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Abstract— In this paper, we address the problem of estimating
mesoscale dynamics of atmospheric layers from satellite image se-
quences. Due to the great deal of spatial and temporal distortions
of cloud patterns and because of the sparse 3-dimensional nature
of cloud observations, standard dense motion field estimation
techniques used in computer vision are not well adapted to
satellite images. Relying on a physically sound vertical decompo-
sition of the atmosphere into layers, we propose a dense motion
estimator dedicated to the extraction of multi-layer horizontal
wind fields. This estimator is expressed as the minimizationof
a global function including a data term and a spatio-temporal
smoothness term. A robust data term relying on the integrated
continuity equation mass conservation model is proposed tofit
sparse transmittance observations related to each layer. Anovel
spatio-temporal smoother derived from large eddy prediction of
shallow water momentum conservation model is used to build
constraints for large scale temporal coherence. These constraints
are combined in a global smoothing framework with a robust
second-order smoother preserving divergent and vorticitystruc-
tures of the flow. For optimization, a two-stage motion estimation
scheme is proposed to overcome multiresolution limitations when
capturing the dynamics of mesoscale structures. This alternative
approach relies on the combination of correlation and optical-flow
observations in a variational context. An exhaustive evaluation of
the novel method is first performed on a scalar image sequence
generated by direct numerical simulation of a turbulent two-
dimensional flow. By qualitative comparisons, the method isthen
assessed on a METEOSAT image sequence.

Index Terms— Atmospheric motion estimation, variational
methods, integrated continuity equation, filtered shallow wa-
ter equations, spatio-temporal smoothing, layer transmittance,
optical-flow, correlation-based vector interpolation.

I. I NTRODUCTION

The analysis of complex fluid flow behaviors is a major
scientific issue. In particular, understanding atmospheric
dynamics is of great importance for meteorologists interested
in weather forecasting, climate prediction, singular system
analysis, etc. Surface station, balloon (including radiosonde),
and more recently in-flight aircraft measurements and
satellite images characterized by low spatial and temporal
resolutions have improved the estimation of wind fields
and have been an important step for a better understanding
of meteorological phenomena. However, the measurements
provided by the network’s temporal and spatial resolutionsof
in situ measurements may be insufficient for the analysis of
mesoscale dynamics. Let us recall that mesoscale dynamics
is generally defined to include the study of motion systems
that have horizontal scales in the range of about 10-1000

km. It includes circulation ranging from thunderstorms and
internal gravity waves at the small end of the scale to
fronts and hurricanes at the large end [17]. In particular,
meteorological in situ data are excessively sparse over
the Southern Hemisphere. Such a lack of data makes the
establishment of accurate numerical prediction difficult.
Recently, in an effort to avoid these limitations, increased
interest has been devoted to motion extraction from image
sequences from a new generation of geostationary satellites,
characterized by finer spatial and temporal resolutions.
The analysis of motion in such sequences is particularly
challenging due to the great deal of spatial and temporal
distortions that luminance patterns exhibit in imaged
atmospheric phenomena. Standard techniques from Computer
Vision, originally designed for rigid motions and stable salient
features along time, are not well adapted in this context.
Winds have been derived from the motion of clouds on
satellite images for about 3 decades [21] [34] and are used
operationally in forecast models. But only few constraints,
based mainly on quality and consistency of the extracted
motion vectors, are applied and the estimated wind fields have
a limited spatial coverage. Recently, computer vision methods
have been adapted for fluid-dedicated dense estimation in
order to characterize atmospheric motion [7] [8] [26].
Nevertheless, we will show that due to the underlying
three-dimensional nature of the scene, the employed
dynamical models remain unadapted to satellite observations.
Furthermore, such methods may fail to accurately characterize
motion associated with mesoscale structures. Thus, the design
of an appropriate approach modeling the physics of three-
dimensional atmosphere dynamics constitutes a wide open
domain of research. Our work is a contribution in this
direction.
Rather than coupling the motion vector estimation process to
a complex and complete numerical meteorological circulation
model, we propose to incorporate “some” dynamics in the
motion estimation scheme, in the form of an adaptation of
Navier-Stokes equations to satellite imagery. The objective
being in fine the three-dimensional reconstruction of
atmospheric horizontal winds. Alternatively, the challenge
also consists in providing accurate estimators able to tackle
the motion complexity of sparse and noisy structures.

In this work, we propose original methods responding to this
problem. The remainder of the paper is organized as follows.



In the following section, in order to motivate our approach,
an overview on existing optical-flow estimation methods is
presented. Then, in section III, a mass conservation model
for an atmosphere decomposed into a stack of layers is
introduced. This model constitutes the physical background
of the multi-layer dense estimator which is then described.In
the perspective of adapting motion analysis to mesoscale, we
propose in section IV a two-stage decomposition estimation
scheme. We propose to combine the ability of correlation
and variational approaches and to enhance spatio-temporal
consistency by using a simplified shallow water model. Fi-
nally, results on METEOSAT image sequences presented in
section V. demonstrate the interest of our approach.

II. RELATED WORK ON OPTICAL-FLOW ESTIMATION

The problem of wind field estimation in an image sequence
I(x, y, t) consists in characterizing the real three-dimensional
atmospheric motion from observations in the projected image
plane. This problem is a complex one, for which we have only
access to projected information on cloud positions and spectral
signatures provided by satellite observation channels.

A. Real projected wind fields and optical-flow

Spatial horizontal coordinates(x, y) are denoted bys. To
avoid tackling the three-dimensional wind fieldV(s, z, t)
reconstruction problem, up to now all the developed wind
field estimation methods rely on the assumption of inexistent
vertical winds and estimate an average horizontal wind.
The apparent motionv, perceived through image intensity
variations is called optical-flow in the computer vision
community. All optical-flow estimation methods rely on
the temporal conservation of some invariants. Although
geometric invariants may be relevant for matching across
frames (e.g. point, contour tracking) [13], they can only be
extracted in sufficiently structured areas and thus lead to
sparse motion measurements. The most common invariants
used are photometric ones which can easily be extracted and
lead to dense measurements. In particular for satellite images,
atmospheric motion is revealed by a functionF (.) of the
intensity of clouds, which are assumed to be passive tracers.
From these considerations, two schemes can be derived
for motion estimation : a non-linear formulation matching
consecutive images and a linear differential formulation.The
first formulation leads to a non-linear system of equations
valid for every kind of motion whereas the second holds only
for small displacements and is often ill-conditioned.

1) Brightness constancy model.:For the special case of
gray level constancy assumption,F (.) is the identity function
and apparent motionv(s, t) is equal to an average horizontal
wind. This assumption leads for the non-linear formulationto
the Displaced Frame Difference (DFD) equation

I(s + v, t + 1) = I(s, t), (1)

while, for the differential formulation, one obtains the well
known Optical-flow Constraint (OFC) equation

dI

dt
= v ·∇I(s, t) + It(s, t) = 0. (2)

An important remark is that for image sequences showing
evolving atmospheric phenomena, the brightness consistency
assumption does not allow us to model temporal distortions
of luminance patterns caused by 3D flow transportation.

2) Integrated continuity equation.:For atmospheric image
sequences, the underlying physical laws determining the atmo-
spheric evolution constitute an inestimable source ofa priori
information to design an appropriate data model. Interesting
models may be derived from the 3D mass conservation law,
the so called continuity equation :

1

ρ

dρ

dt
+ ∇ ·V = 0, (3)

whereρ denotes a three-dimensional density function. Let us
remark that a three-dimensional wind fieldV is considered
in the previous equation. Image intensity may be linked to
the vertical integration of Eq. 3 [11]. Unlike the brightness
consistency assumption, such models can compensate mass
departures observed in the image plane by associating two-
dimensional divergence to brightness variations. In this case,
we redefine apparent motionv as a density-weighted average
of the original three-dimensional horizontal velocity field vreal

v =

R
ρvrealdzR

ρdz
, (4)

Neglecting mass exchanges via vertical motion on planar
integral boundaries, in [11] [2], the authors demonstratedthat
the integration of Eq. 3 leads to a mass conservation model
called Integrated Continuity Equation (ICE)

“Z
ρdz

”
t
+ v ·∇

“Z
ρdz

”
+ ∇ · v

“Z
ρdz

”
= 0 (5)

In the case of transmittance imagery,I =
∫

ρdz and Eq. 5 can
directly be used [11] assuming no vertical motion on the planar
integral boundaries. The image formation model for satellite
infrared imagery is slightly different. In [7], the authorshave
directly assumed the unrealistic hypothesis that infraredpixel
valuesI were proportional to density integrals :I ∝

∫
ρdz.

