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ABSTRACT

We propose a new multiscale PIV method based on turbulent
kinetic energy decay. The technique is based on scaling power
laws describing the statistical structure of turbulence. A spatial
regularization constraints the solution to behave through scales
as a self similar process via second-order structure function
and a given power law. The real parameters of the power-law,
corresponding to the distribution of the turbulent kinetic energy
decay, are estimated from a simple hot-wire measurement. The
method is assessed in a turbulent wake flow and grid turbulence
through comparisons with HWA measurements and other PIV
approaches. Results indicate that the present method is superior
because it accounts for the whole dynamic range involved in the
flows.

1. INTRODUCTION

The measurement of the displacement field between two
images consists in resolving the matching problem between
both images, and can be divided into local and global
approaches. Local approaches computes the disparity of
a given element by observing only its close neighborhood.
These region based approaches estimate the similarity at a
spatial location by comparing a window around it in the
first image with similar windows in the second image, for
a given matching cost. Standards costs are cross-correlation
and the square of the displaced frame difference. The former
is currently used in particle image velocimetry (PIV), while
the later is commonly used in computer vision to estimate
the optical flow. These techniques are based on disjoint
local estimation, need contrasted images and produce sparse
vector fields. Since they are robust to noise they remain
very popular in industrial community. In contrast, global
approaches solve an optimization problem on the entire image,
by making global smoothness assumptions. Generally devised
in a variational framework, they involve more sophisticated
energy optimization methods and provide dense (one vector
per pixel) vector fields with spatial coherence. Several spatial
regularization have been used. The first-order regularization
proposed in the standard optical-flow approach of Horn and
Schunk [5] was designed for quasi-rigid motions. Recently,
Corpetti et al. [1] devised a second-order regularization scheme
more adapted for fluid motion since it enforces regions of
homogeneous vorticity and divergence. Nevertheless, these
high-order spatial-regularization schemes appeared to suffer
from a lack of physical consistency with the structure of
turbulence and fail to represent precisely the variety of spatial
structures particularly at small scales. In addition, since these
regularizations do not rely on any fluid mechanics models they
need to be weighted by a parameter which has to be tuned for

optimal performance.

The purpose of this work is to provide a multi-scale regularizer
based on turbulent kinetic energy decay. In contrast to standard
approaches, the prior is physically sound and presents the
valuable advantage of solving the badly posed problem while
fixing regularizers weights at the different scales. The proposed
approach consists in constraining the velocity fields, through the
second order structure function, to follow the statistical scaling
laws as predicted by Kolmogorov [2]. The real parameters of
the power-law, corresponding to the distribution of the turbulent
kinetic energy decay, were estimated from a simple hot-wire
measurement.

This article is organized as follows. In a first section, we
present the modeling of turbulence energy decay. Then, in
a second section, we present the model-based PIV technique
including the multiscla self-similar regularization. In a last part,
results from real images in grid turbulence and in the wake of
a circular cylinder, are presented and analyzed. We provide
some elements of comparison of our method with standard
model-based and correlation PIV techniques.

2. MODELING TURBULENCE ENERGY DECAY

The approach of Kolmogorov [2] allows, with simple
arguments, the prediction of the turbulence energy spectrum.
The non-equilibrium turbulence statistic proposed by
Kolmogorov is based on the kinetic enrergy cascade towards
small scales. Let us consider the longitudinal velocity
structure functions Sp(`) ≡< δv(`)p >, which are the pth

order moments of the longitudinal velocity increments
δv(x, `n, t) ≡ (v(x + `n, t)− v(x, t)).n, where n is unit vector
pointing in the direction of ` the separation vector between two
points.

