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Abstract—In this paper, we address the problem of esti- [19] [20] [22]. The design of techniques dedicated to fluid

mating three-dimensional motions of a stratified atmosphes
from satellite image sequences. The analysis of three-dimsional
atmospheric fluid flows associated with incomplete observiin
of atmospheric layers due to the sparsity of cloud systems igery
difficult. This makes the estimation of dense atmospheric ntwn
field from satellite images sequences very difficult. The rewery
of the vertical component of fluid motion from a monocular
sequence of image observations is a very challenging prolfefor
which no solution exists in the literature. Based on a physally
sound vertical decomposition of the atmosphere into cloudalyers
of different altitudes, we propose here a dense motion estiator
dedicated to the extraction of three-dimensional wind field char-
acterizing the dynamics of a layered atmosphere. Wind estiation
is performed over the complete three-dimensional space usj
a multi-layer model describing a stack of dynamic horizontd
layers of evolving thickness, interacting at their boundares via
vertical winds. The efficiency of our approach is demonstraed
on synthetic and real sequences.

I. INTRODUCTION

flow has been a step forward, towards the constitution of
reliable methods to extract characteristic features of SI{y

[6] [10] [17] [23] [24]. However, for geophysical applicatis,
existing fluid-dedicated methods are all limited to hori@dn
velocity estimation and neglect vertical motion. All these
methods are obviously not adapted to the extraction of 3D
measurements but also do not take into account accurately
luminance variations due to 3D motions. Such effects
are occasionally important at mesoscales systems such as
convective towers and should be incorporated in the motion
estimation method.

Geophysical flows are quite well described by appropriate
physical models. As a consequence in such contexts, a
physically-based approach can be very powerful for anatyzi
incomplete and noisy image data, in comparison to standard
statistical methods. The inclusion of physical priori
leads to novel advanced techniques for motion analysis or

Geophysical motion characterization and analysis by imag@® information recovery. This yields to new application

sequence analysis is a crucial issue for numerous scientiftemains impacting potentially studies of capital interfest
domains involved in the study of climate change, weatheur everyday life, and obviously to the devise of proper
forecasting, climate prediction or biosphere analysise Thefficient techniques. This is thus a research domain witrewid
use of surface station, balloon, and more recently in-flightrspectives. Our work is a contribution towards this dicgc
aircraft measurements and satellite images has improwed th
estimation of wind fields and has been a subsequent ste@mhe method proposed in this paper is significantly
towards a better understanding of meteorological phenamedifferent from previous works on motion analysis by satelli
However, the network's temporal and spatial resolutiongagery. A main difference is that the 3D data model used
may be insufficient for the analysis of mesoscale dynamids. our method relies on a physical model for a stack of
Recently, in an effort to avoid these limitations, anothgiressure difference image observations retrieved atreliffe
generation of satellites sensors has been designed, prgvicitmospheric levels. This interacting layered model allogs
image sequences characterized by finer spatial and temp@salecover vertical motion information.
resolutions. Nevertheless, the analysis of motion remains
particularly challenging due to the complexity of atmosphe
dynamics at such scales.
[I. RELATED WORKS ON OPTICAL FLOW ESTIMATION

Tools are needed to exploit this new generation of satellite The problem of wind field recovery consists in estimating
images and we believe that it is very important that thtae 3D atmospheric motion denoted bV(s,t) from a
computer vision community gets involved in such domain &D image sequencd(s,t), where (s,t) denote the pixel
they can potentially bring relevant contributions withpest and time coordinates. This problem is a complex one, for
to the analysis of spatio-temporal data. which we have only access to projected information on

clouds position and spectral signatures provided by #atell

Nevertheless in the context of geophysical motion anglys@bservation channels. To avoid the three-dimensional wind
standard techniques from Computer Vision, originallfield reconstruction problem, all developed methods have
designed for bi-dimensional quasi-rigid motions with &abrelied on the assumption of negligible vertical winds and
salient features, appear to be not well adapted [2] [9] [13][ focused on the estimation of horizontal winds related to the