This assumption have enabled them to rewrite Eq. 5 as

It + v ·∇I + Idiv(v) = 0. (6)

In [43], the authors proposed an inversely proportional ap-
proximation for infrared measurements :I ∝ (

∫
ρdz)−1. Such

an assumption yields to the same equation except a minus sign
appearing in front of the divergence term. By time integration
of Eq. 6, an equivalent non-linear DFD formulation (Eq. 1)
can also be recovered [7]

I(s + v, t + 1) exp div(v)− I(s, t) = 0. (7)

These two models constitute adaptations of the ICE model for
the case of satellite infrared imagery. Experimentally, these



approaches have proved to be relevant in comparison to models
based on the OFC (Eq. 2) or the DFD (Eq. 1). However,
from a physical point of view, they rely on non realistic
approximations. We will see in section III-A how to reinforce
the theoretical background of such an approach by adapting
image observations.

Fig. 1. Aperture problemfor the estimation of atmospheric motionv
in areas of low local curvatures of the image iso-intensity curves.
Locally (circle), only the velocityvn normal to the tangent of the
iso-curve can be estimated while the tangential componentvt will
remain undetermined.

The formulations of Eq. 1, Eq. 2, Eq. 6 and Eq. 7 can not
be used alone, as they provide only one equation for two un-
knowns at each spatio-temporal locations(s, t), with therefore
a one dimensional family of solutions in general. In the case
of Eq. 2, this is the well known aperture problem where the so
called normal flow is estimated while the tangential velocity
component remains undetermined. The aperture problem is
illustrated in Fig.1. In order to remove this ambiguity and
make the estimation robust, one must rely on other assump-
tions. The most common assumptions consist in improving the
spatial coherence of wind field estimates. Such assumptions
are expressed by prior models on spatio-temporal dependency.
This allows the propagation of information in uniform regions
and reduction of sensitivity to noise. The choice of a particular
smoothness functional characterizes a fundamental difference
between large families of optical-flow techniques. Among all
the smoothing schemes, one can roughly distinguish disjoint
from global approaches.

B. Disjoint spatial smoothing schemes

In these approaches, one considers neighborhoodsW (s)
centered at pixel locations. An independent parametric field is
locally estimated on each of these supports. The most common
types of parametric representations are the constant, affine and
quadratic flow fields.
A first category of disjoint local smoothing methods relies on
the OFC equation (Eq. 2). Motion is estimated using a standard
linear least squares approach :

bv = arg min
u

Z

W (s)

h(s− y) (u ·∇I(y) + It(y))2 dy, (8)

whereh(s) is a weighting function, such as a spatial Gaussian
kernel for example, which controls the influence of a given
location in the neighborhoodW (s) of the estimation support.
If the motion is assumed to be locally constant, this estimator
corresponds essentially to the work ofLucas and Kanade[22].
These methods present the drawback to be sensitive to noise
and too often lead to ill-conditioned problems in the case of
weak intensity gradients.
In meteorology, classical approaches are Euclidean
correlation-based matchings, which corresponds to the
DFD constraint (Eq. 1) associated with a locally constant
field and a L

2 norm [1] [10] [21] [30] [34] [37]. Using
a discrete state space of vectors{u}, discrete correlation
approaches consist of estimating a displacement vectorv at
point s as

v(s) = arg min
u

X

r∈W (s)

C(I(r + u, t + 1), I(s, t)) (9)

whereC(.) denotes a dissimilarity function. On the one hand,
they constitute fast methods, generally locally robust to noise,
and which are able to estimate large displacement of fine struc-
tures. On the other hand, these approaches suffer from several
deficiencies : traceable cloud features must be sufficiently
contrasted and must persist over time on consecutive images.
Thus, the estimation is prone to erroneous spatial variability.
Furthermore, any disjoint technique is based on independent
local estimations of cloudy regions which results in the estima-
tion of sparse and possibly spatially incoherent vector fields.
We will see in section IV-B how to take advantage of these
approaches while avoiding erroneous solutions.

C. Global spatial smoothing schemes

Global smoothing schemes can be used to overcome the
previous limitations. These methods model spatio-temporal
dependencies on the complete image domain denoted byΩ.
Thus, dense velocity fields are estimated even in the case
of noisy and low contrasted observations. Functional models
form the vast majority of the dense estimation methods. Their
popularity is due to their flexibility. Indeed, these methods
enable in a common framework, to handle discontinuities or
occlusion zones, and to design dedicated smoothing functions
to particular phenomena. In addition to constraints linking
unknown velocities to image observations, these approaches
introduce explicitlya priori smoothing functions, which en-
able to solve the under-determined problem. More precisely,
the motion estimation problem is defined as the global mini-
mization of an energy function composed of two components

J(v, I) = Jd(v, I) + αJr(v). (10)

The first componentJd(v, I), called the data term, expresses
the constraint linking unknowns to observations while the
second componentJr(v), called the smoothing term, enforces
the solution to follow some smoothness properties. In the
previous expression,α > 0 denotes a parameter controlling
the balance between the smoothness and the global ade-
quacy to the observation model. In this framework, Horn and



Schunck [18] derived the following data term from the OFC
equation (Eq. 2):

Jd(v, I) =

Z

Ω

(It(s) + v(s) ·∇I(s))2 ds, (11)

and combined it to a first-order smoothing term :

Jr(v) =

Z

Ω

‖
`
∇u(s) ‖2 + ‖ ∇v(s) ‖2

´
ds, (12)

whereu and v are the two spatial components of a velocity
field v [20]. In the case of fluid flows, using the previously
defined ICE model (Eq. 6) leads to the functional :

Jd(v, I) =

Z

Ω

(It(s) + v(s) ·∇I(s) + I(s)div(v(s)))2 ds. (13)

Moreover, it can be demonstrated that a first order smoothing
is not adapted as it favors the estimation of velocity fields with
low divergence and low vorticity. A second order smoothing
of the vorticity and the divergence of the apparent motion field
can advantageously be considered as proposed in [36] :

Jr(v) =

Z

Ω

`
‖ ∇curlv(s) ‖2 + ‖ ∇divv(s) ‖2

´
ds. (14)

To circumvent the difficulty of implementing second order
smoothness constraint, this smoothing term can be simplified
from a computational point of view to two interleaved first-
order div-curl smoothings based on auxiliary variablesζv and
Dv approximating the vorticity and the divergence of the
flow [7]. Thus we have :

Jr(v) =

Z

Ω

(curl(v(s))− ζv(s))2 + µ ‖ ∇ζv(s) ‖2

+(div(v(s))−Dv(s))2 + µ ‖ ∇Dv(s) ‖2 ds, (15)

whereµ is a positive smoothing parameter. Another way to
implement such high order smoothing has been proposed
recently and relies on mimetic finite differences [42]. In both
approaches, a common way to deal with the boundedness of
the spatial domainΩ is to use Neumann boundary conditions.
They specify that on image edges, velocity normal derivatives
are equal to zero.

A large linear system is obtained by discretizing the previous
functionals in a finite difference scheme. We obtain in
this case a Bayesian maximum a posteriori estimation
approach where the velocity field is modeled by a Markov
random field [15]. The related energy is a quadratic function
which can be minimized by alternatively solving large
systems for unknownsv, ζv and Dv in an iterative scheme
using for instance Gauss-Seidel method. For better and
faster convergence, an incremental coarse-to-fine multigrid
technique can be used [5] [25]. The approach proposed
in [25] consists in searching an incremental solution, where
the unknown incrementδv(s) = P (θ(s)) is defined on
a sub-spaceθ(s) of solutions via a parametric model
P . Multigrid estimation is performed in an incremental
scheme, which implies to adapt the previously defined

functionals. Such an adaptation will be detailed below for
the multiresolution scheme. However, one should not confuse
these two techniques which operate in a slightly different way.

In order to preserve discontinuities and to handle occlusion
zones, which are frequent in satellite imagery due to the
stratified and three-dimensional nature of the observed clouds,
robust estimation constitutes an interesting approach [4][29]
[39]. In the case of functional minimization, a robust penalty
functionφd may be introduced in the data term for attenuating
the effect of observations deviating significantly from the
model [4]. Similarly, a robust penalty functionφr can be used
if one wants to handle implicitly the spatial discontinuities
of the vorticity and divergence maps. M-estimator penalty
functions can be chosen for their advantageous minimization
properties [4] [14] [16]. In particular, Leclerc and Geman-Mc
Clure penality functions proved to be suitable both for the
observation model and for the smoother.
In the image plane, these discontinuities are nevertheless
difficult to relate to abrupt variations of cloud heights .
Moreover, clouds belonging to a layer form unconnected
regions which should interact during the motion estimation
process. To overcome these limitations, we will propose in
section III-B a layer dedicated motion estimator, providing
dense motion fields related to each layer.

