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P. Héas, E. Mémin
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ABSTRACT
In this paper, bayesian inference is used to select the most
evident Gibbs prior model for motion estimation given some
image sequence. The proposed method supplements the
maximum a posteriori motion estimation scheme proposed
in (1). Indeed, in this recent work, the authors have intro-
duced a family of multiscale spatial priors in order to cure
the ill-posed inverse motion estimation problem. We propose
here a second level of inference where the most likely prior
model is optimally chosen given the data by maximization of
bayesian evidence. Model selection and motion estimation
are assessed on Meteorological Second Generation (MSG)
image sequences. Selecting from images the most evident
multiscale model enables the recovery of physical quanti-
ties which are of major interest for atmospheric turbulence
characterization.

Index Terms— Bayesian evidence, Gibbs random fields,
optic-flow, self-similar process, atmospheric turbulence

1. INTRODUCTION

The inverse modeling of fluid motion in images is an impor-
tant issue in meteorology and turbulence studies. Image anal-
ysis and data-assimilation methods are particularly important
for studying multiscale geophysical dynamical systems since
they can characterize a large range of scales in comparison to
sparse information contained in standard ”in situ” data. For
such turbulent flows, motion cannot be represented by a sin-
gle spatial polynomial model. Instead, at each point a direct
optic-flow observation model (relying on mass conservation,
scalar transport, etc) links a motion vector to the image inten-
sity function (2; 3). For these dense representations, regular-
ization models are required to remove the motion ambiguities
and achieve inversion.

1.1. Optic-flow standard soft regularization
To deal with this underconstrained optic-flow estimation
problem, the most common setting consists in enforcing
some spatial coherence of motion field v = (u, v)T . This
coherence is imposed either globally through a regularization
functional defined over the whole image I domain Ω or lo-
cally relying on polynomial models defined on local bounded
supports. Global regularization schemes are convenient to

model global coherence via local spatial dependencies. More
precisely, the estimation is performed through the minimiza-
tion of an energy functional composed of two terms:

f(I,v) = fd(I,v) + αfr(v). (1)

The first one fd(I,v), the data term (or minus the log likeli-
hood), penalizes discrepancies from the observation models.
For example, the integrated continuity equation observed in
the image plane results in the data term (3):

fd(I,v)=
1
2

∫
Ω

(Ĩexp(∇ · v)−I(t, s))2ds (2)

where Ĩ denotes the image I(t + ∆t, s + v∆t). The second
component fr(v), the regularization term, acts as a spatial
prior enforcing the solution to follow some smoothness prop-
erties. In the previous expression, α > 0 denotes a regulariza-
tion parameter controlling the balance between the smooth-
ness and the global adequacy to the observation model. In
this framework, (4) proposed a first-order regularization of
the two spatial components u and v of velocity field v:

fr(v) =
1
2

∫
Ω

(||∇u||2+||∇v||2)ds (3)

However, motion gradient penalization is not adapted to fluid
flows as it comes to penalize in an homogeneous way the curl
and the divergence of the solution. Second order regulariz-
ers on motion vorticity and divergence have been proposed
to overcome such limitations (2). All these approaches de-
pend however on the tuning of α and only mimic qualitatively
physical behavior but are not precisely related to the physics.

1.2. Hard-constraints & non-parametric multiscale prior
The authors in (1) removed the weighting prior parameter
α by using physical-based multiscale self-similar models
(power laws) describing the motion field regularity and a
hard-constrained penalization scheme. More precisely, let us
first defined a discrete data term (quadratic with respect to
motion v), expressed it in a matricial form after discretiza-
tion on an image grid S of m points with a finite difference
scheme. The two discretized components of v ∈ Rn thus rep-
resent a field of n = 2m variables supported by the grid S,
A0 is n× n symmetric positive-definite, b0 ∈ Rn represents
a vector of size n. The discrete data term can be rewritten as:

fd(I,v) =
1
2
vTA0v − bT0 v + c0., (4)



where c0 ∈ R denotes a scalar. Then, the authors employed
self-similar constraints g`(v) defined at each scale ` ∈ I as
the difference between a given power law and the 2-nd or-
der moment of the motion increment Probability Distribution
Function (PDF):