top of clouds which may be at different heights. on the complete image domain. As a result, the scheme is
more robust in its ability to handle noisy and low contrast
Let us present a brief survey on existing models for hoobservations. More precisely, the motion estimation pFobl
izontal motion estimation from image sequences. The ess-defined as the global minimization of an energy function
mation of the apparent motiown(s,¢) as perceived through composed of two components :
image intensity variations (the so-called optical-flowlie®
principally on the temporal conservation of some invagant
The most common invariant used is the brightness consigtenc J(v, 1) = Ja(v,I) + aJ(v). 3)
assumption. This assumption_leads to the well known Optical The first component, (v, I) called the data term, expresses
Flow Constraint (OFC) equation the constraint linking unknowns to observations while the
v VI(s,t) + L(s,t) = 0. 1 second gomponem,(v), called the smoothing term, reinforce
the solution to follow some smoothness properties. Thempara
An important remark is that for image sequences showimger,«, controls the balance between the smoothness and the
evolving atmospheric phenomena, the brightness consisteglobal adequacy to the observation model. In this framework
assumption does not properly model temporal distortions Bbrn and Schunck [13] first introduced a data term related
luminance patterns caused by 3D flow. In spite of this, mot the OFC equation and a first-order smoothing of the two
estimation methods used in the meteorology community stpatial components andv of velocity field v. In the case of
rely on this crude assumption [14] [19] [20]. The Integratettansmittance imagery of fluid flow$,= [ pdz, and using the
Continuity Equation (ICE) provides a valid invariant asgum previously defined ICE model (Eq.2) leads to the functional :
tion for altimetric imagery [7] of incompressible flows or
for transmittance imagery of compressible flows [8] under th
assumption that the temporal derivatives of the integnatid/a(V, ) :/ (Ie(s) +v(s) - VI(s) + I(s)divv(s))* ds, (4)
boundaries compensate the normal flows. This ICE model @
reads : where() denotes the image domain. Recently, a dedicated
method has been proposed to solve a multi-layered motion
(/ pdz) + v.V(/ pdz) + (/ pdz)divv =0, (2) estimation problem by the inference of dense density-vieijh
¢ average horizontal wind fields related to different atmesjzh
where p and v denote the fluid density and the densitgtrata [10]. In this method, the motion extraction is done by
averaged horizontal motion field along the vertical axigitting an image-adapted transmittance conservation model
Unlike the OFC, such models can compensate mage. the ICE model of Eq. 2) to pressure observations,
departures observed in the image plane by associatingependently for the different layers. To cope with the
two-dimensional divergence to brightness variations., Bijomplexity of atmospheric motion observed at mesoscale and
for the case of satellite infra-red imagery, the assumptigtith noisy and sparse observations, a two-stage estimation
that I o [ pdz is flawed. Moreover, note that although th&cheme has been introduced. It incorporates correlation-
assumed boundary condition is valid for incompressibleslowbased constraints and priori information on atmospheric
it is not realistic for compressible atmospheric flows obedr dynamics [10].
at a kilometer order scale. However, based on experiments,
the authors proposed to apply this model directly to the #nag |t can be demonstrated that a first order smoothing is not
infra-red observations [5] or to the inverse of the imaggdapted as it favors the estimation of velocity fields witiv lo
infra-red intensities [24]. Such models, although inextact divergence and low vorticity. A second order smoothing an th
infra-red images, have shown to provide better results thaworticity and the divergence of the defined motion field can

data model based on brightness consistency. advantageously be considered as proposed in [5] [21] [23] :
Recently, under the assumption of negligible vertical wind

(which makes valid the assumption that the temporal

derivatives of the surface corresponding to integration J.(v) :/ | Veurlv(s) ||* + || Vdivv(s) ||* ds. (5)

boundaries compensate the normal flows), the model of Eq. 2 Q@

has been applied to pressure difference maps approximatingnstead of relying on &2 norm, a robust penalty function

the density integrals [10]. ¢q may be introduced in the data term for attenuating

the effect of observations deviating significantly from the

The formulations of Eq.1 and Eg.2 can not be used alon€E constraint [4]. Similarly, a robust penalty functiaf)

as they provide only one equation for two unknowns aan be used if one wants to handle implicitly the spatial

each spatio-temporal locatior(s, t), with therefore, a one discontinuities of the vorticity and divergence maps. le th

dimensional family of solutions in general. In order to remo image plane, these discontinuities are nevertheless uiffic

this ambiguity and improve the robustness of the estimatidio relate to abrupt variations of clouds height. Moreover,

the most common assumption is to reinforce the spatial lodhk robust approach does not allow the interaction of points

coherence. This local coherence can explicitly be formedlizof unconnected regions, which belong to a same layer, to

as a regularity prior within a globalized smoothing schemateract during the motion estimation process.

Within this scheme, the spatial dependencies are modeled



I11. M ODELING A DYNAMICAL STACK OF INTERACTING B. Layer decomposition

LAYERS The layering of atmospheric flow in the troposphere is
In this section, we revisit the integrated continuity edquat valid in the limit of horizontal scales much greater than the
expressed in a pressure coordinate system in the presenceedfical scale height, thus roughly for horizontal scalesager
vertical winds in order to derive a 3D dynamical model for ¢ghan 100 km. It is thus impossible to truly characterize a
stack of interacting layers fitting sparse pressure diffeee layered atmosphere with a local analysis performed in the
observations. This atmospheric model extends to 3D, thieinity of a pixel characterizing a kilometer order scale.
horizontal mass conservation model proposed in [10]. Nevertheless, one can still decompose the 3D space into
elements of variable thickness, where only sufficientlyn thi
A. Reuvisiting the Integrated Continuity Equation for 3D @8n regions of such elements may really correspond to common
Interesting models for 3D compressible atmospheric miayers. Analysis based on such a decomposition presents the
tion observed through image sequences may be derived rhgin advantage of operating at different atmospheric press
integrating the 3D continuity equation expressed in the istanges and avoids the mix of heterogeneous observations.
baric coordinate systerfw, y,p). In comparison to standard
altimetric coordinates, isobaric coordinates are adypauas : For the definition of layers, we present the 3D space
they enable to handle in a simple manner the compressibilitgcomposition introduced in [10]. THeth layer corresponds
of atmospheric flows while dealing directly with pressuréo the volume lying in between an upper surfade! and a
quantities, which will be used as observations in this paper lower surfaces®. These surfaces' are defined by the height
this coordinate system, the pressure functi@ets as a vertical of top of clouds belonging to thé-th layer. They are thus
coordinate. Let us denote the horizontal wind components Bgfined only in areas where there exists clouds belongirtgto t
v = (u,v) and the vertical wind in isobaric coordinatesby k-th layer, and remains undefined elsewhere. The membership

The 3D continuity equation reads [12] : of top of clouds to the different layers is determined by dou
classification maps. Such classifications, which are based o
_8_‘*’ - (@ + @) ) (6) thresholds of top of cloud pressure, are routinely provided
dp oz dy), by the EUMETSAT consortium, the European agency which