One major problem with optical-flow differential formulation
is the estimation of large displacements. OFC (Eq. 2) or
ICE (Eq. 6) models rely on the assumption that the image
intensity function can be locally efficiently approximatedby
a linear function. Since the larger the displacement the more
narrow the linearity domain, large displacements are difficult
to estimate directly. The multiresolution approach is a common
way to overcome this limitation by creating an image pyra-
mid, constructed by successive low-pass filtering and down
sampling of the original images. Within such a framework,
main components̃v of displacementsv are first estimated at
a coarse resolution where motion amplitudes should be suffi-
ciently reduced in order to make the differential formulation
valid. Then, the estimation is progressively refined while going
down in the pyramid levels [3] [4] [25] [39]. This approach
is to some extent similar to the multigrid scheme introduced
previously, the main difference being that multigrid approaches
are based on a unique representation of the data while a
multiresolution scheme uses a data pyramidal structure. In
both cases, the displacement component estimated previously
is used to derive a motion-compensated linear differential
formulation, which enables the estimation of a displacement
incrementv′. Noting v = ṽ + v

′, for the integrated ICE
equation (Eq. 7), this is obtained by a first order Taylor
expansion ofI(s + v(s), t + 1) exp (div(v(s))) around the
points+ṽ(s). Thus, denoting bỹI(s) the motion-compensated
image I(s + ṽ, t + 1) and omitting time coordinates, the
linearization yields a new robust data termJd(v, I) defined
as :



Z

Ω

φd{exp divṽ(s)([Ĩ(s)∇div(ṽ(s)) + ∇Ĩ(s)]⊤v
′(s)

+Ĩ(s))− I(s)}ds (16)

and Eq. 15 is changed to a new robust div-curl smoothing
term :

Jr(v) =

Z

Ω

`
div(ṽ(s) + v

′(s))−Dv(s)
´2

+ µφr(‖ ∇Dv(s) ‖)

+
`
curl(ṽ(s) + v

′(s))− ζv(s)
´2

+ µφr(‖ ∇ζv(s) ‖)ds. (17)

At a given resolution level, the main componentṽ obtained
at a coarser level is refined with the incrementv

′. Therefore,
the large displacement problem is tackled by decomposition
of the non-linear estimation into successive linear estimations.
However, since the multiresolution schemes estimates main
component displacements only at coarse resolutions where
small photometric structures are rubbed out, this approach
enables the characterization of large displacements of small
structures only in the case when their individual motions are
close enough to the main component’s one. This is often not
the case for a layered atmosphere. For instance, mesoscale
structures such as cirrus filaments may be characterized by
large displacements which appear to be completely different
from the motion of the layers underneath. Another disadvan-
tage characterizing the method is the additional noise due
to the calculation of motion-compensated images for each
resolution by the use of interpolation methods. An alternative
estimation scheme for large displacements will be proposedin
section IV-A.

III. D ENSE MOTION ESTIMATOR DEDICATED TO

ATMOSPHERIC LAYERS

Based on previous work on dense estimation for two-
dimensional fluid flows, an original motion estimator acting
at the lower range of mesoscale is proposed to cope with the
three-dimensional nature of atmospheric flows.

A. Dynamical observation model for layers

As it has been mentioned previously, the ICE model (Eq. 6)
relies on strong assumptions in the case of satellite infrared
imagery. However, it has been demonstrated that the ICE
model is well suited for an image sequence of transmittance
measurements. In this section, we propose a physically sound
approximation for computing transmittance images relatedto
atmospheric layers using pressure images of top of clouds. In
order to describe the dynamics of the new observations, we
then present a transmittance-based model dedicated to layers.

1) Approximation of sparse transmittance images of layers:
Since there is a loss of information induced by projection in
an image plane, several hypotheses are necessary to tackle
the reconstruction problem. The troposphere is the lower
part of the atmosphere ranging from the sea level up to a
bound called tropopause. The layering of atmospheric flow
in the troposphere is valid in the limit of horizontal scales

much greater than the vertical scale height, thus roughly for
horizontal scales greater than 100 km. It is thus impossible
to guarantee to truly characterize a layered atmosphere
with a local analysis performed in the vicinity of a pixel
characterizing a kilometer order scale. Nevertheless, onecan
still decompose the three-dimensional space into elements
of variable thickness, where only sufficiently thin regions
of such elements may really correspond to common layers.
Analysis based on such a decomposition presents the main
advantage of operating at different atmospheric pressure
ranges and avoids the mix of heterogeneous observations.
The analysis of such elements will either be significant of
layer dynamics, or reveal an average motion significant of
thick regions. In the present paper, such elements will be
defined and called with abusive language “layers”.
Let us present the three-dimensional space decomposition
that we chose for the definition of the layers. Thek-th
layer corresponds to the volume lying in between an upper
surfacezk

t and a lower surfacezk
b . In areas where clouds

have their top belonging to a given pressure interval, the
upper surface corresponds to the height of top of clouds.
In other areas, the upper surface is undefined. Note that
such a surface is not characterized by a uniform pressure
value. In areas with top of clouds belonging to the given
pressure interval, the lower surface corresponds to the height
of the basis of clouds. In other areas, this surface is undefined.

Now, let us assume that atmosphere is in hydrostatic equilib-
rium. This assumption provides an excellent approximationfor
the vertical dependence of the pressure field in the troposphere.
Only for small scale phenomena such as squall lines and torna-
does it is necessary to consider departures from the hydrostatic
balance [17]. We also make the common assumption that
integrals of cloud water density are comparable to integrals of
dry air density. Let us denote pressure and gravity respectively
by p and g. By the vertical integration of the hydrostatic
equation

−ρg =
dp

dz
, (18)

density integrals can be linked to pressure atmospheric
differences

g

Z zk
t

zk
b

ρ dz = p(zk
b )− p(zk

t ). (19)

where pressure may be observed via cloud tracers.

Indeed, top of cloud pressure images are routinely provided
by the EUMETSAT consortium, the European agency which
manages the METEOSAT satellite data. They are derived
from a radiative transfer model using ancillary data, namely
temperature and humidity profiles obtained by analyses or
short term forecasts. This model simulates the radiation
by the top of an opaque cloud at different vertical levels,
which might be observed by a satellite. The pressure level
where the simulated radiation fits best with the observed
radiation determines the pressure of the cloud top for the



Fig. 2. Recovery of layer transmittances from cloud top pressure off the Iberian peninsula. From top to bottom : cloud top pressure image;
classification into low (in dark gray), medium (in light gray) and high (in white) clouds; transmittance of the higher layer; transmittance of
the intermediate layer; transmittance of the lower layer. Black regions correspond to missing observations and white lines represent costal
contours, meridians and parallels (every10o).



corresponding pixel [23]. Multi-channel techniques (using a
thermal IR with a water vapour or CO2 absorption channels
enable the determination of the temperature of the top of
semi-transparent clouds [28] [34], and thus their equivalent
pressure level (with the help of analysed or forecast data)
independently of foreground or background effects.

The problem now consists in deriving pressure difference maps
characterizing our previously defined layered atmosphere,
from top of cloud pressure observed in the image plane.
The membership of top of clouds to pressure intervals (con-
sequently to the different layers) is determined by cloud
classification maps. Such classifications which are based on
thresholds of top of cloud pressure, are routinely provided
by the EUMETSAT consortium. Both, top of cloud pressure
and classification constitute intermediate products used to
generate the operational, segment-based EUMETSAT classi-
fication products [23]. Obviously, the discrimination of layers
according to classifications based on top of cloud potential
temperature rather than top of cloud pressure would have been
better suited to mesoscale. However, such classification are not
currently available. We denote byCk a class corresponding to
the k-th layer in the altimetric interval[zk

b , zk
t ]. Note that the

top of cloud pressure image denoted bypS is composed of
segments of top of cloud pressure functionsp(zk

t ) related to
the different layers. That is to say :

pS =
[

k

p(zk
t , s); s ∈ Ck. (20)

Thus, pressure images of top of clouds are used to constitute
sparse pressure maps of the layer upper boundaries. As in
satellite images, clouds lower boundaries are always occluded,
we coarsely approximate the missing pressure observations
p(zk

b ) by an average pressure value observed on top of the
layer underneath. And, finally, for thek-th layer, we define
transmittance observationshk as pressure differences :

p(zk
b )− pS = hk

8
<
:

= g
R zk

t

zk
b

ρ dz if s ∈ Ck

6= g
R zk

t

zk
b

ρ dz if s ∈ C̄k,
(21)

which are equal to density integrals on cloudy regions
corresponding to thek-th layer. Fig.2 illustrates the different
stages of processing necessary to estimate sparse layer-related
transmittance images using pressure images of the top of
clouds and cloud classification maps.