Under the assumptions that the statistic of δv(l) is homgeneous,
stationary and isotropic, Kolmogorov proposed that the velocity
structure functions have power law dependance on ` in the
inertial subrange

Sp(`)∼ β`ζp , (1)

where the scaling exponent ζp was suggested to be equal to p/3,
indicating a universal behaviour of small-scale fluctuations. The
theory of Kolmogorov is based on two assumptions. The first
hypothesis of similarity states that for scales ` smaller than the
integral scale L, the distributions of δv(`) are universal, and
are fixed by the molecular viscosity ν and the mean energy
dissipation rate ε. The second hypothesis of similarity for scales
` larger than η, the elementary scale of the energy cascade, the
distributions of the velocity increments δv(`) are not dependant
of the viscosity ν. Hence, for η < ` < L one has the following



approximation S2(`) ∼ C2(ε`)2/3 and S3(`) ∼ C3ε`, where C2
and C3 are constants. However, due to intermittency effects
the scaling exponent ζp has in reality a nonlinear dependance
on p and non-strict self-similarity is assumed for turbulent
flows (Frisch [2]). Nevertheless, for p = 3 no deviations of
the scaling exponent are expected. Furthermore, any two- or
three-dimensional turbulent flow is regular in the dissipative
range 0 < ` < η and using Taylor expansion the second order
structure function reads Sp(`)∼ β`2.

3. METHOD

The proposed method is a model-based measurement technique
which belongs to global variational approaches. This PIV
technique minimizes an energy functional composed of two
terms:

f (I,v) = fd(I,v)+α fr(v). (2)

The image observation model fd(I,v), also called data term,
relates the luminance in the image with v the velocity field to
estimate. Since this first term is not self-sufficient to estimate
the two components of velocity in the image plane, a second
term fr(v) is added. This regularization term enforces a global
spatial coherence, via spatial dependencies imposed over the
whole image domain, to a degree specified by the parameter α

weighting the two terms.

3.1 Image observation model
In a recent paper Liu & Shen [7] have described the relation
between fluid flow and optical flow. The projected motion
equations for several typical flow visualizations have been
carefully derived, based on projection of the transport or
continuity equation in three dimensions onto the image plane.
A generic physic-based data term has been proposed. They
have demonstrated that the so called integrated continuity
equation model from Corpetti [1], is well suited for laser-sheet
illuminated particle and scalar images. Using the phase number
equation for particulate flow and the scalar transport equation,
they showed that the optical flow is proportional to the path
averaged velocity of particles or scalar across the laser sheet and
proposed the following physics-based optical flow equation,

∂I
∂t

+∇I ·v+ Idivv = g(x, I), (3)

g(x, I) = D∇
2I +DcB+ cn.(Nu)|Γ+

Γ−
,

where D is a diffusion coefficient, c is a coefficient for particle
scattering/absorption or scalar absorption, B = −n.∇ψ|Γ+

Γ−
−

∇.(ψ|Γ−∇Γ− + ψ|Γ+ ∇Γ+) is a boundary term that is related
to the considered quantity ψ, and its derivatives coupled with
the derivatives of the control surfaces Γ−, Γ+ of the laser sheet
illuminated volume. Since the control surfaces are planar, there
is no particle diffusion by molecular process, and the rate of
accumulation of the particle in laser sheet illuminated volume
is neglected, the term g(x, I)' 0.

Discretizing in time the physics-based equation 3 the data term
reads,

fd(I,v)=
1
2

Z
Ω

(Ĩ−I+∇I ·v+ Idivv)2ds (4)

where Ĩ denotes the image I(t + ∆t) and Ω is the image
domain. For bi-dimensional flows this observation term leads
to the classical optical flow constraint equation which is
relevant for many geophysical applications as meteorology and
oceanography.

Nevertheless, the observation model remains underconstrained,
as it provides only one equation for two unknowns (u,v) at each
spatio-temporal location (x, t).

3.2 Standard regularization
The first-order regularization proposed by Horn & Schunck [5]
is not adapted to fluid flow since it penalizes the vorticity and
the divergence. Corpetti et al. [1] proposed a second-order
regularization minimizing the gradient of the divergence and of
the vorticity which reads,

fr(v) =
1
2

Z
Ω

(||∇divv||2+||∇curlv||2)ds. (5)

Improvements of this fluid-dedicated regularization have been
suggested with precise numerical scheme by Yuan et al.[8] or
with physics-based spatio-temporal scheme by Heitz et al.[4].
However the accuracy of these approaches depend on the tuning
of the weighting parameter α.