By defining now two altimetric surfaces® and s**' with supplies the METEOSAT satellite data. Note that the diserim
p(s*) > p(s*+1) related to a pressure difference functigst ination of layers according to classifications based on top o

and a pressure-average horizontal wind fiefd cloud potential temperature_rather than top of cloud pressu
. . 1 would have been better suited to mesoscale. However, such
op" = p(s) —p(s") (7)  classification are not currently available.
1 ;"(Sk)
Vo= [ v (®) | |
Op* Jp(sriy C. Sparse pressure difference observations

we have demonstrated in appendix | that, under certain eondiin order to derive pressure difference observations at
tions, the vertical integration of Eq.6 in the altimetriderval different atmospheric levels, we rely on top of cloud pressu
[s*, s*+1] yields to the following 3D-ICE model: images as proposed in [10]. Indeed, top of cloud pressure
dop" _ images are also routinely provided by the EUMETSAT
gp(sMW(s*) — gp(s" T Hw(s* ) = —— + spFdiv(v"), (9) consortium. They are derived from a radiative transfer rhode

dt ) . ) .
where g and w denote respectively the gravity constant arJFbE'ng a”C'"a_rV data optamed by analy3|§ or short term
recasts. This model simulates the radiation by the top of

the vertical wind in the standard altimetric coordinatetsys 0

(z,y,2). Note that this model appears to be a generalizati&’i‘ opaque cloud at. different vertical levels, which might be
of the so calleckinematic method@pplied in meteorology for obs_eryed F’y a sateII!te. The pressure Ieve_:l where the s_iawla
the recovery of vertical motion [12]. Indeed, by neglectihg radiation fits best with the observed radiation determihes t

first term on the right hand side of Eq.9, vertical motion calfessure of the clogd top fo_r the correspondlng pixel [16].
be expressed as : Multi-channel techmques (using a thermal IR with a'wat_er
. ) N vapor or CQ absorption channels) enable the determination
w(sFt) = p(s®)W(s™) — dp div(vk), (10) of the temperature of the top of semi-transparent cloud$ [18
p(sFt1)  gp(sk+t) [20], and thus their equivalent pressure level, with thephel
which corresponds exactly to thénematic estimate. Note of analyzed or forecast data.
also that the ICE model (Eq.2) used in [10] can be recovered
when vertical motion is neglected and for an atmosphere inWe denote byC* the class corresponding to theth layer.
hydrostatic equilibriumdp = —g [ pdz). On the right side of Note that the top of cloud pressure image denotedpgy
the 3D-ICE, vertical motion w appears only on the integratios composed of segments of top of cloud pressure functions
boundaries, while on the left side, pressure-average twtaz p(s*+!) related to the different layers. That is to sayj, =
motion v* appears within a standard optical flow expressiofl J, p(s"*!,s); s € C*}. Thus, pressure images of top of
compensated by a divergence correcting term. Thus, for prekuds are used to constitute sparse pressure maps of #re lay
sure difference observations on layer boundaries, the@®-I upper boundarieg(s**!). Since cloud bases are not readily
constitutes a possible 3D estimation model. observed in satellite imagery, we coarsely approximate the




missing pressure observatiopés®) by an average pressurethe troposphere only to some extent, note that in the model
value p* observed on top of clouds of the layer underneatbf Eq. 12, density horizontal fluctuations may be annihdate
Finally, for the k-th layer, we define observations® as by vertical wind errors. And, performing a scale analysis in

pressure differences : a pixel vicinity, it can be shown that such fluctuations are
too weak (magnitude of I¢ sm~2Pa!) in comparison to
. v [ =0pF(s) if secC* the density amplitude (magnitude bfs’m—2Pa ') to have a

P —py, =N : : Ak (11) significant impact tical wind amplitud itude of

. £06pF(s) if seCF, significant impact on vertical wind amplitude (magnitude o

107! ms™1) [12].
D. Layer interacting model| After integrating in time the differential equation 12 adpn
the horizontal trajectories and applying the variation loé t
constant tecnhique for the second member, we obtain a time-

TROPOPAUSE integrated form :
wd=0
ha if divv® £ 0
—yk =kl k+1
'S ~ ok ) W* —p W ke
Lk divw® [ - Atp . divv® _
€ g dIVVk (e )7
K ifdivv* =0
Layer 3 Y w3>0 Tk . . — :
” W —nt = —gAt(phwF —pFwi ), (15)
where the motion-compensated imag&(s + v*,¢ + At)
Laver2 —F has been denoted for convenience by and where At
ayer o h1 denotes the time interval expressed in seconds between
two consecutive images. Details on the derivation of the
Layer1 P e time-integrated form are provided in appendix II.

EARTH

For the lowest layer, the Earth boundary condition im-
o _ ' ' B _ plies : W = 0. Let K denote the index of the highest layer.
T S enm om0 e caroesoning e s AnOther boundary conditons may be given for the highest
{v!, w2, v2,w3,v3}. For the enhancement of the visual representatiod@y€l Dy the reasonable assumption that vertical wind can be
pressure differencé® have been identified here to altimetric heights. neglected at the tropopause which acts like a covelf +iv=
0. Thus, as the vertical wind present on the upper bound of