2) Transmittance-based model for atmospheric layers:
Referring to the previous section, layer transmittance observa-
tions are approximated by pressure differences. Layers were
defined here as the decomposition of the three-dimensional
space based on top of cloud pressure classification maps.
Moreover, we previously noted that the ICE model of Eq. 5
holds for negligible mass exchanges through the planar in-
tegration boundaries related to transmittance observations.
Thus, neglecting mass exchanges via vertical wind on layer
boundarieszk

b and zk
t which are assumed to be locally pla-

nar surfaces, the ICE model constitutes a physically sound

approximation for the layer transmittance imagehk
ρ for all

k ∈ [1, K] :

∂hk
ρ

∂t
+ v

k ·∇hk
ρ + hk

ρdiv(vk) = 0, (22)

whereK is the highest layer index andvk corresponds to the
density-weighted average horizontal wind related to thek-th
layer. Note that as mass exchanges on the layer boundaries
has been neglected, this model assumes independent layer
motion. As this model relies on the hydrostatic assumption,
it is relevant when the aspect ratio of the flow is small, thus
when the horizontal scale of the flow is much greater than the
layer depth. Thus, the smaller the layer thickness, the more
accurate the ICE model. Indeed, due to the hydrostatic relation,
hk

ρ may be viewed as an atmospheric layer thickness if we
neglect density variations. The ICE model then corresponds
exactly to shallow water mass conservation model [9]

∂hk

∂t
+ v

k ·∇hk + hkdiv(vk) = 0, (23)

where hk is the thickness function of thek-th layer. This
correspondence will be useful to derive in section IV-C the
complete shallow water equation system.

Relatively to the different layers, transmittances are sparsely
observed only in the presence of clouds. Thus, to tackle the
problem of missing observations in regions belonging toC̄k

through smoothing div-curl functions and in the same time
removing data belonging to other levels, we make use of robust
estimators. This is presented in the next section.

B. Robust estimator for sparse observations

A dense estimator dedicated to layer motion should consider
simultaneously all cloudy regions belonging to a given layer
while discarding the influence of other clouds. For thek-th
layer, we previously remarked that outside the class ‘Ck ’,
the so defined transmittanceshk

ρ is not significant of thek-th
layer transmittance. Thus, we propose to introduce in Eq. 16
a masking operator on unreliable observations. We denote by
ICk the operator which is identity if a pixel belongs to the
class, and which returns otherwise a fixed value out of the
range taken byhk

ρ. Thus, applying this new masking operator
in Eq. 16, we obtain the robust data termJd(v, hk

ρ) =

Z

Ω

φd{exp div(ṽk(s))([h̃k
ρ(s)∇div(ṽk(s)) + ∇h̃k

ρ(s)]⊤v
′k(s)

+h̃k
ρ(s))− ICk (hk

ρ(s))}ds, (24)

wherev
k = ṽ

k + v
′k corresponds to the density-weighted

average horizontal wind related to thek-th layer. The robust
div-curl smoothing term (Eq. 17) is conserved. The masking
procedure together with the use of robust penalty function
on the data term allows to discard implicitly the erroneous
observation from the estimation process. The robust penality
function related to the smoother handles discontinuous
motion fields induced for example by the possible spatial
heterogeneity of layers. It is important to outline that, for the



k-th layer, the method always provides a motion vector on all
points s of the image domain. Areas outside the cloud class
‘Ck ’ correspond to an interpolated wind field.

The dedicated method which has been presented, proposes
to solve the three-dimensional motion estimation problem by
the inference of dense density-weighted average horizontal
wind fields related to different atmospheric strata. The motion
extraction is done by fitting an image-adapted mass conser-
vation model to pressure observations. However, due to the
complexity of atmospheric motion observed at mesoscale and
because of noise and sparse observations, motion estimation
may lack in accuracy. Thus, the aim of the following section is
to devise a method allowing us to overcome such a limitation.

IV. A TWO-STAGE MESOSCALE MOTION ESTIMATOR

In order to enhance the estimation accuracy, we propose an
original two-stage estimation scheme for mesoscale motion
characterization. In a first stage acting at the upper range of
mesoscale dynamics, by the introduction of correlation-based
constraints and the use ofa priori information on atmosphere
dynamics, the proposed approach guides the variational
estimation process towards a large displacement solution.In a
second step acting at the lower range of mesoscale dynamics,
the solution is refined by an incremental process.

The proposed large displacement estimation step is an
alternative approach to common multiresolution used
in the context of differential motion estimator. Unlike
a multiresolution scheme, our approach relies on a unique
representation of the full resolution image. Thus, the proposed
method tackles the non-linear estimation problem without
making successive approximations in the calculation of
interpolated images nor restricting itself to the characterization
of large displacements of sufficiently large structures. The
proposed method takes advantage of a matching formulation of
the motion estimation problem within a differential framework
appropriate for global smoothing. More explicitly, superficial
large displacement of both, fine and large clouds, can be
extracted with correlation-based methods for sufficiently
contrasted regions which possess a low spatial variability.
Even in the difficult case where the layer underneath moves
in an opposite direction, large displacements of fine and very
sparse structures can be recovered. The idea is thus to avoid
the multiresolution coarse estimation levels by introducing
a collection of correlation-based vectors in a differential
scheme for the estimation of a large scale dense motion field.

Furthermore, we propose that the estimation scheme
incorporatesa priori physical knowledge on fluid dynamical
evolution. Indeed, in order to preserve spatio-temporal
consistency of displacement estimates at large scales, a
simplified Navier-Stokes dynamical model is adapted to
images depicting atmospheric layers. A dense displacement
field is predicted by time integration of a physical dynamical
model. The propagated field is then introduced in the
estimation process as a spatio-temporal smoother applying

at large scales.A priori information introduced with such
a dynamic model may enhance significantly the quality of
estimates especially in the case of noisy and incomplete
observations.

Let us remark that correlation-based displacement vectors
are significant of motion on the upper boundary of layers.
Thus these measurements slightly differ from density-weighted
average winds. Thus, we choose to rely on correlation-based
measurements only at large scales and to rely on the ICE
data model (Eq. 23) at finer scales. In an analogous way,
since atmosphere dynamics appear to be more complex at
finer scales, we choose to perform spatio-temporal smoothing
only at large scales employing a dynamical model describing
motion evolution on the layer upper boundary. Spatio-temporal
smoothing is therefore acting on the same resolution level as
the correlation-based constraints. This solution is then refined
in a second stage towards the estimation of density-weighted
average winds based exclusively on the ICE data model (Eq.
23) and on spatial smoothing.

A. Two-stage estimation scheme

The displacement fieldvk is decomposed into a displace-
ment field characterizing large scales̄vk and an additive
displacement field̆vk related to finer scales :

v
k = v̄

k + v̆
k. (25)

Keeping notations of section II-C, we define for the estimation
of variablev the new functionalJ(v̄k, v̆k) =

Jd(v̄k+v̆
k, hk

ρ)+αJr(v̄
k+v̆

k)+βJp(v̄
k, v̄k

p)+γJc(v̄
k, v̄c), (26)

where Jc(.), Jp(.) are energy functions constraining large
scale displacements̄vk to be close to a sparse correlation-
based vector field̄vc and to be consistent with a physically
sound prediction̄vk

p relying on Navier-Stokes equations. In
the previous expression,γ and β denote weighting factors.
FunctionalsJc(.) and Jp(.) will be further detailed in the
following sections.

The optimization problem is conducted sequentially. In a first
step, large displacements̄vk are estimated while the variable
v̆

k is fixed to zero in Eq. 26. Here, an analogous version of
the alternate multigrid minimization scheme proposed in [7]
[27] has been implemented, the only difference being in
the internal Gauss-Seidel solver for variablev̄

k estimation.
Once the minimum has been reached, a second refinement
step is launched : the small scale displacement increments
v̆

k are estimated while the large displacement variablev̄
k

is frozen in Eq. 26. More explicitly,̄vk is used to derive a
motion-compensated expression of the data model (Eq. 24),
and to express the div-curl in terms of the displacement
incrementv̆k = v

k − v̄
k (Eq. 17). This incremental motion

estimate relies neither on correlation-based vectors nor on
spatio-temporal constraints which only apply at large scales.
The displacement increment estimate is again obtained by
alternate multigrid minimization.



Note that in the caseα, β, γ ≫ 1, the energy minimization
leads to a large displacement field which can be seen as
a physically sound spatio-temporal interpolation of the
correlation-based vectors.

Sparse correlation measurements need to be introduced as a
constraint in the variational scheme employed for motion esti-
mation at large scales. We define the functional implementing
this constraint in the following section. We will then derive
from filtered Navier-Stokes equations a simplified dynamical
model for spatio-temporal smoothing at large scales.

