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Abstract—In this paper, we address the problem of estimating
mesoscale dynamics of atmospheric layers from satellite iage se-
guences. Due to the great deal of spatial and temporal disttions
of cloud patterns and because of the sparse 3-dimensional tuae
of cloud observations, standard dense motion field estimain
techniques used in computer vision are not well adapted to
satellite images. Relying on a physically sound vertical d®mmpo-
sition of the atmosphere into layers, we propose a dense moti
estimator dedicated to the extraction of multi-layer horizontal
wind fields. This estimator is expressed as the minimizatiorof
a global function including a data term and a spatio-tempora
smoothness term. A robust data term relying on the integratd
continuity equation mass conservation model is proposed tdit
sparse transmittance observations related to each layer. Aovel
spatio-temporal smoother derived from large eddy predicton of
shallow water momentum conservation model is used to build
constraints for large scale temporal coherence. These camasints
are combined in a global smoothing framework with a robust
second-order smoother preserving divergent and vorticitystruc-
tures of the flow. For optimization, a two-stage motion estimation
scheme is proposed to overcome multiresolution limitatios when
capturing the dynamics of mesoscale structures. This alt@ative
approach relies on the combination of correlation and optial-flow
observations in a variational context. An exhaustive evalation of

km. It includes circulation ranging from thunderstorms and
internal gravity waves at the small end of the scale to
fronts and hurricanes at the large end [17]. In particular,
meteorological in situ data are excessively sparse over
the Southern Hemisphere. Such a lack of data makes the
establishment of accurate numerical prediction difficult.
Recently, in an effort to avoid these limitations, increhse
interest has been devoted to motion extraction from image
sequences from a new generation of geostationary sagellite
characterized by finer spatial and temporal resolutions.

The analysis of motion in such sequences is particularly
challenging due to the great deal of spatial and temporal
distortions that Iuminance patterns exhibit in imaged
atmospheric phenomena. Standard techniques from Computer
Vision, originally designed for rigid motions and stabldiesat
features along time, are not well adapted in this context.
Winds have been derived from the motion of clouds on
satellite images for about 3 decades [21] [34] and are used
operationally in forecast models. But only few constraints
based mainly on quality and consistency of the extracted

the novel method is first performed on a scalar image sequence motion vectors, are applied and the estimated wind fielde hav

generated by direct numerical simulation of a turbulent two
dimensional flow. By qualitative comparisons, the method ishen
assessed on a METEOSAT image sequence.

Index Terms—Atmospheric motion estimation, variational
methods, integrated continuity equation, filtered shallow wa-
ter equations, spatio-temporal smoothing, layer transmitance,
optical-flow, correlation-based vector interpolation.

I. INTRODUCTION

a limited spatial coverage. Recently, computer vision roesh
have been adapted for fluid-dedicated dense estimation in
order to characterize atmospheric motion [7] [8] [26].
Nevertheless, we will show that due to the underlying
three-dimensional nature of the scene, the employed
dynamical models remain unadapted to satellite obsenstio
Furthermore, such methods may fail to accurately chaiaeter
motion associated with mesoscale structures. Thus, thgrdes
of an appropriate approach modeling the physics of three-

The analysis of complex fluid flow behaviors is a majodimensional atmosphere dynamics constitutes a wide open

scientific issue.

In particular, understanding atmospghexomain of research. Our work is a contribution in this

dynamics is of great importance for meteorologists intedks direction.

in weather forecasting, climate prediction, singular egst Rather than coupling the motion vector estimation process t
analysis, etc. Surface station, balloon (including raglim®), a complex and complete numerical meteorological circoifati
and more recently in-flight aircraft measurements andodel, we propose to incorporate “some” dynamics in the
satellite images characterized by low spatial and temporabtion estimation scheme, in the form of an adaptation of
resolutions have improved the estimation of wind fieldslavier-Stokes equations to satellite imagery. The ohjecti
and have been an important step for a better understandirmgng in fine the three-dimensional reconstruction of
of meteorological phenomena. However, the measuremeatsospheric horizontal winds. Alternatively, the chagjen
provided by the network’s temporal and spatial resolutiohs also consists in providing accurate estimators able tolgack
in situ measurements may be insufficient for the analysis thfe motion complexity of sparse and noisy structures.
mesoscale dynamics. Let us recall that mesoscale dynamics

is generally defined to include the study of motion systents this work, we propose original methods responding to this
that have horizontal scales in the range of about 10-10pfbblem. The remainder of the paper is organized as follows.



