1

2
log det{

∑
`

λ∗`A }̀

(B6)

Replacing (B2), (B4), (B6) in (23), one obtains an analytical
expression for minus the log evidence:

− log p(I|β,M)= βfd(I,v
∗)︸ ︷︷ ︸

-log likelihood

(B7)

+
1

2
log

det{A0+
∑
` λ
∗
`A }̀

det{
∑
` λ
∗
`A }̀

− m

2
log(

β

2π
)︸ ︷︷ ︸

-log Occam’s factor

8 Note that the precise values on the boundaries do not need to
be specified since they modify the content of vector b but do not

have any impact on the Hessian matrix A. Indeed, the form of the

matrix is slightly changed to code Dirichlet boundary conditions
but its content is independent of the boundary function.

The evidence energy can be interpreted as the balance be-
tween three terms. The left term is the log likelihood. It rep-
resents the misfit of the data to the observation model. The
two other terms appearing on the second line penalize the
model complexity. They are known as the log of Occam’s
factor (Jaynes, 2003; MacKay, 2003). Of these, the first is
the ratio of the posterior accessible volume on the prior ac-
cessible volume in v (a variance ratio in 1D). The term most
to the right is a normalization term of Occam’s factor for
non-unitary variance β.

B2 Derivative of the evidence and maximum likelihood
estimate β̂

To finally achieve the estimation of the observation
model variance, we now want to minimize the energy of the
evidence PDF. Noting that for any matrix C

d

dβ
log detC = trace(C−1 dC

dβ
), (B8)

one obtains the following equality:

d

dβ
log

det{A0+
∑
` λ
∗
`A }̀

det{
∑
` λ
∗
`A }̀

=
d

dβ
log det{βA0+

∑
`

λ∗` (M)βA }̀

=
1

β
trace((A0+

∑
`

λ∗`A`)
−1A0).

(B9)

Note that in the last expression λ∗` (M)β (resp. λ∗` (M)) does
not (resp. does) depend on β. Using (B9), the derivative of
log evidence (B7) w.r.t. β can be written as:

∂

∂β
(log p(I|β,M)) =

1

2

(
m

β
− 2fd(I,v

∗)− 1

β
trace((A0+

∑
`

λ∗`A`)
−1A0)

)
.

(B10)

The log evidence is maximum at the point where the deriva-
tive cancels. Therefore, an analytical expression of the max-
imum likelihood estimate of the observation model inverse
variance reads:

β̂ =
m− trace((A0+

∑
` λ
∗
`A`)

−1A0)

2fd(I,v∗)
. (B11)

Calculating the trace of the high-dimensional matrices in-
volved in the previous equations can be very demanding. In
order to overcome this problem, we use a trace randomiza-
tion technique Skilling (1989) which is efficiently achieved
using the CGS algorithm. More precisely, L � 1 random
samples of a n-dimensional normalized and centered Gaus-
sian distribution rj ∼ N (0,1n) are used to approximate the
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trace operator:

trace((A0+
∑
`

λ∗`A`)
−1A0) = traceE[(A0+

∑
`

λ∗`A`)
−1rjr

t
jA0]

= E[((A0+
∑
`

λ∗`A`)
−1rj)

t(A0rj)]

' 1

L

L∑
j=1

[(A0+
∑
`

λ∗`A`)
−1rj ]

tA0rj

(B12)

where the vector (A0 +
∑
` λ
∗
`A`)

−1rj is the solution pro-
vided by the CGS algorithm of the inverse problem (A0 +∑
` λ
∗
`A`)X = rj , where X is the unknown.

APPENDIX C: Likelihood probability of the prior
power law

Since we have assumed that the prior p(β) is flat, the
evidence is maximum at β̂. Using Laplace’s Gaussian ap-
proximation, the prior model evidence reads:

p(I|M) ∝ p(I|β̂,M)
√

2πσβ , (C1)

where the inverse variance σ2
β is defined as a second order

derivative w.r.t. β of the evidence energy:

(σ2
β)−1 =

∂2

∂β2
(−logp(I|β,M))

=
1

2

(
∂

∂β

(
trace((A0+

∑
` λ
∗
`A`)

−1A0)