B. Correlation within a variational estimation scheme
In order to obtain a dense estimation of large scale displace-

ments fitting a sparse correlation-based displacement field
(Eq. 9), we define a functional where theith correlation-based
vector v̄i

c = (ūi, v̄i) located at the pointsi = (xi, yi) influ-
ences its neighborhood according to a shifted two-dimensional
GaussianN i(si − s) of varianceσ related to the correlation
window size

Jc(v̄
k, v̄c) =

Z

Ω

LX

i=1

ICk

“
giN i(si − s)|v̄i

c − v̄
k(s)|2

”
ds, (27)

whereL andgi denote respectively the number of correlation
vectors and confidence factors which were fixed to the values
taken by the dissimilarity function. In the previous expression,
the masking operatorICk() was introduced since the joint use
of correlation and optical-flow is not possible in regions with
no image observations.
For sake of completeness, in appendix I, we briefly detail
the modifications induced by the introduction ofJc(.) in the
multigrid Gauss-Seidel solver used for the minimization of
Eq. 26.

C. Physical a priori for spatio-temporal smoothing

1) Spatio-temporal consistency:The functionalJp(.) aims
at constraining motion field at large scales to be consistent
with a physically predicted wind field. We simply define this
functional as a quadratic distance between the estimated field
v̄

k and the dense propagated fieldv̄
k
p = (ūp, v̄p):

Jp(v̄
k, v̄k

p) =

Z

Ω

‖ v̄
k
p(s)− v̄

k(s) ‖2 ds. (28)

This approach constitutes an alternative to the spatio-temporal
smoother defined in [40] and is to some extent similar
to the temporal constraint introduced in [32]. In [40], the
temporal derivative of the velocity vectors are constrained to
be weak, which is not consistent with fluid flow dynamics.
The smoothing proposed in [32] constrains the estimated
vorticity to be close to a prediction. Our propagation model
includes a two-dimensional divergence component which is
equal to zero only for incompressible two-dimensional flows.
As it is detailed below, our approach extends this scheme to
the spatio-temporal smoothing of the full velocity field in
the case of three-dimensional geophysical flows driven by a
shallow water evolution law. The modifications induced by
the introduction ofJp(.) in the multigrid Gauss-Seidel solver
are detailed in appendix I,.

2) large eddy shallow water prediction model:Dynamical
models describing wind field evolution are needed here for
the prediction at timet + 1 of a large scale motion field̄vk

p

using the previous estimation performed for thek-th layer
between timet − 1 and t. It is important to distinguish this
dynamical model from the layer transmittance-based model
proposed in section III-A. Indeed, the latter is analoguousto
a likelihood term acting at large and fine scales while the
former only provides ana priori knowledge conditioning the
temporal consistency of the estimates at large scales.

As atmosphere dynamics is governed by fluid flow laws,
we may rely on Navier-Stokes equations in order to derive
simplified dynamical models for short time propagation of
layer mesoscale motion. However, predicting atmospheric
dynamics at the pixel scale of order of a few kilometers
requires the accurate knowledge of dense three-dimensional
maps characterizing atmospheric state variables. As our aim
is restricted to spatio-temporal smoothing at large scales, we
rely instead on the filtered Navier-Stokes equations predicting
wind fields at scales of order of 100 km, that is to say where
rotational motion dominates divergent motion.

For characteristic scales of order of 100 km, the layering of
the atmosphere constitute a good approximation. We assume
incompressibility within the layers. That is to say we consider
a constant densityρ0, which implies under hydrostatic balance
that horizontal divergence is weak. Let us remark that this
incompressibility simplification which underlies a shallow
water system is reasonable, while it may be erroneous for
finer scales. Denoting respectively byF , T = (Tū, Tv̄)⊤, φ,
Υ anda, the viscous forces, turbulent viscosity dissipation at
subgrid scales [12], latitude, Earth angular velocity and radius,
the horizontal momentum equations read thus [17] :

(
ūt + ū ·∇(ū)− ūv̄ tan φ

a
+ p̄x

ρ0
= +2Υv̄ sin φ +F + Tū

v̄t + v̄ ·∇(v̄) + ū2 tan φ

a
+

p̄y

ρ0
= −2Υū sin φ + F + Tv̄

(29)
where the unknown quantities are the pressure functionp̄

and horizontal wind fields(ū, v̄) filtered with a Gaussian
kernel function of standard deviation equal to∆x = 100δ−1

p

where δp denotes the image pixel resolution in kilometers.
Adaptation of filtered Navier-Stokes equations to mesoscale
atmospheric short time evolution relies on the scale analysis
presented in appendix II. It enables us to neglect the curvature
terms and viscous effects. Note that the wind field(ū, v̄)
defined in Eq. 29 is different from the wind field̄vk. The
former quantity is related to two-dimensional winds at a
physical point of the three-dimensional space while the latter
corresponds to a spatially filtered density-average horizontal
wind v

k related to thek-th layer. To recover the latter quantity,
imposing incompressibility in the hydrostatic relation (Eq. 18),
an integrated form of the momentum equations is produced
by vertical integration in-between thek-th layer boundaries. It
yields to the shallow water momentum equations [9]. However,
a simplified model of these equations can be obtained when
relying on the assumption that, at large scales, horizontal
motion on the upper boundary of layers is similar to the



density-weighted average horizontal wind [19]. Moreover,note
that so-defined winds related to layer boundaries are consistent
with the previously introduced correlation-based displacement
vectors. Thus, by adding the filtered mass conservation model
obtain by filtering spatially Eq. 23, we form a simplified
shallow water system supplemented by Coriolis effects which
reads :

8
<
:

v̄k
t + ∇(v̄k)v̄k − g∇h̄k +

»
0 −1
1 0

–
fφv̄k = T

h̄k
t + v̄k ·∇h̄k + h̄kD̄k = 0,

(30)

whereh̄k andfφ = 2Υ sinφ denote respectively the filtered
height functions and the Coriolis coefficient. The induced
turbulent dissipation can be approached by sub-grid models
proposed in large eddy simulation literature. The simplestone
is the well known Smagorinsky sub-grid model. Assuming
isotropic turbulence in agreement with Kolmogorov “K41”
theory [12], sub-grid model proposes a turbulent viscositydis-
sipation implemented with a weighted Laplacian operator [35].
For a vorticity based LES formulation, we may rely on similar
enstrophy-based subgrid models relying on Taylors vorticity
transfer and dissipation by small scales theory [38]. Conse-
quently, denoting byνs a subgrid scale viscosity coefficient,
T is replaced by a diffusion term in the above momentum
equations. Let us denote the vorticity bȳζk = curl(v̄k) and
the divergence bȳDk = div(v̄k). The previous system may
be expressed in its vorticity-divergence form :

8
<
:

ζ̄k
t + v̄k ·∇ζ̄k + (ζ̄k + fφ)D̄k = νs∆ζ̄k

D̄k
t + v̄k ·∇D̄k + (D̄k)2 − 2|J | − g∆h̄k + fφζ̄k = νs∆D̄k

h̄k
t + v̄k ·∇h̄k + h̄kD̄k = 0

(31)
where |J | is the determinant of the Jacobian matrix of

variables(ūk, v̄k), and where we have chosen the enstrophy-
based subgrid scale model proposed in [24] [31] [41] :

νs = (C∆x)2|ζ̄k|, (32)

whereC has a universal value of0.17. In the two previous
shallow water formulations, dynamical models predict the
evolution of 3 variables which may depend on each other. One
of the major difficulties is induced by the fact that variablehk

is derived only for cloudy regions corresponding to thek-th
layer. Therefore, variablehk, and thus all unknowns, can only
be propagated on a sparse spatial support. However, in op-
position to the classical formulation, the vorticity-divergence
equations provide a dynamical model for which the vorticity
evolution is independent of variablehk and for which the di-
vergence evolution depends only weakly on variablehk. Based
on the realistic assumption that, at large scales, divergence is
weak almost everywhere and comparable to noise, we propose
to simplify the divergence dynamical model in order to make
it independent of variablehk. DivergenceD̄ is assumed to be
driven by a Gaussian random function of standard deviation
equal to ∆xt/2 with stationary increments (i.e. a standard
Brownian motion). As a consequence, neglecting probabilities
of increments greater than∆xt/6, divergence expectation
asymptotically obeys to a heat equation of diffusion coefficient

equal to( ∆x

6
√

2
)2 [6]. The simplified vorticity-divergence model

reads :


ζ̄k

t + v̄k ·∇ζ̄k + (ζ̄k + fφ)D̄k = (C∆x)2|ζ̄k|∆ζ̄k

D̄k
t = ( ∆x

6
√

2
)2∆D̄k.