Eq.9 is thus valid for image observatioh$ related to the the -th layer is identical to the one present on the lower

k-th layer on the spatial sub-domatFf": bound of the(k + 1)-th layer, we have the following two sets
d(nk) . ek el of unknowns :{v* : k € [1, K]} and{w* : k € [2, K]}. The
g ThVeovi= g(p"W" — p W), (12)  vertical wind unknowns act as variables that express hot@o

here for clarit h imolified notati " dwsk wind interactions between adjacent layers. Fig.1 scheesti
where for clarity we have simplified notatiops™) and w(s®) an example of three interacting layers associated to a set of

into p¥ and wF. As density fields on the layer surfaces A knowns, according to the 3D-ICE model
unknown, we simplify the modeling by assuming that density ' '

fieldsp* are constants with valug&. Such values can roughly

be related to the average pressupésby vertical integration IV. 3D WIND ESTIMATION

of the equation of state for dry aip & pRT") combined with ] ] )

the hydrostatic relationdp = —g [ pdz) under the assumption In this section, we present a robust estimator based on the
of constant lapse ratel(= T, + vz) where R, T, and layer interacting model introduced previously. This metles-
denote physical constants. More precisely, between aereder _tends to 3D the layered horizontal motion estimation predos
altitude =, (or pressurepy) and an average altitude® (or " [10]-

pressurep’), one obtains the relation :

/ " dp B /Ek g " (13) A. Dedicated robust estimator
po P w0 B(To+vz) Since outside the clas§®, h* defined in Eq.11 is not
which yields after some calculation to the coarse approximalevant of thek-th layer, we introduce a masking operator
tion : to remove unreliable observations by saturation of a robust
LS penalty functionp,. More explicitly, we denote by« the op-
ko PO P (14) erator which is identity if pixel belong to the class, and e¥hi
RTp po returns a fixed value out of the range taken/fyotherwise.

Although the constant lapse rate assumption, that is to SBlyus, applying this new masking operator in Eq.15, we obtain
the linear variation of temperature with altitude, is vaiid for the k-th layer the robust data terdhy (v, w* wk+1 p¥F) =



data term readd,(v®, wk wrtl pF) =
it [|divv*(s)]| > e
/ da[h"(s) exp{divv®(s)} — Icx (h*(s))
Q
—k

W (s) — 7 W (s)

/ baleS" (P + VIMTY + 0% —Tae(B%)  (18)
Q

+gALf (¢, wh, W) s
+gAt

(1 — exp{divv"(s)})]ds

e where if CF]| = ¢, F(,w,wi+) =

o ' K
/9% [h"(s) — Lok (R"(s)) SRWk — gl (1 e v’Vf’“(eC ~1 efk))
—gAt(p"W* (s) — p" Wt (s))] ds, (16) I N

. . e f(gkjwkjwk+1) _ pk+1wk+1 - pkwk_
where e is a scalar close to zero. A second order div-curl
smoother has .been. chosen to constrain spatigl smo'othneﬁﬁ order to enhance the estimation accuracy, a two-stage
qf horizontal wind fields. T_he latter was combined with 3stimation scheme including correlation-based congg@nd
first order smoother that reinforces regions of homogeneogﬁ)riori information on mesoscale atmosphere dynamics can
vert?cal wi.nds. Note th‘?lt we have restricted th? smoother f8 nstitute an alternative approach to common multi-resniu
vert|caI.V\./|nd to be a f|r§t order one, as 3D divergence a 0]. In the first stage of such an estimation scheme, the-vert
3D vort!cny vectors are inaccessible in a layered queb T al motion component is neglected as the estimation pegorm
smoczthwllg term for the:-th layer has been thus defined a3t large scales (of order of 100 km). As a matter of fact, ia thi
Sr(vEWh) = stage, large scale displacement estimation relies on g (2
ICE model. Moreover, large displacements are constraiyed b
/a(||VCU7"le(S)||2+||VdiVVk(S)||2)+5||VWk(S)||2dsa (17) a collection of correlation-based vectors and a sound teahpo
¢ smoother. In the second refinement stage acting at fine scale
where 5 > 0 denotes a positive parameter. A Leclerc M¢of order of 1 km), the correlation-based constraints toget
estimator has been chosen fog for its advantageous min- with the temporal smoother are disconnected and the (2D)
imization properties [11]. The masking procedure, togetheCE model is replaced by the 3D ICE model. This second
with the use of this robust penalty function on the data termstage implies the use of the motion-compensated expression
allows erroneous observations from the estimation proteessof Eq. 18.
be discarded. It is important to note that, for theh layer,
the method provides estimates on all poinbf the image
domain Q). Areas outside the cloud clags® correspond to C. Minimization issues
3D interpolated wind fields.
In the proposed optimization scheme, we chose to minimize
. ] a discretize version of functionals of Eg. 18 and Eq. 17. Let
B. Large horizontal displacements us denote by:* the robust weights associated to the semi-

One major pr0b|em with the differential formulation ofquadratic penalty function related to the data term. Mini-
Eq.12 is the estimation of large displacements. However, tRlization is done by alternatively solving large systems for
integrated form of Eq.15 is valid for high amplitude disgac Unknownsv*, w* and z* through a multigrid Gauss-Seidel
ments, and has the advantage of being linear. A Standéﬂjver. More explicitly, all variables are first initialideto
approach for tackling the non-linear data term is to app%ﬁro. A global optimization procedure is then successively
successive linearizations around a current estimate andoRgrated at each level of the multi-resolution pyramid.sThi
warp a multi-resolution representation of the data acomylgti Procedure first performs in a multigrid optimization steate
This approach relies on an image pyramid, constructed H}P minimization with reSpeCt tok of a linearized functional
successive low-pass filtering and down sampling of the aigi composed of the data term defined in Eq.18 and of the second
images. A large displacement fieldis first estimated at coarseorder smoothness term defined in Eq.17. As varialles}
resolution where motion amplitude should be sufficientignd {2} are first frozen, this first step can be performed
reduced in order to make the initial differential data modéndependently for each layer levél € [1, K]. Once the
valid. Then, the estimation is refined through an increnent®@inima have been reached, in a second step, fixing variables
fields v/ while going down the pyramid [3]. The latter are{v"} and{-*}, the same functional is minimized with respect
estimated within a linear scheme by minimizing linearizet €ach W, k € [2, K]. For a neighboring system, the linear
motion-compensated functionals : for the decompositibr= System can be solved iteratively. At theth iteration, the
v + v/, EQ.16 is linearized around and yields to a motion- Gauss-Seidel update for vertical wind is expressed for each
compensated linear formulation of the data term. Let us tien®ixel locations € €2 and for each level layek € [2, K] as
by ¢* the coarse scale divergence estimaterdind omit for
sake of clarity point coordinatesin the integrals. After some
calculation, we obtain that, for the-th layer, the linearized