In the following section, in order to motivate our approach,
an overview on existing optical-flow estimation methods is dI

presented. Then, in section lll, a mass conservation model 7~V Vi)t Lis,t) =0 @)

for an atmosphere decomposed into a stack of layers Af important remark is that for image sequences showing
introduced. This model constitutes the physical backgdou@vowing atmospheric phenomena, the brightness consisten
of the multi-layer dense estimator which is then descrithed. assumption does not allow us to model temporal distortions
the perspective of adapting motion analysis to mesoscae, ¥t [yminance patterns caused by 3D flow transportation.
propose in section IV a two-stage decomposition estimation
scheme. We propose to combine the ability of correlation 2) |ntegrated continuity equationFor atmospheric image
and variational approaches and to enhance spatio-temp&@yences, the underlying physical laws determining the-at
consistency by using a simplified shallow water model. Fipheric evolution constitute an inestimable source gfiori
nally, results on METEOSAT image sequences presentedigfiormation to design an appropriate data model. Intemgsti
section V. demonstrate the interest of our approach. models may be derived from the 3D mass conservation law,
the so called continuity equation :
Il. RELATED WORK ON OPTICAL-FLOW ESTIMATION

The problem of wind field estimation in an image sequence 1dp +V .V =0, 3)
I(z,y,t) consists in characterizing the real three-dimensional p dt
atmospheric motion from observations in the projected Enagvherep denotes a three-dimensional density function. Let us
plane. This problem is a complex one, for which we have ontgmark that a three-dimensional wind fieM is considered
access to projected information on cloud positions andtsgecin the previous equation. Image intensity may be linked to
signatures provided by satellite observation channels. the vertical integration of Eq. 3 [11]. Unlike the brightses
consistency assumption, such models can compensate mass
departures observed in the image plane by associating two-
. . ) dimensional divergence to brightness variations. In tlise¢
Spatial horizontal coordinates:, y) are denoted by. TO 0 reqefine apparent motionas a density-weighted average

avoid tackling the three-dimensional wind fieNi(s,z,7) ¢ the original three-dimensional horizontal velocity @i#lear
reconstruction problem, up to now all the developed wind

field estimation methods rely on the assumption of inexisten [ pVremdz
vertical winds and estimate an average horizontal wind. V= W,
The apparent motiornv, perceived through image intensity

variations is called optical-flow in the computer vision Neglecting mass exchanges via vertical motion on planar
community. All optical-flow estimation methods rely onintegral boundaries, in [11] [2], the authors demonstraled

the temporal conservation of some invariants. Althoughe integration of Eq. 3 leads to a mass conservation model
geometric invariants may be relevant for matching acros€glled Integrated Continuity Equation (ICE)

frames (e.g. point, contour tracking) [13], they can only be

extracted in sufficiently structured areas and thus lead to (/pdz) +V~V(/pdz) +V-v(/pdz) —0 5)
sparse motion measurements. The most common invariants t

used are photometric ones which can easily be extracted 3fghe case of transmittance imagefy= [ pdz and Eq. 5 can
lead to dense measurements. In particular for satellitgé@®ia directly be used [11] assuming no vertical motion on the ptan
atmospheric motion is revealed by a functiéf(.) of the integral boundaries. The image formation model for saeelli
intensity of clouds, which are assumed to be passive tracef§rared imagery is slightly different. In [7], the authdnave
From these considerations, two schemes can be derivgbctly assumed the unrealistic hypothesis that infrauiee!
for motion estimation : a non-linear formulation matchinggjues/ were proportional to density integralsl: [ pdz.

consecutive images and a linear differential formulatibne  This assumption have enabled them to rewrite Eq. 5 as
first formulation leads to a non-linear system of equations

valid for every kind of motion whereas the second holds only
for small displacements and is often ill-conditioned.