(33)

The curl and divergence completely determine the underlying
2D velocity field and the current velocity estimate can be
recovered from these quantities up to a laminar flow. Indeed,
denoting the orthogonal gradient by∇⊥ = (−∂/∂y, ∂/∂x)⊤,
the Helmholtz decomposition of the field into a sum of
gradients of two potential functions is expressed as

v̄
k = ∇

⊥Ψ + ∇Φ + v̄
k
har, (34)

where v̄
k
har is a harmonic transportation part (divv̄k

har =
curl̄vk

har = 0) of the field v̄
k and where the stream function

Ψ and the velocity potentialΦ correspond to the solenoidal
and the irrotational part of the field. The latter are linked
to divergence and vorticity through two Poisson equations.
Expressing the solution of both equations as a convolution
product with the 2D Green kernelG associated with the
Laplacian operator:Ψ = G∗ζ, Φ = G∗D, the whole velocity
field can be recovered with the equation

v̄
k = ∇

⊥(G ∗ ζ̄k) + ∇(G ∗ D̄k) + v̄
k
har, (35)

which can be efficiently solved in the Fourier domain. The
harmonic transportation componentv̄

k
har is recovered by sub-

stracting to the field̄vk its solenoidal and irrotationnal parts.

From time indext = 1 to the last image index :
• pS(t) andpS(t + 1)← read pressure images
• {(hk

ρ(t), hk
ρ(t+1))} ← recovery of2K transmittance images

• vc(t) ← extraction of a correlation-based vector field
• For layer indexk = 1 to K :

– v̄k(t) = 0, v̆k(t) = 0, h̃k
ρ(t) = hk

ρ(t + 1)
– Large scalemotion estimation
∗ Introduction of functionalsJp(.) andJc(.)
∗ If t=0, γ = 0
∗ Until convergence (alternate multigrid optimization) :
· v̄k(t)← GS(Eq. 26)1 w.r.t. v̄k(t)
· ζv ← GS(Eq. 26) w.r.t.ζv
· Dv ← GS(Eq. 26) w.r.t.Dv

· h̃k
ρ(t)← compensate imagehk

ρ(t + 1) with v̄k(t)

– Fine scalemotion increment estimation
∗ Removal of functionalsJp(.) andJc(.)
∗ Until convergence (alternate multigrid optimization) :
· v̆k(t)← GS(Eq. 26) w.r.t.̆vk(t)
· ζv ← GS(Eq. 26) w.r.t.ζv
· Dv ← GS(Eq. 26) w.r.t.Dv

· vk(t)← v̄k(t) + v̆k(t)
· h̃k

ρ(t)← compensate imagehk
ρ(t + 1) with vk(t)

– v̄k
p(t+1)← propagation of v̄k(t) via Eq.33 and Eq.35

1“GS(Eq. 26)” denotes one Gauss-Seidel iteration used for the minimization

of Eq. 26. Note that in this algorithm the robust parameter estimation steps

have been omitted for clarity.

Fig. 3. Global flowchart for atmospheric motion estimation.



Let us sum up this prediction process. The vorticity and
the divergence fields are developed in time in between
consecutive image frame using a discretized form of Eq. 33
and time incrementsδt. After each time increment, assuming
v̄

k
har constant within each frame interval, Eq. 35 is used to

update the velocitȳvk needed by Eq. 33, with the current
vorticity and divergence estimates.

To avoid instability, a semi-implicit time discretizationscheme
is used to integrate forward Eq. 33. Classical centered finite
difference schemes are used for the curl and divergence
discretization. Geometrical deformations due to slant view
effects are neglected for geostationary satellite observations
at tropical and temperate latitudes in order to perform spatial
discretization using directly the pixel grid. Let us note that this
equation system describes the dynamics of physical quantities
expressed in standard units. Thus, a dimension factor appears
in front of the coriolis factor when this equation system is
discretized on a pixel grid with velocity expressed in pixel
per frame.

To solve the linear system associated with the semi-implicit
discretization scheme, the matrix has been constrained to
be diagonally dominant, which is a sufficient condition for
a well-conditioned inversion problem. This condition reads
1/δt ≥ maxs(|ū

k| + |v̄k| − |D̄k|).

Finally, the dynamical model time integration is done
independently for each layer. This procedure results in a
predicted average horizontal wind field̄vk

p related to each
layer.

The complete algorithm for atmospheric motion estimation is
summarized in figure 3.

V. EXPERIMENTAL EVALUATION

In this section, we assess the respective merits of the
multi-layer model used for motion estimation which has been
presented in section III-B, of the collaborative framework
introduced in section IV-B and of the spatio-temporal
smoother presented in section IV-C.

Because of the extent and the variety of scales of geophysical
flows, ground truth data can not be collected at mesoscale in
a three-dimensional space. An alternative recourse is to make
a comparison with so called ‘analyzed winds’ produced by
data-assimilation. However, they are model-dependent and
can not be considered as proper ground truth. Moreover,
analyzed winds are calculated at coarse resolution for given
pressure levels. Because of turbulence properties, motion
might be slightly different when observed at finer spatial and
temporal resolution.
As a consequence, the assessment of the proposed
transmittance-based model for atmospheric layers is
mainly conceptual and relies on physical justifications.
Nevertheless, as we shall see in section V-B, qualitative
comparisons performed on a real METEOSAT image
sequence demonstrate the enhancements brought by the

transmittance-based model and the potential of the entire
method.

However, for an exhaustive evaluation of the spatio-temporal
smoother and the introduction of correlation-based matchings
in a variational scheme, we propose instead to rely on a
simulated flow. A Direct Numerical Simulation (DNS) of a
two-dimensional, incompressible, and highly turbulent flow
has been used to generated an image sequence depicting the
motion of a continuous scalar field. The main interest of such
a synthetic image sequence is the knowledge of the exact
solution along time and for a wide range of spatial scales
including pixel resolution.

A. Synthetic two-dimensional turbulent flows

The sequence of scalar images of 256 by 256 pixels
together with the true vector fields generated by the DNS
of an incompressible two-dimensional flow possessing a
Reynolds number of30, 000 were provided by the laboratory
of fluid mechanics ofCemagref (center of Rennes, France).
Two-dimensionality was chosen to simplify the simulation.
The latter assumption, which involves a non-divergent flow,is
consistent with the fact that divergence was considered weak
and comparable to noise. Thus, the transmittance conservation
model reduces in this special case to the classical OFC data
model (Eq. 11). Note that as divergence vanishes, the spatio-
temporal smoothing constrains only vorticity to be coherent
in time.
In order to experiment our method with correlation-based
vectors with different noise level, the correlation-based
vectors have been substituted by DNS vectors contaminated
by additive Gaussian noise. As correlation techniques only
operate on contrasted regions, vector constraints were
attached to regions with sufficient gradient. To be realistic
with correlation measurements, DNS vectors have been
sub-sampled in those regions. Fig.4 presents the noise free
DNS velocity vectors, which have been selected as correlation
measurements. They are superimposed on the scalar image.
As for this experimental case, the propagation model and the
OFC data model (Eq. 11) are valid for both, large and fine
scales, the temporal and correlation-based constraints were
maintained during the two estimation stages.

Based on the non-noisy correlation constraints defined
previously, we first compare our two-stage collaborative
scheme to the fluid flow dedicated multiresolution approach
described in [7]. In Fig.5, it clearly appears that the
multiresolution approach hardly estimates fine turbulent
structure while the collaborative method manages to
characterize most of the vorticity field structures. Indeed,
in scalar imagery, low contrast regions correspond to high
vorticity areas. Thus, the multiresolution technique suffers
from a lack of information in those crucial regions. And,
incorporating motion constraints in contrast areas around
vortices reduces the degree of freedom of the solution and
thus, considerably enhances the estimated motion field. The
way the two levels of estimation operate is illustrated in Fig.5



Fig. 4. Velocity constraints and fluid imagery for a two-dimensional flow. Velocity vectors provided by the DNS which have been selected
as constraints are superimposed on the image.

Fig. 5. Comparison in the image domain of multiresolution and collaborative schemes in the case of a two-dimensional flow.
Above : vorticity provided by the DNS (left), vorticity estimation by the fluid flow dedicated multiresolution approach of [7](right). Below :
vorticity estimation after the first (left) and the second (right) level of the collaborative scheme.

: the global shape of the vorticity field is retrieved in the
first level, while in the second level finer errors are removed
and the solution is refined. For a better visual inspection,
Fig.6.a reveals the enhancement brought by the collaborative
method on a typical horizontal slice of the image. Spectra
of the velocity are shown in Fig.6.b for the DNS, for the
multiresolution and for the collaborative approach. It can
be observed that, both for large and for small wavelengths,
the collaborative approach exhibits a better representation of

the velocity spectrum. This spectral analysis shows that the
method improves the main shape of the motion field while
performing a better estimation of fine structures.