β

)
+
m

β2

)
' 1

2β2

(
−trace((A0+

∑
`

λ∗`A`)
−1A0) +m

)
(C2)

Using (B11), we obtain an approximation of the standard
deviation σβ at β̂:

σβ =

√
β̂

fd(I,v∗)
(C3)

Finally, we obtain the energy of the evidence for model M:

− log p(I|M) ∝2β̂fd(I,v
∗) + log

det{A0+
∑
` λ
∗
`A }̀

det{
∑
` λ
∗
`A }̀

− (m+ 1) log β̂ + log(fd(I,v
∗)) (C4)

The prior model canceling out the derivative of the pre-
vious energy can not be analytical obtained as it involves
a inverse matrix operator. Therefore, in order to minimize
the energy of the evidence for M, the parameter vector
(γ, ζ) is sampled uniformly in R2. The maximum likelihood
estimate M̂ is the minimizer of (C4) and represent the
selected model.

APPENDIX D: Power law inference for laminar
flows

Laminar flows are characterized by flat structure
functions. Indeed, for such flows, increments are equal to

zero. Therefore, power-laws with vanishing prefactor γ = 0
constitute proper models for their structure functions. In
the following we use a toy example in order to demonstrate
the capacity of the proposed algorithm to recover accurately
this particular case. Wu used a synthetic image (of 64 ×
64 pixels) seeded with particles, which is evolved by a
laminar flow (a translation by 1 pixel) to form the second
image of the pair. Figure 16 shows that the inference algo-
rithm properly recovers the flat power law characterizing
such motions. It obviously corresponds to low RMS motion
reconstruction errors as shown in the right part of the figure.

Acknowledgements

The authors acknowledge the support of the French
Agence Nationale de la Recherche (ANR), under grant MS-
DAG (ANR-08-SYSC-014) ”Multiscale Data Assimilation
for Geophysics”

REFERENCES

Adrian, R., 1991: Particle imaging techniques for experimental
fluid mechanics. Annal Rev. Fluid Mech., 23, 261–304.

Baker, S. and coauthors, 2007: A database and evaluation

methodology for optical flow. In Int. Conf. on Comp. Vis.,
ICCV 2007.

Benzi, R. and R. Scardovelli, 1995: Intermittency of two-

dimensional decaying turbulence. Europhys. Lett., 29, 371–
376.

Bergen, J., P. Burt, R. Hingorani, and S. Peleg, 1992: A 3-

frame algorithm for estimating two-component image mo-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 14(9), 886–

895.

Berliner, M., C. Wikle, and R. Milliff, 1999: Multiresolution
wavelet analyses in hierarchical bayesian turbulence mod-

els. Bayesian Inference in Wavelet Based Models, Lecture
Notes in Statistics, 141, 341–349.

Bernard, D., G. Boffetta, A. Celani, and G. Falkovich, 2006: Con-

formal invariance in two-dimensional turbulence. Nature
Physics, 2, 124–128.

Boffetta, G., 2007: Energy and enstrophy fluxes in the double

cascade of two-dimensional turbulence. J. Fluid Mech., 589,
253–260.

Carlier, J. and B. Wieneke, 2005: Report 1 on production and

diffusion of fluid mechanics images and data. Fluid project
deliverable 1.2. http://www.fluid.irisa.fr.

Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci, 28,

1087–1095.
Cho, J. and E. Lindborg, 2001: Horizontal velocity structure

functions in the upper troposphere and lower stratosphere 1.
observations. J. Geophysical Research., 106, 223–232.

Corpetti, T., P. Heas, E. Memin, and N. Papadakis, 2009: Pres-
sure image assimilation for atmospheric motion estimation.
Tellus Series A: Dynamic Meteorology and Oceanography,
61, 160–178.
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Fig. 1. Isotropic energy spectrum and flux in the numerical simulation. Left: energy spectrum, as a function of the wavenumber in

units of the inverse of the length of the box, and in units of 1/pixel (between parenthesis). Right: enstrophy flux (solid) and energy flux

(dotted), as a function of the wavenumber using the same notation.