A. Real projected wind fields and optical-flow

“4)

Iy +v-VI+Idiv(v) = 0. (6)

In [43], the authors proposed an inversely proportional ap-
1) Brightness constancy modelFor the special case of proximation for infrared measurements o ( [ pdz)~'. Such
gray level constancy assumptiafi(.) is the identity function an assumption yields to the same equation except a minus sign
and apparent motioni(s, t) is equal to an average horizontabppearing in front of the divergence term. By time integnati
wind. This assumption leads for the non-linear formulaton of Eq. 6, an equivalent non-linear DFD formulation (Eq. 1)
the Displaced Frame Difference (DFD) equation can also be recovered [7]

I(s+v,t+1)=1I(s,t), 1) I(s+v,t+1)expdiv(v) — I(s,t) = 0. (7)

while, for the differential formulation, one obtains the live These two models constitute adaptations of the ICE model for
known Optical-flow Constraint (OFC) equation the case of satellite infrared imagery. Experimentallgst



approaches have proved to be relevant in comparison to smodehereh(s) is a weighting function, such as a spatial Gaussian
based on the OFC (Eq. 2) or the DFD (Eq. 1). Howevekernel for example, which controls the influence of a given
from a physical point of view, they rely on non realistidocation in the neighborhoot/(s) of the estimation support.
approximations. We will see in section IlI-A how to reinferc If the motion is assumed to be locally constant, this estimat
the theoretical background of such an approach by adapticmresponds essentially to the worklafcas and Kanadg22].
image observations. These methods present the drawback to be sensitive to noise
and too often lead to ill-conditioned problems in the case of
weak intensity gradients.

In meteorology, classical approaches are Euclidean
correlation-based matchings, which corresponds to the
DFD constraint (Eq. 1) associated with a locally constant
field and aL? norm [1] [10] [21] [30] [34] [37]. Using

a discrete state space of vectofa}, discrete correlation
approaches consist of estimating a displacement vectat
points as

v(s) :argmuin Z C(I(r+u,t+1),1I(s,t)) 9)

where(C(.) denotes a dissimilarity function. On the one hand,

they constitute fast methods, generally locally robustdise,

and which are able to estimate large displacement of fine-stru

Fig. 1. Apefrt%r\z ﬁ’(;gg:egj:’\;;tﬁe?g'p?ﬁg’?ng’;a;"‘iggﬁgteéfsim(\’g? tures. On the other hand, these approaches suffer fromasever

In areas O - . .. . ..

Locally (circle), only the velocity,. normal t% the tangentwof the deficiencies : traceable qloud fegtures must be ;ufn.mently

iso-curve can be estimated while the tangential comporenyill ~ Contrasted and must persist over time on consecutive images

remain undetermined. Thus, the estimation is prone to erroneous spatial vaitbil
Furthermore, any disjoint technique is based on independen

The formulations of Eq. 1, Eq. 2, Eq. 6 and Eq. 7 can n@gcal estimations of cloudy regions which results in thénest

be used alone, as they provide only one equation for two uibn of sparse and possibly spatially incoherent vectodsiel

knowns at each spatio-temporal locatidast), with therefore We will see in section IV-B how to take advantage of these

a one dimensional family of solutions in general. In the casgproaches while avoiding erroneous solutions.

of Eq. 2, this is the well known aperture problem where the so

called normal flow is estimated while the tangential velpcit

. . C. Global spatial smoothing schemes
component remains undetermined. The aperture problemis P 9

illustrated in Fig.1. In order to remove this ambiguity and Global smoothing schemes can be used to overcome the
make the estimation robust, one must rely on other assunfj€vious limitations. These methods model spatio-tenipora

tions. The most common assumptions consist in improving tHEPendencies on the complete image domain denoted. by
spatial coherence of wind field estimates. Such assumptidis: dense velocity fields are estimated even in the case
are expressed by prior models on spatio-temporal depepder®é Noisy and Iowl cqntrasted observatlgns. 'Functlonal m;ade!
This allows the propagation of information in uniform reggo form th(—_} vast majority of _the de_zn_s_e estimation methods. Thei
and reduction of sensitivity to noise. The choice of a pattic popularity is due to their flexibility. Indeed, these method
smoothness functional characterizes a fundamental difter €nable in a common framework, to handle discontinuities or
between large families of optical-flow techniques. Amorlg aPcclusion zones, and to design dedicated smoothing furetio

the smoothing schemes, one can roughly distinguish disjof Particular phenomena. In addition to constraints ligkin
from global approaches. unknown velocities to image observations, these apprsache

introduce explicitlya priori smoothing functions, which en-
able to solve the under-determined problem. More pregisely
the motion estimation problem is defined as the global mini-