In order to evaluate the robustness of the collaborative
method to inaccurate constraints, Gaussian noise of zero
mean and increasing variance has been added to the true
velocity vectors provided by the DNS. An example of noisy
correlation constraints superimposed on a related image



Fig. 6. Comparison in the image and spectral domains of multiresolution and collaborative schemes in the case of a two-dimensional
flow. Above : on a particular horizontal slice of the image, comparison of vorticity estimated by the multiresolution and by each level of the
collaborative scheme with vorticity provided by the DNS. Below : comparison in ’log-log’ coordinates of average horizontal velocity spectra
estimated by the two different approaches and by the DNS.

is displayed in Fig.7. This can be compared to the noise
free vectors presented in Fig.4. To quantify the estimation
accuracy, Root Mean Square (RMS) errors on vorticity are
indicated in the legend of Fig.7. As the flow is non-divergent,
thanks to Helmholtz decomposition, the curl of the flow
completely determines the underlying two-dimensional flow
up to a harmonic transportation component. Therefore, RMS
errors on vorticity reveal the global accuracy of the estimated
field. In Fig.7, we can visually inspect the influence of
noise on the estimated solution for a particular horizontal
slice of the image and for the global image domain by
referring to RMS values. It clearly appears that, even in the
presence of noise, motion estimation is better achieved by
our collaborative scheme than by a classical multiresolution
approach.

Spatio-temporal smoothing benefits are assessed in the im-

age and in the spectral domain. The global enhancement
on estimation accuracy brought for both, multiresolution and
collaborative methods is shown in Fig.8. There is obviouslyno
improvement for the first pair of images for which only a null
initialization is available. It is worth noting that the incorpo-
ration of temporal consistency is all the more advantageous
for small scales. This can be visualized by comparing the
spectra of Fig.8. Indeed, the temporally regularized spectrum
is closer to the true one for high frequencies. Therefore, if
large vortices are sufficiently well estimated, then introducing
a vorticity temporal consistency can significantly improvethe
estimation of small vortex structures. In other words, the better
large scales are estimated, the better fine scales are inferred
by spatio-temporal smoothing.



Fig. 7. Influence of noise.Above : Gaussian noiseN (0, 1) has been added to the true velocity vectors provided by the DNS. The sub-parts
which have been selected as constraints are superimposed onthe image. Below : on a typical horizontal slice of the image,vorticity estimates
and RMS vorticity error for increasing noise in comparison to the multiresolution approach.

Fig. 8. Evaluation of spatio-temporal smoothing in the case of two-dimensional flows.Left : RMS vorticity errors calculated on five
consecutive images for the multiresolution approach, the collaborative scheme constrained by vectors contaminated by a Gaussian noise
N (0, 1/2) combined or not with spatio-temporal smoothing. Right : comparison in the spectral domain in ’log-log’ coordinates of average
horizontal velocity estimated by the different methods andprovided by the DNS.



Fig. 9. Trajectories for the multiresolution technique based on the ‘infrared-based’ model [7] (left) and our ‘transmittance-based’ model
considering a single layer (right)have been reconstructed based on wind fields estimated from asequence of 18 METEOSAT images above
the north Atlantic Ocean, off the Iberian peninsula. The trajectories are superimposed on the final infrared or transmittance image of the
sequence. Gray lines represent costal contours, meridiansand parallels (every10o).

B. METEOSAT satellite image sequence

We then turned to qualitative comparisons on a real
meteorological image sequence.

The benchmark data was composed by a sequence of 18
METEOSAT Second Generation (MSG) images, showing top
of cloud pressures with a correspondiong cloud classification
sequence. The 512 x 512 pixel images cover an area over
the north Atlantic Ocean, off the Iberian peninsula, during
part of one day (5-June-2004), at a rate of one image
every 15 minutes. The spatial resolution is 3 kilometers at
the center of the whole Earth image disk. Clouds from a
cloud-classification were used to segment images into 3 broad
layers, at low, intermediate and high altitude1. Applying the
methodology described in section III-A, transmittance images
were derived from pressure images for these 3 layers.
Trajectories reconstructed from the estimated wind fields
provide a practical visualization tool to assess the quality of
the estimation in time and space. Therefore, for visualization
issues, trajectories have been reconstructed using a fourth-
order Runge-Kutta integration method as suggested in [7].

Results obtained without discarding clear sky areas by a
masking operator are presented in Fig.9 for the transmittance-
based model and for the infrared-based model proposed in [7].
To enable the comparison, smoothing and robust parameters
were tuned similarly and a unique layer comprising all clouds
was considered. Globally, estimations are visually coherent.
One can nevertheless notice few differences, as for instance

1We note that the EUMETSAT extraction procedure was not correctly tuned
when the classification was extracted (June 2004). After comparison with
cloud classifications obtained by other methods, it appeared that general cloud
coverage was under evaluated. The high-level cloud coverage were also found
to be underestimated in favour of medium-level clouds. These differences
should not change radically the following evaluation, since a large majority
of cloudy pixels are correctly assigned. Nevertheless, better classification
products are likely to significantly enhance the performance of the method.

in non cloudy regions. Without the use of a masking operator,
the transmittance-based model tends to reveal no motion
in clear sky areas, while the infrared-based model tends to
provide a non zero solution in those regions. This appears
to be a natural consequence of the absence of observations
in clear sky areas for transmittance images contrarily to
infra-red images. Finally, a visual inspection does not clearly
allow us to state the best model.
Nevertheless, an important remark is that the color dynamics
of images related to the infrared-based model is inverted
in comparison to transmittance images. This means that, in
the case of a divergent motion in hydrostatic equilibrium
conditions, on the contrary of transmittance-based model,
the infrared-based model will under-estimate the divergent
sources or sinks. Indeed, according to Eq. 6, mass dispersion
is compensated by a decrease of brightness along the motion
trajectories. And, in the case of infrared imagery, a brightness
decrease implicates an increase of altitude, which is in
contradiction with altitude decrease induced by the mass
dispersion. Moreover, the only model providing a physically
sound scheme for layer decomposition is the transmittance-
based one.

The global motion decomposition into a set of 3 independent
layer motions is presented in Fig.10. Several trajectory
differences are striking. Some of them are very relevant.
For instance, near the middle of the image, the lower layer
possesses a southward motion while the intermediate layer
moves northward. This difference in motion is partially
estimated with the layer decomposition. However, other
trajectories related to the intermediate and higher layersseem
to be inconsistent with the visual inspection of the image
sequence, especially for regions far from cloud boundaries.

Indeed, the multiresolution framework remains insufficient to
catch large displacement of fine structures when an important



Fig. 10. Layer decomposition. On the left, trajectories estimated for a unique layer. On the right, trajectories related to the higher (above),
the intermediate (middle) and the lower (below) layer. Graylines represent costal contours, meridians and parallels (every10o)



Fig. 11. Correlation constraints.Correlation-based sparse wind field vectors related to the highest layer.(left) are interpolated using spatio-
temporal smoothing in order to produce a dense wind field estimate relevant of large scales (right). Gray lines representcostal contours,
meridians and parallels (every10o)

Fig. 12. Vorticity and divergence temporal constraints. On the left, lower layer vorticity (above) and divergence (below) predicted fields are
introduced as large scale spatio-temporal smoothers. Resulting large scale vorticity (above) and divergence (below)estimates are displayed
on the right. The image spatial domain corresponds here to the area above the north Atlantic Ocean selected previously.



Fig. 13. Collaborative approach and spatio-temporal smoothing influenceon the estimation of wind field for the higher layer. Above : tra-
jectory reconstruction for multiresolution estimation scheme without (left) and with (right) spatio-temporal smoothing. Below : trajectory
reconstruction for the two-stage collaborative estimation scheme without (left) and with spatio-temporal smoothing(right). Gray lines
represent costal contours, meridians and parallels (every10o)

structures underneath moves in an opposite direction. This
is the case of small clouds of the intermediate and high
layers moving above a large stratus belonging to the lower
layer. The problem is tackled using vector constraints. Let
us briefly describe the correlation-based method, proposed
in [37], which has been used to derive wind vector constraints
associated with the infrared meteorological images. In this
algorithm, the vector extraction procedure is done on a regular
pixel-grid and undergoes a series of quality tests : removal
of outliers and spatio-temporally non consistent vectors.
However, no height assignment or layer differentiation is
undertaken in the method. In order to avoid the extraction of
erroneous wind vectors, correlation-based vectors calculated
on possibly occluded regions have been removed and
confidence factorsgi were fixed to cross-correlation values
associated with the vector constraints. An example of a
sparse field of vector constraints related to the higher layer
is displayed in Fig.11. It also presents the large scale dense
motion field which has been produced by interpolating the
sparse field in our collaborative scheme using spatio-temporal
smoothing.

Spatio-temporal smoothing can remove ambiguities in those
regions where no observations are available, by propagating
a solution in time and space. Fig.12 shows the vorticity and
divergence components of the large scale wind field predicted
by shallow water large eddy simulation. In particular, the
introduction of sucha priori temporal constraints enforces the
large scale wind field solution to be consistent with previous
estimates. This consistency is illustrated in Fig.12.