3.3 Self-similar regularization
The self-similar regularization introduced by Héas et al. [3] is
a multiscale physics-based model which is not weighted by any
subjective regularization parameter. The term is based on the
turbulent energy decay power-laws proposed by Kolmogorov
(see §2). More precisely the second-order structure function has
been used since it provides a convenient quadratic constraint.
The new self-similar regularization term defined at each scale `
as the difference between the 2-nd order structure function and
a given power law reads,

fr`(v) =
1
2
(S2(`)−β`ζ2) = 0. (6)

As indicated in section 2 the second-order structure function
does not provide an exact prediction of scaling laws for
non-strictly self similar flows. However, in the present study
we estimate directly the parameters (β,ζ) from a hot-wire
anemometry measurement. Another method proposed by Héas
et al. [3] would consists in taking into account the deviations
from the predicted law by selecting the most likely scaling law
defined by parameters (β,ζ) given the image data. S2(`) is an
expectation which is obtained by spatial integration over the
image domain and over all directions.

3.4 Optimization problem
The minimization problem reads, minv fd(I,v), v(x) ∈ R,

subject to the constraints:
fr`(v) = 0, ∀` ∈ I,

(7)

where I is the scale range of the given power law. This
system is optimally solved by taking advantage of lagrangian
duality. It results in a collection of first-order regularizers
acting at different scales. It should be noted that the optimal
regularization parameters at the different scales are obtained by
solving the dual problem (for more details see Héas et al. [3]).

4. EXPERIMENTAL SET-UP

The multiscale approach was evaluated with particle image
sequences recorded in one of the wind tunnels of the Rennes
regional Center of the Cemagref. These sequences show grid
turbulence and the near wake flow of a circular cylinder at
Reynolds number Re = 3900.



A square-mesh biplane grid was used to generate approximately
homogeneous and isotropic turbulence (see [6]). The grid was
mounted at the inlet of testing zone and had a mesh size of 7
mm with diameter d of the bars of 2 mm. The solidity of the
grid σ≡ d/M(2−d/M), was 0.49 and the mean velocity U was
set at 6 m/s leading to a Reynolds number Re = UM/ν of 2700.

A circular cylinder was used to generate a turbulent wake flow.
the cylinder had a length L of 100 mm and a diameter D of
10 mm. The distance between the ceiling and the floor of the
testing zone was 100 mm providing an aspect ratio L/D of
10. The blockage ratio was 10%. The circular cylinder was
mounted horizontally and vertically at 3.5D from the entrance
of the testing zone. The free-stream velocity was adjusted at 6
m/s, giving a Reynolds number of 3900.

2D2C PIV experiments were carried out with a LaVision
commercial system including a NewWave laser Solo 3 Nd-YAG
(Energy by pulse of 50mJ) and a PCO cameras SensiCam (CCD
size of 1280× 1024 pixels, pixel size of 6.7× 6.7 µm2 and
dynamics of 12bits). A lens with focal length of 50 mm and
aperture of 5.6 was mounted on the camera. The magnification
factor M was about 14.7 pixels/mm. The field of view was
87.5mm× 69.9mm, i.e. about 12.5M× 10M or about 8.8D×
7D. On average, the particle diameter on the image was of 3
pixels. The images were acquired at the mid-span of the testing
zone, i.e. for z = L/2, x being in the streamwise direction and y
in the vertical direction.

The correlation-based velocity fields were calculated with the
commercial software DaVis 7.2 from LaVision. A multipass
algorithm with a final interrogation window size of 16 ×
16 pixels and 50% overlapping was applied. Image deformation
and round Gaussian weighting function were used. Spurious
velocities were identified with median filter, each vector
component is checked independently and replaced by the
median.

Hot-wire measurements (HWA) were performed with a X-wire
probe, providing the longitudinal and the transverse velocity
fluctuations. Both wires had a diameter of 2.5 µm and a length
of 1 mm inclined at about ±45o relative to the mean flow. The
wires were operated with constant temperature at an overheat
ratio of 0.8. The signals were sampled at a frequency of
50kHz and digitised with a 16 bit A/D converter. A specific
method was developed for the calibration procedure and the
signal processing of the X-wire. To have a total calibration
time less than ten minutes, we chose to calibrate the probe in
a non stationary process by working on continuously varying
velocity and temperature conditions, and 16 discrete angle
positions (±38o with 5o increments) in order to determine in
a single calibration run all the sensitivities of the measurement
system to velocity, temperature and angle. The calibration
procedure take into account the the real geometry of the probe,
the interaction of the wires, the influence of the temperature
and the deviations from King’s law at low velocities, the
four-dimensional hypersurface for each wire was modelled with
4th-order polynomial equations.