B tien wh () D — 2Rayby — 21 crdy,

19
AR e Ry (19)
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where on the middle layer no horizontal winds® = 0 has been

efk([ﬁkvgk +VRNTY 4 ) — Tow () considered. On the higher layer, a motiot issued from a

= - ki1 (no1) divergent source has been applied. The latter sink and sourc
* gAtf(§ 0, w ); possess a decreasing influence while going away from the
by = gAtf(c*1,0), center of the image to its boundaries (motion amplitudes
o = &RV 4 VAF Y £ RN — I (hF1) ranges in the intervake 0 — 1.25 pixel per frame, that is
£ gALf(CFL WP D ), ~ 0 — 4m.s.~1). Non-uniform vertical winds of strength
de = gALF(E0,1), w? € [0.1,0.2) m.s.”" andw?® € [0.2,0.3] m.s.~! have been

simulated on the boundaries shared respectively by therlowe
and where the given boundary conditions on vertical windsd the medium layers, and by the medium and the high
(Vs € Q, w!(s) = wE*!l(s) = 0) hold. Note that vertical layers respectively. The latter horizontal and verticahds
wind W* is estimated considering variables related to thehich are presented in figure 2 have been used to deform,
layer above the boundaf*t1, h¥ h¥ vk 2%} and the layer according to the time integrated 3D-ICE model (Eq.15)
underneath the boundaryw*—! pF—1 Bkt k=1 k=11 and for each layer, the 3 different data sets (of increasing
Finally, in a last step for each pixel locations and for eaahoise ratio). Thus, considering a time intenAt = 900

k € [1, K], the robust weightg” are in turn updated while seconds, three sets of stack of images(t), h?(t), h3(t)]
variables{v*} and {w*} are kept fixed. The three previouswere deformed to generate three different sets of propdgate
minimization steps are iterated until a global convergenstack of imagesh!(t + At), h?(t + At), h3(t + At)).

criterion is reached, that is to say until the variation of

the estimated solution between two consecutive iterationsyi-ontal and vertical winds retrieved with the 3D

becomes sufficiently small. estimator using a multi-resolution approach for large

o ) . displacements are presented in figure 2. For the three
It is important to point out that the proposed 3D estimgay e |evels, vertical and horizontal winds are accurately

tion methodology does not increase much the complexity @ftimated in cloudy regions. In observations free areas,

the original non-linear horizontal motion estimation pEh.  \ertical and horizontal winds appear to be consistent with

Indeed, given horizontal motion, the vertical wind estiRt he givergent and ascendant motions. Note that in the non

constitutes a linear quadratic problem which can be effityien |, gy regions, the estimator acts as a 3D wind extrapolator

solved as presented in Eq 19. Moreover, it can be noticed that the proposed layer intergct
model significantly increases the estimation performances

V. EXPERIMENTAL EVALUATION In particular, the convergent motion of the lower layer is

A. Synthetic image sequence weII'IcQIaracterized although only very few observations are

available.

For an exhaustive evaluation, we have first relied on . .
. . or comparison purpose we have run on this sequence
simulated flow of an atmosphere decomposed iAto= 3 . : .
he same estimator imposing a zero value to the unknown

. . : t
o epone st e, b ohooen 1 i Eeal components. Th comes o use the 20 layered
9 sy 9 . . data model as proposed in [10]. As a result, this estimator
layered atmosphere that contains ascendant winds as & res . . . .
. . . . calculates independent horizontal winds for the threesdbffit

of contraction at its base and expansion at its top. Let HS : . . .

. . . . . . layers in the very same numerical implementation setup
describe the 3D motion simulation. A real cloud classifimati

map (used in the next experiment) has been employed at% for the 3D wind estimator. Results of this 2D layered

dissociate the layers, and to assign them to different im gaumation are presented in figure 2. It appears that the
. i Yers, 9 . k fter estimator completely fails to accurately charazeer
regionsC*. Thus, for each layerg, a sparse imagé”(t)

of 128x128 pixels with a spatial resolution of 3x3 krhas horizontal motion. This demonstrates that, although watti

) . wind (~ 0.1 — 0.3m.s.”!) is weak compar horizontal
been generated, representative of cloud pressure differen d(~0 0.3m.s.7 ) is weak compared to horizonta