Enhancements in motion estimation of the higher layer brought
by the collaborative estimation scheme and by spatio-temporal
smoothing are presented in Fig.13. It can be noticed in this
comparative figure that the collaborative scheme succeeds
in characterizing large displacement of small cirrus while
the multiresolution approach fails. Moreover, one can notice
that the introduction of spatio-temporal constraints smooths
trajectory discontinuities and propagates motion in regions
where observations are missing. Improvements brought by
spatio-temporal smoothing on trajectories related to the other
layers are presented in Fig.14. In particular, in the middleof



Fig. 14. Enhancements brought by spatio-temporal smoothing. Estimation of wind fields related to the middle and the lowerlayer using
a collaborative estimation scheme with (right) or without (left) spatio-temporal smoothing. Reconstructed trajectories correspond to the low
(below), and to the medium (above) layer motions. Gray linesrepresent costal contours, meridians and parallels (every10o)

the image, one can notice a better retrieval of the northward
motion related to sparse clouds of the intermediate layer which
are above a stratus underneath moving southward.

VI. CONCLUSIONS

In this paper, we have presented a new method for esti-
mating winds in a stratified atmosphere from satellite image
sequences of top of cloud pressure. The proposed motion
estimation method is based on the minimization of a functional
including a two part global smoother.
The data term relies on the integrated continuity equation
mass conservation model. Indeed, the hydrostatic assumption
enables a layer decomposition of the atmosphere. This decom-
position is used to derive, relatively to each layer, transmit-
tance observations from top of cloud pressure satellite images.
Resulting observations verify independent mass conservation
models. To overcome the problem of sparse observations, a
robust estimator is introduced in the data term.
A novel spatio-temporal smoother is proposed. An approxi-
mation of shallow water momentum equations expressed in a
divergence-vorticity form is used to derive temporal coherence
constraints. These temporal constraints are combined witha

robust second-order smoother preserving divergent and vortic-
ity structures of the flow.
In order to capture mesoscale dynamics, a collaborative esti-
mation scheme is developed. In a first stage, large displace-
ments are estimated in a variational framework on the basis of
correlation-based constraints and image observations, while in
a second stage, the solution is refined using a motion compen-
sated functional. This two-stage estimation scheme constitutes
an advantageous alternative to the standard multiresolution
framework.
On both synthetic images and real satellite images, the merit of
the novel data-model and of the introduction of correlation-
based and temporal constraints have been demonstrated. A
scalar image sequence generated by direct numerical simu-
lation of a turbulent two-dimensional flow was chosen for
an exhaustive evaluation. Analyses were performed using this
benchmark data in the image and in the spectral domain. In
particular, the improvements brought by a two-stage estima-
tion scheme with noisy correlation-based constraints and by
the spatio-temporal smoother were quantified. By qualitative
comparisons, the novelties of the method were also evaluated
on a real meteorological image sequence. The two-stage



estimation scheme, the proposed observation model and prop-
agation model proved their relevance for the characterization
of mesoscale dynamics relatively to atmospheric layers.
In view of the various meteorological studies relying on the
analysis of experimental data of atmospheric dynamics, we
believe that the multi-layer horizontal wind field estimation
technique we have presented constitutes a valuable tool. The
extension of the layer-independent transmittance-based model
to a global model able to capture layer interactions via mass
exchanges driven by vertical winds is our next step towards
a more complete characterization of distribution of three-
dimensional atmospheric winds.
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APPENDIX I
GAUSS-SEIDEL SOLVER FOR MOTION ESTIMATION

For better and faster convergence, the minimization with
respect to the displacement fieldv is performed using coarse-
to-fine multigrid technique introduced in [25]. In this optimiza-
tion scheme, the searched displacement field is constrained
to be piecewise parametric relatively to an image partition
which becomes finer and finer according to a grid level.
More precisely, at “grid” levell, the pixel grid is partitioned
in blocks Bn

l of size 2lx2l and the displacement field is
constrained to satisfy

v
k(s) = Pl(s)θ

n
l + v̄

k(s),∀n,∀s ∈ Bn
l (36)

wherev̄k(s) is the current estimate and wherePl(s) is a matrix
depending on the chosen parametrization at levell andθn

l is
the parameter vector for blockBn

l . Until grid level l > 2, the
affine parametrization is used, i.e.

∀l, Pl(s = (x, y)) =

»
1 x y 0 0 0
0 0 0 1 x y

–
; θn

l ∈ R
6,

while for grid level l ≤ 2, a constant parametric model is
chosen, i.e.

∀l, Pl(s = (x, y)) =

»
1 0
0 1

–
; θn

l ∈ R
2.

At level l, Eq. 26 is rewritten with respect to the set of
parameter vectorsθl = {θn

l } which definesu via Eq. 36. This
symbolic rewriting is explained in [25]. It yields a quadratic
cost function whose minimum corresponds to the solution
of linear systemsAθn

l = b. In those system, matricesA
and vectorsb are functions of the other variables used in
the minimization. More details on the Gauss-Seidel resolution
related to this cost term are provided in [7].
For the minimization of the energy defined in Eq. 26 with
respect tōvk, matrix A and vectorb have to be slightly mod-
ified because of the contribution of the new energy functions
γJc(.) and βJp(.) derived from Eq. 27 and Eq. 28. Thus, a
new system is defined asA′θn

l = b′. The new matrixA′ is
the sum of the previous matrixA, with Ac and Ap which

respectively denote the contribution of the correlation-based
and the propagated field constraint. Similarly, the new vector
b′ is the sum of the previous vectorb, and ofbc andbp which
respectively denote the contribution of the correlation-based
and the propagated field constraint.
Let us denote by⊗ the Kronecker product and by(ū, v̄),
(ūp, v̄p) and(ūi

c, v̄
i
c) the components of wind fields̄vk, v̄i

c and
v̄

k
p . After a few analytical calculations, one can demonstrate

that the previously introduced matrix and vectors are expressed
as:

Ac = γ

KX

i=1

giN i(si − s)

»
1 0
0 1

–
⊗ a

bc = γ
KX

i=1

giN i(si − s)

»
b(ūi

c − ū)
b(v̄i

c − v̄)

–

Ap = β

»
1 0
0 1

–
⊗ a

bp = β

»
b(ūp − ū)
b(v̄p − v̄)

–

where for the affine model the coefficients read :

a =

2
4

1 x y
x x2 xy
y xy y2

3
5

b =
ˆ
1 x y

˜⊤

while for the constant model they reduce to :

a = 1; b = 1; c = 1; d = 1

APPENDIX II
SCALE ANALYSIS OF NAVIER-STOKES EQUATIONS

For mesoscale atmospheric motions observed through a
METEOSAT images sequence which has been low-pass
filtered to obtain a characteristic horizontal scale of100 km,
the following characteristic scales hold :

U ∼ 10 ms−1 horizontal velocity
L ∼ 105 m length
H ∼ 103 m depth
δp ∼ 103 Pa horizontal pressure fluctuation
ρ0 ∼ 1 kg m−3 density
∆t ∼ 103 s temporal sampling period
ν ∼ 10−5 m2s−1 friction coefficient
a ∼ 106 m Earth radius

Υ sinφ ∼ 10−4 s−1 Coriolis coefficient

Scale analysis of terms in the horizontal momentum equa-
tions (Eq. 29)

(
ūt + ū ·∇(ū)− ūv̄ tan φ

a
= − p̄x

ρ0

+ 2Υv̄ sin φ + F + Tū

v̄t + v̄ ·∇(v̄) + ū2 tan φ

a
= −

p̄y

ρ0

− 2Υū sin φ + F + Tv̄

using the characteristic scales reads :



A B C D E

x-eq. dū
dt

2Υv̄ sin φ ūv̄ tan φ
a

1

ρ
∂p̄
∂x

F

y-eq. dv̄
dt

2Υū sin φ ū2
tan φ
a

1

ρ
∂p̄
∂y

F

scales U
∆t

Υ sinφU U2

a
δp
ρL

νU
H2

(ms−2) 10−2 10−3 10−4 10−2 10−10

We conclude that terms C and E can be neglected in
comparison to the other terms. Moreover it is well known
that, for high Reynolds numbers characteristic of atmospheric
flows, due to the energy dissipation at unobservable scales,
turbulent viscosity dissipationT can not be neglected in
Navier-Stokes numerical simulations [33] [35]. We obtain thus
the momentum equations written in a vectorial form

ρ0 (v̄t + ∇(v̄)v̄) = −∇p̄− 2Υ sin φ

»
0 −1
1 0

–
v̄ + T ,

with the notations∇(v̄) = (∇ū, ∇v̄)⊤.
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