The use of the Taylor’s frozen-flow hypothesis allows for
direct comparison between HWA and PIV measurements. This
assumption is warranted in grid turbulence since the mean
velocity is much greater than the turbulent velocity. For
the wake flow the validity of the Taylor’s hypothesis will be
discussed in section 5.

5. RESULTS

The images were acquired with tiny time delay between frames
in order to limit the loss of particles due to the out of
plane component. This yielded mean longitudinal particle
displacements of 1 for the grid turbulence and 1.7 pixels
for the wake flow, corresponding to time delays of 5µs and
10µs, respectively. These particular experimental conditions
are optimized for model-based measurement techniques, since
limited loss of particles pairs and small displacements better
suit the image observation model (equation 4). Indeed, the
models are formulated in a variational framework and hence
valid for displacements smaller than the smallest wave length
in the image (after de-noising). It should be noted that to deal
with outliers, like the loss of particle pairs, the data term is
equipped with robust penalty functions which indirectly give
larger weight to the regularization term [1].

The self-similar regularization was applied on the first two
length scales in the image domain, i.e. for separations from
one to two pixels. This range belonged to the dissipative
range 0 < ` < η, since the Kolmogorov dissipation length scale
η, estimated with HWA, was 0.23 mm or 3.3 pixels for grid
turbulence and 0.13 mm or 1.8 pixels for the wake flow. Hence
for the regularization term we used the second-order structure
function Sp(`) = β`2. The parameter β was estimated with
HWA measurements. As a consequence, through the used of β

the solution is constrained with the real rate of energy transfer.
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Figure 1: Comparisons of second-order (top) and third-order
(bottom) longitudinal velocity structure functions in the
streamwise direction for the wake flow (cylinder mounted
horizontally). Red, HWA measurements; Green, proposed
method; Blue, Horn & Schunck [5]; Purple, correlation method;
Solid line is ∼ `2; Dash line is ∼ `(2/3) on top and ∼ ` on
bottom. Energy spectra of the streamwise velocity is shown in
inset.

Figure 1 and 2 show, for the wake flow, comparisons between
the proposed multiscale method and HWA measurements of the
second- and third-order longitudinal velocity structure functions
S2(`) and S3(`) for various length scales in the streamwise



direction.The agreement between HWA and the present method
is good up to 40 pixels for the wake flow with the cylinder
mounted horizontally and 80 pixels with the cylinder mounted
vertically. It reflects the fact that the small scales were estimated
accurately. The deviation for larger separations is explained
by the limit of validity of Taylor’s hypothesis and the weak
statistical convergence of Sp(`).
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Figure 2: Wake flow (cylinder mounted vertically).See figure 2
for details.

The results obtained by Horn and Schunck [5] method and
correlation technique is plotted for comparisons. The present
approach (based on (6)) is superior because it accounts for the
whole dynamic range involved in the flow, i.e. from the integral
scale to the Kolmogorov dissipation scale.

This phenomenon is emphasized for the case of the grid
turbulence for which the present method allows the estimation
of small scale turbulence represented by vortices smaller than
10 pixels diameter (see figure 3) and velocity fluctuations as
low as 0.02 pixels. For this case this led to the resolution of
a dynamic range of 60 since the largest displacements were of
the order of 1.2 pixels. It should be noted that for this flow
with energy level sustained across the small scales, classical
optical flow method ([5]) and correlation approach estimated
only spurious vector fields.

6. CONCLUSIONS

In this work we have proposed a new physics-based multiscale
PIV approach. The technique involves a regularization
constraining the velocity fields, through the second order
structure function, to follow the statistical scaling laws as
predicted by Kolmogorov. The real parameters of the
power-law, corresponding to the distribution of the turbulent
kinetic energy decay, were estimated from a simple hot-wire
measurement. Results showed the ability of the method to
estimate in turbulent flows large dynamic ranges and better
accuracy than other PIV methods.

Figure 3: Velocity field and vorticity map estimated with the
present self-similar regularization method for grid turbulence.
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