In these approaches, one considers neighborhdB@s) mization of an energy function composed of two components
centered at pixel locations. An independent parametrid feel

B. Disjoint spatial smoothing schemes

locally estimated on each of the;e supports. The most common T, 1) = Ja(v, )+, (v). (10)
types of parametric representations are the constante affid
guadratic flow fields. The first component, (v, I), called the data term, expresses

A first category of disjoint local smoothing methods religs othe constraint linking unknowns to observations while the
the OFC equation (Eq. 2). Motion is estimated using a stahd&econd component.(v), called the smoothing term, enforces
linear least squares approach : the solution to follow some smoothness properties. In the
previous expressiony > 0 denotes a parameter controlling
the balance between the smoothness and the global ade-

~ . _ ] 2
v = argmin /W(S) his —y) (w-VI) + L(y)"dy, ) giacy to the observation model. In this framework, Horn and

u



Schunck [18] derived the following data term from the OFQunctionals. Such an adaptation will be detailed below for
equation (Eg. 2): the multiresolution scheme. However, one should not canfus
these two techniques which operate in a slightly differeay.w

Jaw,1) = [ (1) +v(s) - V1)) ds, an
Q
and combined it to a first-order smoothing term : In order to preserve discontinuities and to handle occiusio
zones, which are frequent in satellite imagery due to the
Jo(v) :/ I (Vu(s) |12 + | Vo(s) |2) ds, (12) stratified a_nd t_hree-dlmgnsmnal nature of the observeabdsio
Q robust estimation constitutes an interesting approach24]

whereu and v are the two spatial components of a velocity39]. In the case of functional minimization, a robust péyal
field v [20]. In the case of fluid flows, using the previoushfunctioné, may be introduced in the data term for attenuating
defined ICE model (Eq. 6) leads to the functional : the effect of observations deviating significantly from the
model [4]. Similarly, a robust penalty functiof). can be used
if one wants to handle implicitly the spatial discontinegti
of the vorticity and divergence maps. M-estimator penalty

functions can be chosen for their advantageous minimizatio

Moreover, it can be demonstrated that a first order smoothin : .
is not adapted as it favors the estimation of velocity field w plgopertles [4] [14] [1.6 J In particular, Lecle'rc and Gemblc-
Clure penality functions proved to be suitable both for the

low divergence and low vorticity. A second order SmOOthmgbservation model and for the smoother

of the vorticity and the divergence of the apparent motioiuifieln the image plane, these discontinuit.ies are nevertheless
n advan | nsider r in . ' . .

can advantageously be considered as proposed in [36] difficult to relate to abrupt variations of cloud heights .

Moreover, clouds belonging to a layer form unconnected
Jr(v) :/ (I Veurtv(s) || + || Vdivv(s) ||?) ds. (14) regions which should interact during the motion estimation
@ process. To overcome these limitations, we will propose in

To circumvent the difficulty of implementing second ordegection 111-B a layer dedicated motion estimator, provigin
smoothness constraint, this smoothing term can be sintplifigense motion fields related to each layer.

from a computational point of view to two interleaved first-
order div-curl smoothings based on auxiliary varialjesand