. : : motion (~ 0 —4m.s.~ 1), its influence can not be neglected in
measurements on the assigned regiéifs and of a fixed S :
saturation value on the comolementary domain Texturtgje estimation process. A 3D data model clearly improvethe
) ) _f y " Fésults in such a situation.
image of meanh =200hPa,h =200hPa andh =300 hPa
and with a standard deviation of 20 hecto Pascals (hPa) ) ) )
have been used to simulate cloud pressure difference value$ne behavior of the 3D motion estimator accuracy has then
for the 3 layers. The three resulting images are presenfi®fn assessed using the synthetic observations geneoated f
in figure 2. Two different gaussian noises with variancdgCreasing noise levels. Let us denote [6) the number of
respectively equal to 5% and 10% of the pressure differengels in the discretized domain. The accuracy of horizontal
textured imagesh*. Three different image data sets hav@verage absolute speed bias in pixels :
thus been generated. Consistent density valpés={ 1.22,

p? = 1.00, p° = 0.81 andp* = 0.45) have been chosen .
acc_ordlng to _Eq. 14. An hprlzontal motion' issued from _ _Z \/(Hka — [|vk.. )2, (20)
a divergent sink has been imposed to the lower layer, while 12 :
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Fig. 2. Retrieval of horizontal motions and ascendant winds. Uppliere : ground truth. Horizontal velocity fields{v!,v2,v3} used for simulation
superimposed on cloud pressure difference images for a (edf), a medium (middle) and a low (right) layer. White aseeorrespond to regions where no
data are available. Vertical wind fieldsw?, w3} used for simulation are displayed in-between the lattergesa(the legend bar associated to the color scale
is displayed in figure 4)Middle line : comparison with 3D-ICE motion estimatesiorizontal winds estimated with the 3D-ICE model are sup@adsed on
cloud pressure difference images for the high (left), thelioma (middle) and the low (right) layer and estimated vettiwind mapsw?® andw? are displayed
in-between the latter imageBottom line : comparison with (2D) ICE motion estimatesiorizontal winds estimated with the ICE model are superisggo
on cloud pressure difference images for the high (left), tfeglium (middle) and the low (right) layer.

and the average Barron’s angular error in degrees [1] : bias beneath 7 degrees and 0.1 pixel on the whole image)
P while the 2D data model fails to estimate correctly wind

1 Zarccos 14+ 0% - Ve @, (21) directions and speed (Barron's angular error and speed bias

1] < VIHFIPVI 0k el2 ) ™ above 7 degrees and 0.1 pixel on the whole image). When

which is a criterion that accounts in the same time for angui{'® noise level is increased, horizontal motion estimation
and magnitude errors. Let us note that the speed bias israleP€rformance of the 3D and 2D estimator tend to be similar.
only when Barron's angular error is not too important. Thi1deed, the estimation accuracy inevitably decreases @s th
accuracy of vertical wind estimates has been quantifiedqusiiP-/CE modeling is corrupted by noise, and the failure of the

the root mean square error in pixels : 2D estimator tends to reduce as the robust approach enables
convergence towards the 2D solution in the presence of noise
1 Z(“’k —wk )2 22) Furthermore, for a sufficient noise level, the 3D and the 2D
1Y) frue estimator proove to have similar performances. This behavi

S

. can be explained by inspecting in figure 3 the decrease teward
In order to evaluate the influence of the new degree of freedgiy of the vertical motion norm mean with respect to the

represented by vertical wind unknowns on the modeling (fyise level, and the weakening of ascendant and descendant
particular on horizontal wind modeling), we also Cons'dereatmospheric activities in figure 4.

the average vertical motion norm : Vertical wind estimation for noise free observations perfs

1 Z | 23) very good (root mean square error bengafl3 ms=!). Obvi-
1] < ' ously, performances decrease when noise increases. Howeve
because vertical motion norm tends towards zero for strong

Results are presented in figure 3 and figure 4. For noise ff&S€, there should exist an asymptotic limit for this error
observations, the 3D ICE model succeeds to estimate quitdt is however important to remark that the 3D estimates does
precisely horizontal motion (Barron’s angular error andesp not in any case deteriorate the estimation of the 2D horaont
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Fig. 3. Upper line : performance of the 3D-ICE and the (2D) ICE modebff layered horizontal motion estimationBarron’s angular error (left) and
speed bias (right) versus noise levBbttom line : performance of the 3D-ICE model for vertical nion estimation. Root mean square error and mean
value of the vertical component amplitude versus noiseic#ibars represent standard deviations of square errors.
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Fig. 4. Estimated vertical wind fields for increasing noise levefgertical winds are expressed in nt.g).

wind fields. This can be checked on the second layer (whichBs METEOSAT satellite image sequences

the mayer with the biggest amount of data) and for which errorWe then turned to qualitative evaluations on METEOSAT

estimates for the 2D and the 3D estimators stay acceptahle ) o
whatever the noise level. Besides, for a moderated noisd le econd Generation (MSG) meteorological image sequences

: acquired at a rate of an image every 15 minutes. This
the 3D model outperforms systematically the 2D model. benchmark data, which has been provided by the EUMETSAT

consortium, is composed of images of top of cloud pressure



Fig. 5. Top of cloud pressure image and classificatignver the Gulf Guinea the 5-June-2004 at 13h30h the left: EUMETSAT cloud top classification
into 3 coarse layers : high, middle and low displayed respett in white light and dark gray. Black regions correspoidmissing observation€n the
right : EUMETSAT top of cloud pressure image. Plausible scendnowertical motion which have been represented by posiivé negative symbols are
superimposed on the image. White regions correspond tangisdservations.