E[δv(`)2] ' K
∫

Ω

∫
θ

dθds(v(s + `θ)− v(s))2 · θ, (5)

where the scalar ` represents a given scale, θ denotes a uni-
tary vector direction and K a normalization constant. They
thus forced the estimated motion field to respects the statisti-
cal constraint at scale `: g`(v) = 1

2 (E[δv(`)2] − β`ζ) = 0,
where (β, ζ) are parameters of the power law defining the
prior model. They then showed that those quadratic con-
straints could be written after discretization as:

g`(v, β, ζ) =
1
2
vTA`v − bT` v + c`(β, ζ) = 0, ∀` ∈ I, (6)

where c` ∈ R are scalars andA` are symmetric positive semi-
definite matrices and b` are vectors of size n. They finally
showed that solving the hard constrained minimization prob-
lem is equivalent to minimize the Gibbs posterior energy:
L(v, β, ζ) = fd(I,v) +

∑
`

λ∗` (β, ζ)g`(v, β, ζ), λ∗ = {λ∗`}. (7)

where weights λ∗` can be optimally obtained in a dual formal-
ism. However, a crucial issue still remains : how to chose
optimally the multiscale prior model, i.e. infer parameters
(β, ζ) of the power law given the image data?

2. PRIOR MODEL INFERENCE
In the previous section, we have introduced prior multiscale
models (defined by power law factor β and exponent ζ or
slope in log-log coordinates) for optic-flow non-parametric
regularization. We now want to select the most appropriate
multiscale model for motion estimation given only the image.

2.1. Bayesian hierarchical modeling
Bayes’ rule provides a nice framework to evaluate multiscale
prior model likelihood probability given the image data, the
so called evidence. Indeed, a probabilistic reformulation of
the global motion estimation problem yields a 3-level hierar-
chical model linking image, motion and scaling laws:

I → v→ β, ζ (8)
Note that regularization weights λ∗(ζ, β) do not appear in
the variable hierarchy as they are deterministically given for
fixed (ζ, β). Applying Bayes’ rule, we obtain two levels of
inference in this hierarchy (5):
• Scaling model fitting. We assume some scaling model

parameters (ζ, β), i.e regularization weights λ∗(ζ, β)
(lagrangian multipliers) provided by the dual formal-
ism. Solving the primal problem in the previous section
is equivalent to infer a velocity field v∗ according to a
Maximum A Posteriori (MAP) criterion. The posterior
PDF of this first level of inference is given by Bayes’
relation:

p(v|I, ζ, β)=
p(I|v, ζ, β)p(v|ζ, β)

p(I|ζ, β)
=

likelihood×prior
evidence

∝ p(I|v, ζ, β)p(v|ζ, β) (9)

and is a Gibbs PDF which reads p(v|I, ζ, β)=

exp{−
1
2vT(A0+A(ζ,β))v+(b0+b(ζ,β))T v−c0−c(ζ,β)}

ZL(ζ, β)
(10)

where ZL(ζ, β) denotes the normalization constant
also called the partition function.

• Scaling model selection. A second level of inference
can be performed on the scaling law model parameters
(ζ, β) using Bayes’ relation:

p(ζ, β|, I) =
p(I|ζ, β)p(ζ, β)

p(I)
∝ p(I|ζ, β)p(ζ, β).

(11)
For a flat prior on variables (ζ, β), the MAP of Eq. 11
w.r.t self-similar model parameters (ζ, β) is simply the
Maximum Likelihood (ML) estimate or in other words
the maximum of the evidence p(I|ζ, β). The evidence
can be obtained by marginalization w.r.t. the velocity
field:

p(I|ζ, β) =
∫

Rn

p(I|v, ζ, β)p(v|ζ, β)dv. (12)

Direct calculation of this integral is impractical due to
its huge dimension. However, let us recall that the evi-
dence is the normalization constant (w.r.t. velocity field
v) which has been ignored in the first level of inference
(Eq. 9). Therefore, we can rewrite the evidence as a
normalization constant ratio:

p(I|ζ, β)=
likelihood×prior

posterior
=

ZL(ζ, β)
Zfd

Zg`
(ζ, β)

, (13)

where Zfd
and Zg`

denote the normalization constants
associated to the likelihood and the Gibbs prior PDF.