D, approximating the vorticity and the divergence of the ) ) ) ] ) ]
flow [7]. Thus we have : One major problem with optical-flow differential formulati

is the estimation of large displacements. OFC (Eq. 2) or
ICE (Eq. 6) models rely on the assumption that the image
Ir(v) = /Q(CU”(V(S)) — () 1 || Véu(s) |7 intensity function can be locally efficiently approximatey
- _ 2 2 a linear function. Since the larger the displacement theemor
HAV(v(s) = Do(s)" +p | VD (S) I ds, (15) narrow the linearity domain, large displacements are diffic
where i, is a positive smoothing parameter. Another way tto estimate directly. The multiresolution approach is a cmn
implement such high order smoothing has been proposgdy to overcome this limitation by creating an image pyra-
recently and relies on mimetic finite differences [42]. Inttbo mid, constructed by successive low-pass filtering and down
approaches, a common way to deal with the boundednessampling of the original images. Within such a framework,
the spatial domaif is to use Neumann boundary conditionsmain components of displacements are first estimated at
They specify that on image edges, velocity normal derieativa coarse resolution where motion amplitudes should be suffi-
are equal to zero. ciently reduced in order to make the differential formuwdati
valid. Then, the estimation is progressively refined whieg
A large linear system is obtained by discretizing the presio down in the pyramid levels [3] [4] [25] [39]. This approach
functionals in a finite difference scheme. We obtain iis to some extent similar to the multigrid scheme introduced
this case a Bayesian maximum a posteriori estimatigmeviously, the main difference being that multigrid apgorioes
approach where the velocity field is modeled by a Markcare based on a unique representation of the data while a
random field [15]. The related energy is a quadratic functianultiresolution scheme uses a data pyramidal structure. In
which can be minimized by alternatively solving largéoth cases, the displacement component estimated prévious
systems for unknowns, (, and D, in an iterative scheme is used to derive a motion-compensated linear differential
using for instance Gauss-Seidel method. For better afmtmulation, which enables the estimation of a displacemen
faster convergence, an incremental coarse-to-fine midtigmcrementv’. Noting v = v + v/, for the integrated ICE
technique can be used [5] [25]. The approach proposeduation (Eq. 7), this is obtained by a first order Taylor
in [25] consists in searching an incremental solution, wheexpansion ofI(s + v(s),t + 1) exp (div(v(s))) around the
the unknown incrementv(s) = P(6(s)) is defined on points+v(s). Thus, denoting by (s) the motion-compensated
a sub-spaced(s) of solutions via a parametric modelimage I(s + v,¢ + 1) and omitting time coordinates, the
P. Multigrid estimation is performed in an incrementalinearization yields a new robust data tetfi(v, I) defined
scheme, which implies to adapt the previously defineab :

Ja(v,I) = /Q (It(s) + v(s) - VI(s) + I(s)div(v(s)))* ds. (13)



much greater than the vertical scale height, thus roughly fo
o - o S, horizontal scales greater than 100 km. It is thus impossible
/ﬂ¢d{eXpd'VV(S)([I(S)Vd'V(V(S))+VI(S)] vi(s) to guarantee to truly characterize a layered atmosphere
+i(s)) — I(s)}ds  (16) With a local analysis performed in the vicinity of a pixel
_ _ _characterizing a kilometer order scale. Nevertheless,caime
and Eq. 15 is changed to a new robust div-curl smoothirgll decompose the three-dimensional space into elements
term : of variable thickness, where only sufficiently thin regions
of such elements may really correspond to common layers.
. / Analysis based on such a decomposition presents the main
Jr = div(v(s) +v'(s —DV52—|— (|| VDy (s . - .
™) /Q( () + V() ()" + el 1D advantage of operating at different atmospheric pressure
+ (curl(¥(s) + v/(s)) — Co(s))* + o (|| VESu(s) [)ds. (17)ranges and_ avoids the mix of hgterc_)geneous _ob_sgrvations.
) ) ) ~ ) The analysis of such elements will either be significant of
At a given resolution level, the main componenbbtained |aver dynamics, or reveal an average motion significant of
at a coarser level is refined with the incremefit Therefore, hick regions. In the present paper, such elements will be
the large displacement problem is tackled by decompositiggfined and called with abusive language “layers”.
of the non-linear estimation into successive linear estona. | ot s present the three-dimensional space decomposition
However, since the multiresolution schemes estimates maid: we chose for the definition of the layers. Theth
component displacements only at coarse resolutions whegea, corresponds to the volume lying in between an upper
small photometric structures are rubbed out, this approagf facezF and a lower surface/’. In areas where clouds
enables the characterization of large displacements ofl smave their top belonging to a given pressure interval, the
structures only in the case when their individual motiore A pper surface corresponds to the height of top of clouds.
close enough to the main component's one. This is often NQt gher areas, the upper surface is undefined. Note that
the case for a layered atmosphere. For instance, mesosgglé, 5 surface is not characterized by a uniform pressure
structures such as cirrus filaments may be characterized\RY e |n areas with top of clouds belonging to the given
large displacements which appear to be completely diftergflessure interval, the lower surface corresponds to thghhesi
from the motion of the layers underneath. Another disadvags ihe pasis of clouds. In other areas, this surface is unetbfin
tage characterizing the method is the additional noise due
to the calculation of motion-compensated images for eagly,y, |et us assume that atmosphere is in hydrostatic equilib
resolution by the use of interpolation methods. An alteveat j,m This assumption provides an excellent approximaion
estimation scheme for large displacements will be prop@sed,g \ertical dependence of the pressure field in the tropersph