and cloud-classification images. The image spatial resolut the 2D layered wind estimator in [10]. It is constituted by
is 3x3 knT at the center of the whole Earth image disk5 images of 512 x 512 pixels covering an area over the
The cloud-classifications were used to segment imagesrth Atlantic Ocean (of about 1500 x 15G0n2), off the
into 3 broad layers, at low, intermediate and high altifudelberian peninsula, during part of one day (5-June-200&)nfr
Applying the methodology described in section 11I-C, prees 12h00 to 13h00 UTC. The first image of the sequence is
difference images for the 3 layers were derived from pressudisplayed together with the related cloud classification in
images. figure 7. The sequence of pressure difference images related
to the 3 layers are presented in figure 8 together with the
The first sequence chosen for evaluation was composedesfimated horizontam wind fields. In order to increase the
top of cloud pressure images covering an area over the Glalfge displacement estimation accuracy, we have repldeed t
Guinea, during part of one day (5-June-2004) from 13h30ulti-resolution approach by the two-stage estimatioresud
to 14h15 UTC (universal time, similar to GMT : Greenwichproposed in [10].
mean time). The first image of the sequence is display&stimated horizontal wind fields appeared to be visually
together with the related cloud classification in figure Zonsistent and in agreement with previous results in [19]. B
Figure 6 displays the 4 consecutive images of 512 by 2@0careful visual inspection of the sequence, meteorokgist
pixels (covering an area of about 1500 x 6R6:%) related have put forwards some plausible scenarios concerning
to the higher layer pressure difference, together with 3ertical winds which are represented in figure 7. In parécul
estimated wind fields. the eastwards front visible on the highest layer (and latate
One can visualize large convective systems for the highem the bottom left side of the images) shoud be preceded
layer. They are characterized by a strong ascendant floyw descendant motion, which has been well characterized in
which is smoothly reversed after reaching the tropopausé maps of figure 9. Ascendant winds should be related to
cover. Such scenarios, which are represented in figure siall convective systems, which can be observed in isolated
have been correctly estimated. Estimated winds are disglayloudy regions of the highest layer (located mainly on the
in figure 6. Note that a multi-resolution approach was her@ght side of the images). These phenomena have correctly
maintained in order to assess the temporal consistencybefen characterized in® maps of figure 9. The large cloud
vertical wind estimates. system of the middle layer (located in the middle, on the left
side of the images) is likely to be associated to southwards
The second sequence chosen for evaluation is the samescendant winds? and northwards ascendant winds.
sequence of top of cloud pressure images used to evaluBite big vortex structure of the lower layer in the image
center and the small vortex in the image upper part which
'We note that the EUMETSAT extraction procedure was not etyre corresponds to clouds of both, the lower and the middle
Lned uen ne desalcalon ias eilactad Qune 20045 MTPer=cr layers, are likely to be associated to ascendant winds
cloud coverage was under evaluated. The high-level cloudrege were also Estimated vertical wind fields of figure 9 seem only up to
found to be underestimated in favor of medium-level cloddese differences some extent in agreement with the two previous scenarios.
should not change radically the following evaluation, sireclarge majority However, these behaviors are only probable global scenario

of cloudy pixels are correctly assigned. Neverthelesstebetlassification . - ) -
products are likely to significantly enhance the perforneantthe method. Which constitute very coarse approximations of the actual
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Fig. 6. Estimation of 3D wind in atmospheric convective systeifewer the Gulf Guinea the 5-June-2004 from 13h30 to 14h15 JUTWud pressure
difference images of the highest layer at 4 consecutivestifastimated horizontal wind vectors which have been soqmrsed on the images range in the
interval [0, 10] m.s.~ . Retrieved vertical wind maps on the highest layer lowerriauy have been superimposed on the pressure differenagesnsertical
winds range in the interval—0.5,0.5] m.s~1).

Fig. 7. Top of cloud pressure image and classificatiqover the north Atlantic Ocean the 5-June-2004 at 12h@). the left : EUMETSAT cloud top
classification into 3 coarse layers : high, middle and lowpiged respectively in white light and dark gray. Black cewi correspond to missing observations
and red lines represent costal contours, meridians and Ifelsa(every10°). Black regions correspond to missing observati@s the right : EUMETSAT
top of cloud pressure image. Plausible scenarios for vaktinotion which have been represented by positive and negatiimbols are superimposed on the
image. White regions correspond to missing observations.
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atmospheric dynamics. all interval [a(x), b(x)] with boundaries varying witk, reads

in 1D :
Furthermore, let us remark that the time consistency of the b(x) Of (x,p) P b(x)
first and the second image sequences, together with thectorre / 77pdp = — (/ f(x,p)dp) (26)
range of estimated winds, is a testimony of the stabilityhef t a(x) Ox 9%\ Jax)
3D estimation method. —f(x,b(x))ag(;) n f(xﬂ(x))aﬂ(;(;).
VI. CONCLUSIONS Note that in Eq. 25 the divergence operator’diis defined

In this paper, we have presented a motion estimatiam isobaric coordinates. Thus, in this Eq. 25 divergence is
method solving for the first time the complex problem of 3@omputed at poink in a constant pressure interval.
winds field recovery from satellite image sequences. Inordeloreover, expanding in the (z, y, z) coordinates system and
to manage incomplete observations, physical knowledge osing the hydrostatic assumptiogf(: —pg) Yyields to
3D mass exchanges between atmospheric layers have been
) O : dp _ Op
introduced within an optical flow scheme. W= o + v+ Vay(p) — Wpyg, (27)
The estimator is based on a functional minimization. Thehere partial derivative operators and the vertical véjoci
data term relies on the 3D-ICE model which describes tie are in z coordinates and where we have introduced the
dynamics of an interacting stack of atmospheric layers. THensity functiong and the gravity constant Assuming that
3D-ICE model applies on a set of sparse pressure differerfi@ssure partial derivative computed on the surfafcer at
images related to the different atmospheric layers. A nethgonstant height are similar, that is to say assuming that
is proposed to reconstruct such observations from satelli¢ flat in the vicinity of a pixel, we can derive the following
top of cloud pressure images and classification maps. ¥gproximations:
overcome the problem of sparse observations, a robust

k k ~ k k
estimator is introduced in the data term. The data term is v(5") - Vayp(s )Sk = v(s7) Vayp(s®)
combined with a smoother that preserves the bi-dimensional Ip(s*) Ip(s*)