2.2. Scaling model selection by evidence
The scaling law model evidence can now be evaluated as
a normalization constant ratio. First, the likelihood PDF
p(I|v, ζ, β) related to a quadratic optic-flow data term fd
is a normalized m dimensional gaussian with uncorrelated
components. Thus its normalization constant reads:

Zfd
=

∫
Rm

exp{−fd(I,v)}dI = (2π)m/2, (14)

where m denotes the number of pixels. Therefore Zfd
is

a constant w.r.t. (ζ, β) which can be ignored. Then, the
normalization constant integral ZL of the posterior PDF of
Eq. 10 can be calculated using a Gaussian approximation:

ZL(ζ, β) =
∫

Rn

exp{−L(v,λ∗(ζ, β))}dv (15)

' exp{−L(v∗(ζ,β),λ∗(ζ,β))}2π
n
2 det(A0+A(ζ,β))−

1
2 ,

where we recall that v∗ is the MAP estimate, λ∗ is the associ-
ated set of lagrangian multipliers and where n = 2m denotes
the number of unknown velocity variables. The determinant
of such large and sparse matrices can be efficiently approxi-
mated via an incomplete LU decomposition. Finally, the prior
PDF can be written as:

p(v|ζ, β) =
exp{−

1
2vTA(ζ,β)v+bT (ζ,β)v−c(ζ,β)}

Zg`
(ζ, β)

. (16)



This self-similar prior is degenerated and has an infinity set
of maxima corresponding to the infinite set of admissible ve-
locity field solutions respecting the self-similar constraint. To
make this prior well-defined, we use dirichlet boundary con-
ditions (only for evaluating the evidence). Note that the pre-
cise value on the boundaries does not need to be specified
since it modifies the vector b but does not have impact on the
hessian matrix A (even if the form of A is changed consider-
ing boundary conditions). Considering these boundaries, we
get a slightly changed hessian matrix A which is of full rank.
As previously, the normalization constant can be calculated
using a gaussian approximation:

Zg`
(ζ, β) =

∫
Rn

exp{−
∑
`

λ∗` (ζ, β)g`(v)}dv (17)

= max
v

(
exp{−

P
` λ

∗
` (ζ,β)g`(v)}

)
︸ ︷︷ ︸

=1

2π
n
2 detA(ζ,β)−

1
2

As the set of admissible solution for v for the self-similar
constraint is not empty, the exponential term in Eq. 17 has a
maximum value equal to 1. Finally, using Eq. 13, Eq. 15 and
Eq. 17, the log evidence of the scaling model reads:

log p(I|ζ, β)∝−fd(v∗, I)︸ ︷︷ ︸
data term

−1
2

(log
det(A0 +A)

det(A)
)︸ ︷︷ ︸

log Occam factor

(18)

where for simplification we have dropped the dependance to
parameters (ζ, β). The last terms, known as Occam factor (?
), penalizes the model complexity. It is the ratio of the poste-
rior accessible volume on the prior accessible volume in v (a
variance ratio in 1D). Note that the term

∑
` λ
∗
`g`(v

∗) does
not appear in Eq. 18 as the constraints vanish at the saddle
point.

3. ATMOSPHERIC TURBULENCE
The prior model inference has been assessed on a bench-

mark constituted with METEOSAT Second Generation mete-
orological image sequences acquired above the north Atlantic
Ocean at a rate of an image every 15 min. The image spa-
tial resolution is 3 × 3 km2 at the center of the whole Earth
image disk. According to the physical-based methodology
proposed in (3), a set of sparse pressure difference images of
256 × 256 pixels related to a stack of layers (low and inter-
mediate altitude) have been derived. As detailed in this paper
pressure-based cloud classification and images of top of cloud
pressure have been used to create the set of input images dis-
played in figure 1. We then used the direct observation model
designed by the authors for those sparse images. It is based on
a layer continuity equation which relates the image intensity
functions to vertically averaged horizontal wind fields.
3.1. Model selection : inference of inter-scales energy flux