Images at t = 50∆t DNS velocity Proposed method Correlation

Fig. 2. Particle and scalar images, DNS and motion estimates. From left to right: Particle (above) and scalar (below) image at time

t = 50∆t; Turbulent motion field obtained by DNS in vectorial (above) and color (below) representation; Motion field inferred by the

proposed method and correlation-based velocity fields provided by LaVision in the context of the Fluid FET Open european project (Heitz
et al., 2007) for particles (above) and scalar (below). For a better visual analysis, the velocity fields are displayed in a color representation
where color and intensity code respectively vector orientations and magnitudes (Baker and coauthors, 2007). The corresponding color

map circle is displayed on the left.
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Fig. 3. Energy of probability p(M|I) and RMS error behavior w.r.t. power-law parameters. Plot of minus of the log of the power-law

model evidence probability (left) and the motion RMS error (right) w.r.t. power-law exponent ζ (ordinate) and prefactor γ (absciss)

for the particle (above) and scalar (below) image sequences. The coordinates of the minima are plotted with yellow squares. These
coordinates have to be compared with the true power law parameters (γ, ζ) = (0.003, 1.948), given by a least square fit of the DNS data.
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Fig. 4. Second order structure function reconstruction. Left plots: Inferred power-law model represented by a blue dashed line, and

estimated (resp. true) second order structure function in horizontal-vertical directions plotted with stars (resp. continuous line) and in
diagonal directions with cross (resp. dashed line). Right plots: identical legend for the motion estimate obtained with the prior power-law

model minimizing the RMS error.
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Fig. 5. Motion estimation accuracy. Evolution of RMS error w.r.t. time index for an operational correlation-based method, a robust

first order regularizer (Horn and Schunck, 1981), a second order regularizer (Yuan et al., 2007), and the inferred self-similar constraints

for the particle (left) and scalar (right) image sequences. The results obtained with correlation approach were provided by LaVision
(www.lavision.de) company from their operational PIV software (Davis) in the context of the Fluid FET Open european project.
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Fig. 6. Longitudinal structure function exponents and prefactor w.r.t. their order for the scalar image sequence. The proposed self-
similar regularization (crosses +) provides exponents (left plots) and prefactors (right plots) (in a least square sense) very close to

the ground truth (solid line) in comparison to estimates of (Horn and Schunck, 1981) (stars ∗) or (Yuan et al., 2007) (× symbols).

Correlation-based measurements are not presented here since they do not provide motion increments in the bottom of the scale range of
[1,8] pixels.

Intermediate layer :

Lower layer :

t t+15 min

Fig. 7. Depression over the north-Atlantic Ocean. Sequence of images depicting sparse pressure difference maps of layers at intermediate
(above) and low (below) altitude. The images characterize the layers evolution in a time interval of 15 minutes and with an average

spatial resolution of 3 km. Black regions correspond to missing observations and white lines represent meridians (20o, 30o and 40o),
parallels (50o and 60o) and the coastal contours of south of Greenland (upper left corner).
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Fig. 8. Selection of most likely energy flux for Lindborg’s model. Minus log of the power law posterior probability p(M|I) vs. energy

flux ε in m2s−3 for horizontal winds at low (solid line) and at intermediate (dashed line) altitude
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Fig. 9. 2-nd (above) and 3-rd (below) order structure functions at low (left column) and intermediate (right column) altitudes. 2-nd
order structure functions (+ symbols) are plotted with their associate models (dashed line). 3-rd order structure functions (plotted with
× symbols for positive values and with + symbols for negative values) can be compared to their associate models (fine dashed line for

positive values and coarse dashed line for negative values).
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Fig. 10. Power law evidence probability. Minus log of model probability p(M|I) w.r.t. parameters: exponent ζ (ordinate) and energy

flux ε in m2s−3 (absciss) (i.e., prefactor γ = C2εζ), for horizontal winds at low (left) and at intermediate (right) altitude. Iso-contours

of decreasing values around the minima are plotted in dark blue, yellow and turquoise.
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small scales (3-18 km)
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large scales (30-80 km)
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Fig. 11. Deviation from strict self-similarity at small scales (3-18 km) and at larger scales (30-80 km). Longitudinal structure functions

exponents w.r.t. their order at low (solid curve) and intermediate (dashed curve) altitude using the model in (Lindborg and Cho, 2001)