; i ; ~ . 28)
divergent and vorticity structures of the three-dimenalon ot sk ot (

flow and reinforces regions of homogeneous vertical winds . . .
Thus spatial gradients terms reduce to zero when merging

. ' . Eq. 25 and Eqg. 27, and we obtain
An evaluation first performed on a synthetic image se-q q W I

quence, and latter on 2 METEOSAT infrared image sequences A(p(sFt1) — p(s*)) ) p(s")
demonstrate the stability and the efficiency of the methdd?Wlix+ + 5 , =dv )/ b VP (29)
even in the difficult case of noisy and very sparse image ’ P Ip(e")
observations. where we have denoted hy the altimetric interval between
surfacess” and s"*!. Let us now define the following quan-
APPENDIX| : VERTICAL INTEGRATION OF THE tiies -
CONTINUITY EQUATION USING THE ISOBARIC COORDINATE ot = p(s*) —p(sFh) (30)
SYSTEM 1 e
. . - . . vho= —/ vdp (32)
For compressible fluids, the continuity equation in the dpk p(sk+1)

coordinates system reads: .
(9.2) y We can then rewrite Eq. 29 as

Oow ou Ov )
—— ==+ . 24 . dép*
dp (833 8y),, @4 gp(sFw(s*) — gp(sH+w(sH) ~ 8—];

+div(sp™vh)
I, D
(32)

The approximation di#*)| ~ div(v’“)’I is relevant since

We denote by = (u, v) the horizontal velocity and by* and

s**1 the altimetric surfaces with(s*) > p(s**1). Integrating — b i
Eq.24 in the pressure interval(s**1), p(s*)] yields to we are considering the divergence of averaged horizontal

winds which are characterized by very small vertical fluc-
tuations (compared to horizontal fluctuations). Therefame
o should obtain very similar divergence measurements for hor
izontal winds averaged in a constant pressure interval 1or fo
(25)  horizontal winds averaged in a varying altimetric interval

_ _ or pressure intervdp(s**1), p(s¥)]). Thus, we can approxi-
For a better understanding, let us note that to obtain EQ. ZRate the |atter equation by

we have used the Leibnitz formula to perform the verticadint

Sk+1

p(s®)
LI = ] [ () V(s
P

p(skt1)

+ (s Vayp(s*HY)

sk+1

gration of Eq. 24 in the pressure interalx, s*1), p(x, s*)] gp(sF)w(s*) — gp(sFHhw(sF 1) ~
varying with coordinates = (z,y). This formula, which is oopF X L ek
valid for all integrable and derivable functiof(x, p) and for ¢ |, TV Vay(Oph)| 4 apTdiv(vh)] (33)



Simplifying notations of operators defined for the altineetr [9]
interval I, we obtain the relation :

dop* [10]

gp(s" (") — gp(s"yw(sH ) = =
which consitutes a proper image-adapted model for obser{&d
tions 0p” related to a layer defined in the interval

+ opPdiv(v*), (34)

[12]
APPENDIX Il : TEMPORAL INTEGRATION OF THE3D ICE 113
MODEL [14]

The 3D ICE model reads:
k 15
PSL) | s, )7 v = g — i), (35)
Assuming a constant velocity over the lapse of tilg we [16]

have here a first order ordinary differential equation of the

form y' = my + p that can be integrated. If dW # 0, the [17]
general solution of this differential equation is :
ﬁka _ ﬁk'HWk'H [18]

¥ (s, t) = ve~ (@ 4 (36)

divvk

Expressing the previous equation at time 0, we obtain the [19]

constantv :

Skywk _ HR+1yk+1 [20]
w

P (37)

divvF

and by expressing the same equation at ttime ¢ + At we
obtain

v="h*s,t)—g

[21]

, 22
hk(s+vk’t+At)edIVVk [22]
FEwk — Bk

— hk(s,t),

divvk b, [23]
where At denotes the time interval expressed in seconds
between two consecutive images and where horizontal divpiy
gence diw* are expressed inf, with f denoting number of
frames. For the particular case div= 0, the latter equation
becomes :

h¥(s 4+ vF t 4+ At) — h¥(s,t), =
_gAt(pka _ ﬁk+1Wk+1).

(ediVV’“

gAt

(38)

(39)
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Fig. 8. Estimation of 3D wind in a 3-layer atmosphere : horizontal mds. Horizontal winds(v!, v, v3) in correspondence to cloud pressure difference
images (over the north Atlantic Ocean the 5-June-2004 fr@md@ to 13h00 UTC) related to the high (left row), the middteddle row) and the low (right
row) layers at consecutive times. Estimated horizontaldwiactors range in the interval 40, 15] m.s.~ 1.
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Fig. 9. Estimation of 3D wind in a 3-layer atmosphere : vertical wisdVertical winds (w?,w?) (over the north Atlantic Ocean the 5-June-2004 from
12h00 to 13h00 UTC) at consecutive times. Estimated vénigads range in the interva]—0.2,0.4Jm.s.~ 1.