In these experiments, we assume that the exponent ζ =
2/3 predicted by Lindborg in the direct energy cascade holds
in the range I = [1, 4] pixels equivalent to I = [3, 12] km
(the direct energy cascade is only visible for the 2-nd order
moment up to separation of about 10 kilometers (6)). We thus

Intermediate layer :

Lower layer :

t t+15 min
Fig. 1. Input meteorological images. Sparse pressure difference
maps of layers at intermediate (above) and low (below) altitude.
White pixels of image at time t and black pixels at time t + 15 min-
utes are areas with no observations. The images characterize the
layers evolution in a time interval of 15 minutes.
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Fig. 2. Evidence maximization w.r.t energy flux. Minus log of ev-
idence (blue), likelihood (green) and Occam factor (red) v.s. power
law factor β (i.e. energy flux ε) for horizontal winds at low (left) and
at intermediate (right) altitude

only need to infer the parameter β by evidence maximization.
Figure 4 shows that the evidence maximum is around β̂mid =
0.0024 for the middle layer and around β̂low = 0.0031 for
the lower layer. This plot also illustrates the shared contribu-
tion of the Occam factor and the likelihood (or data term) in
the evidence. Note that alone, the data term is an insufficient
criteria for model selection as it vanishes almost completely
for large values of β. The model proposed in (6) provides an
expression for the 2-nd order moment where the energy flux
can be related in the scale range I to the power law factor by
β = C2ε

2
3 . Parameter C2 ' 6 denotes a Kolmogorov con-

stant. Therefore, the maximum of the evidence also provides
the most likely energy flux at low and medium altitude ε̂ :{

ε̂mid ' 0.79× 10−5m2s−3

ε̂low ' 1.20× 10−5m2s−3.
(19)

These estimates have the same order of magnitude as previ-



ous reported results based on aircraft data analysis1. Thus this
agreement is in our opinion very good as the measure is only
based on image data. An energy spectrum comparison in fig-
ure 4 shows that on the contrary to the motion estimator pro-
posed in (3), the present method does not underestimate the
energy flux. It should be noted that in the proposed estima-
tion approach, as the evidence maximization does not depend
on motion variables, energy flux is obtained directly from the
image intensity function conversely to other approach which
need to first extract pseudo motion observations from the im-
ages and then estimate independently those physical quanti-
ties.
3.2. Wind field estimation
Figure 3 displays wind fields at intermediate altitude esti-
mated with the most evident prior model (i.e. for β̂). They
are superimposed on the sparse image observations. Figure 4
shows the statistical consistency of the estimated motion
fields by comparison with the turbulence modeling proposed
in (7). In particular, one can notice that the estimated second
order structure functions and the power spectra are in good
agreement.

Fig. 3. Motion at different altitude. Estimated horizontal wind
fields at low (left) and intermediate (right) altitude.

4. CONCLUSION

We have presented a bayesian hierarchical model which si-
multaneously provides optimal solutions for two problems:
motion estimation and prior model selection from image se-
quences. Multiscale optic-flow prior models describe turbu-
lent flow self-similarity resulting in power law behaviors for
the second order moment of the PDF of motion increment. A
hard constraint minimization scheme is used to provide an a
posteriori motion estimate which does not involve the tuning
of any regularization weight. Bayesian evidence provides a
reliable criteria to select the most likely prior model given the
image sequence data. Experiments and comparison with in
situ measurements prove that the method constitutes an inter-
esting tool for physical characterization of atmospheric mo-
tion. In particular, we show that bayesian evidence enables to
recover directly from a meteorological image sequence con-
sistent flux across scales.

1Authors in (7) estimated an average energy flux value of ε ∼ 6 ×
10−5m3s−3 for the stratosphere. A collection of other in situ measurements
shows a typical value close to ∼ 10−5m3s−3 (8)
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Fig. 4. Energy spectra (line below) and second order structure
functions (line above) at low (left column) and intermediate (right
column) altitudes. 2-nd order structure functions (red crosses)
are plotted with their associate models given by (7) (green dashed
line). 1D energy spectra obtained by our approach (red crosses) can
be compared to their models given by (7) (blue dashed line) and to
results from (3) (green stars).
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