(on the left) or a flat prior (on the right) for power law models. The dashed straight lines represent strict self-similar behavior, i.e., a
linear relation of exponents w.r.t. order for the two models.
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Fig. 12. 3-rd order structure functions’ absolute value at low (left) and intermediate (right) altitudes for the two methods. Structure

functions obtained with a (Lindborg and Cho, 2001) (resp. a flat) prior are plotted with × symbols (resp. � symbols) for positive values
and with + symbols (resp. ∗ symbols) for negative values. Estimate obtained with the (Lindborg and Cho, 2001) prior can be compared

to their associate models (fine dashed curve for positive values and coarse dashed curve for negative values). At large scales, estimate
obtained with both priors scale as ∼ `3 (straight dashed line).
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Lower layer Intermediate layer

Correlation-based scaling ∼ `2 Correlation-based scaling ∼ `2

Fig. 13. Estimated horizontal wind fields compared to correlation results. Dense wind fields at low (left) and intermediate (right) altitude
where obtained using the flat prior, i.e., a scaling in `2. The correlation results were obtained using the operational PIV software (Davis)

from LaVision (www.lavision.de) company.
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∼ `2/3

∼ `2

∼ `2/3

∼ `2

Fig. 14. Detail of horizontal winds at low altitude. From top to bottom: input image (zoom between the 20o and 30o meridians and the
50o and 60o parallels), solenoidal (2 following lines) and divergent part (2 last lines) of motion estimated with a scaling of `2/3 (2-nd

and 4-th line) or `2 (3-rd and 5-th line).
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Fig. 15. Detail of horizontal winds at intermediate altitude. From top to bottom: input image (zoom between the 20o and 30o meridians
and the 50o and 60o parallels), solenoidal (2 following lines) and divergent part (2 last lines) of motion estimated with a scaling of `2/3

(2-nd and 4-th line) or `2 (3-rd and 5-th line).
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Fig. 16. Power-law evidence probability for laminar flows. True velocity field (left), plot of minus of the log of the power-law model

probability (center) and the RMS motion reconstruction error (right) w.r.t. power-law exponent ζ (ordinate) and prefactor γ (absciss).

The line of minima which is selected by Bayesian inference corresponds to the true underlying power law (γ = 0 for any ζ).
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1 Isotropic energy spectrum and flux in the numerical simulation. Left: energy spectrum, as a function of the
wavenumber in units of the inverse of the length of the box, and in units of 1/pixel (between parenthesis). Right:
enstrophy flux (solid) and energy flux (dotted), as a function of the wavenumber using the same notation.

2 Particle and scalar images, DNS and motion estimates. From left to right: Particle (above) and scalar (below)
image at time t = 50∆t; Turbulent motion field obtained by DNS in vectorial (above) and color (below) represen-
tation; Motion field inferred by the proposed method and correlation-based velocity fields provided by LaVision in
the context of the Fluid FET Open european project (Heitz et al., 2007) for particles (above) and scalar (below).
For a better visual analysis, the velocity fields are displayed in a color representation where color and intensity code
respectively vector orientations and magnitudes (Baker and coauthors, 2007). The corresponding color map circle is
displayed on the left.

3 Energy of probability p(M|I) and RMS error behavior w.r.t. power-law parameters. Plot of minus of the log
of the power-law model evidence probability (left) and the motion RMS error (right) w.r.t. power-law exponent ζ
(ordinate) and prefactor γ (absciss) for the particle (above) and scalar (below) image sequences. The coordinates
of the minima are plotted with yellow squares. These coordinates have to be compared with the true power law
parameters (γ, ζ) = (0.003, 1.948), given by a least square fit of the DNS data.

4 Second order structure function reconstruction. Left plots: Inferred power-law model represented by a blue
dashed line, and estimated (resp. true) second order structure function in horizontal-vertical directions plotted with
stars (resp. continuous line) and in diagonal directions with cross (resp. dashed line). Right plots: identical legend
for the motion estimate obtained with the prior power-law model minimizing the RMS error.

5 Motion estimation accuracy. Evolution of RMS error w.r.t. time index for an operational correlation-based
method, a robust first order regularizer (Horn and Schunck, 1981), a second order regularizer (Yuan et al., 2007),
and the inferred self-similar constraints for the particle (left) and scalar (right) image sequences. The results obtained
with correlation approach were provided by LaVision (www.lavision.de) company from their operational PIV software
(Davis) in the context of the Fluid FET Open european project.

6 Longitudinal structure function exponents and prefactor w.r.t. their order for the scalar image sequence. The
proposed self-similar regularization (crosses +) provides exponents (left plots) and prefactors (right plots) (in a least
square sense) very close to the ground truth (solid line) in comparison to estimates of (Horn and Schunck, 1981)
(stars ∗) or (Yuan et al., 2007) (× symbols). Correlation-based measurements are not presented here since they do
not provide motion increments in the bottom of the scale range of [1,8] pixels.

7 Depression over the north-Atlantic Ocean. Sequence of images depicting sparse pressure difference maps of layers
at intermediate (above) and low (below) altitude. The images characterize the layers evolution in a time interval
of 15 minutes and with an average spatial resolution of 3 km. Black regions correspond to missing observations
and white lines represent meridians (20o, 30o and 40o), parallels (50o and 60o) and the coastal contours of south of
Greenland (upper left corner).

8 Selection of most likely energy flux for Lindborg ’s model. Minus log of the power law posterior probability
p(M|I) vs. energy flux ε in m2s−3 for horizontal winds at low (solid line) and at intermediate (dashed line) altitude

9 2-nd (above) and 3-rd (below) order structure functions at low (left column) and intermediate (right column)
altitudes. 2-nd order structure functions (+ symbols) are plotted with their associate models (dashed line). 3-rd
order structure functions (plotted with × symbols for positive values and with + symbols for negative values) can
be compared to their associate models (fine dashed line for positive values and coarse dashed line for negative values).

10 Power law evidence probability. Minus log of model probability p(M|I) w.r.t. parameters: exponent ζ (ordinate)
and energy flux ε in m2s−3 (absciss) (i.e., prefactor γ = C2ε

ζ), for horizontal winds at low (left) and at intermediate
(right) altitude. Iso-contours of decreasing values around the minima are plotted in dark blue, yellow and turquoise.

11 Deviation from strict self-similarity at small scales (3-18 km) and at larger scales (30-80 km). Longitudinal
structure functions exponents w.r.t. their order at low (solid curve) and intermediate (dashed curve) altitude using
the model in (Lindborg and Cho, 2001) (on the left) or a flat prior (on the right) for power law models. The dashed
straight lines represent strict self-similar behavior, i.e., a linear relation of exponents w.r.t. order for the two models.

12 3-rd order structure functions’ absolute value at low (left) and intermediate (right) altitudes for the two
methods. Structure functions obtained with a (Lindborg and Cho, 2001) (resp. a flat) prior are plotted with ×
symbols (resp. � symbols) for positive values and with + symbols (resp. ∗ symbols) for negative values. Estimate
obtained with the (Lindborg and Cho, 2001) prior can be compared to their associate models (fine dashed curve
for positive values and coarse dashed curve for negative values). At large scales, estimate obtained with both priors
scale as ∼ `3 (straight dashed line).

13 Estimated horizontal wind fields compared to correlation results. Dense wind fields at low (left) and intermediate
(right) altitude where obtained using the flat prior, i.e., a scaling in `2. The correlation results were obtained using
the operational PIV software (Davis) from LaVision (www.lavision.de) company.

14 Detail of horizontal winds at low altitude. From top to bottom: input image (zoom between the 20o and 30o

meridians and the 50o and 60o parallels), solenoidal (2 following lines) and divergent part (2 last lines) of motion
estimated with a scaling of `2/3 (2-nd and 4-th line) or `2 (3-rd and 5-th line).
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15 Detail of horizontal winds at intermediate altitude. From top to bottom: input image (zoom between the 20o

and 30o meridians and the 50o and 60o parallels), solenoidal (2 following lines) and divergent part (2 last lines) of
motion estimated with a scaling of `2/3 (2-nd and 4-th line) or `2 (3-rd and 5-th line).
16 Power-law evidence probability for laminar flows. True velocity field (left), plot of minus of the log of the
power-law model probability (center) and the RMS motion reconstruction error (right) w.r.t. power-law exponent ζ
(ordinate) and prefactor γ (absciss). The line of minima which is selected by Bayesian inference corresponds to the
true underlying power law (γ = 0 for any ζ).
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