section IV-A. Only for small scale phenomena such as squall lines and-torna
does it is necessary to consider departures from the hydiost
[11. D ENSE MOTION ESTIMATOR DEDICATED TO balance [17]. We also make the common assumption that
ATMOSPHERIC LAYERS integrals of cloud water density are comparable to intesgoél

Based on previous work on dense estimation for twlry air density. Let us denote pressure and gravity respegti
dimensional fluid flows, an original motion estimator actin§y » and g. By the vertical integration of the hydrostatic
at the lower range of mesoscale is proposed to cope with @guation

three-dimensional nature of atmospheric flows.
dp

—Pg = (18)

density integrals can be linked to pressure atmospheric
As it has been mentioned previously, the ICE model (EQ. @)fferences

relies on strong assumptions in the case of satellite iedrar

imagery. However, it has been demonstrated that the ICE 2

model is well suited for an image sequence of transmittance g / p dz = p(z) — p(zt). (19)

measurements. In this section, we propose a physicallydsoun =

approximation for computing transmittance images related where pressure may be observed via cloud tracers.

atmospheric layers using pressure images of top of clonds. |

order to describe the dynamics of the new observations, Weleed, top of cloud pressure images are routinely provided

then present a transmittance-based model dedicated tslaylby the EUMETSAT consortium, the European agency which

manages the METEOSAT satellite data. They are derived

1) Approximation of sparse transmittance images of layerBom a radiative transfer model using ancillary data, ngmel

Since there is a loss of information induced by projection itemperature and humidity profiles obtained by analyses or

an image plane, several hypotheses are necessary to tasklart term forecasts. This model simulates the radiation

the reconstruction problem. The troposphere is the lowby the top of an opaque cloud at different vertical levels,

part of the atmosphere ranging from the sea level up towdich might be observed by a satellite. The pressure level

bound called tropopause. The layering of atmospheric flomhere the simulated radiation fits best with the observed

in the troposphere is valid in the limit of horizontal scalesadiation determines the pressure of the cloud top for the

A. Dynamical observation model for layers



Fig. 2. Recovery of layer transmittances from cloud top pressurétbg Iberian peninsula From top to bottom : cloud top pressure image;
classification into low (in dark gray), medium (in light gjagnd high (in white) clouds; transmittance of the higherdgytransmittance of
the intermediate layer; transmittance of the lower laydadk regions correspond to missing observations and winites| represent costal

contours, meridians and parallels (everg®).



corresponding pixel [23]. Multi-channel techniques (gsia approximation for the layer transmittance ima@@ for all
thermal IR with a water vapour or GQabsorption channels k € [1, K] :
enable the determination of the temperature of the top of
semi-transparent clouds [28] [34], and thus their equiviale onk
pressure level (with the help of analysed or forecast data) ot
independently of foreground or background effects.

+vF - WhE 4 hhdiv(vh) =0, (22)

whereK is the highest layer index ane’ corresponds to the

density-weighted average horizontal wind related to &k

The problem now consists in deriving pressure differencesna,y e ‘Note that as mass exchanges on the layer boundaries
characterizing our previously defined layered atmosphefg.s peen neglected, this model assumes independent layer
from top of cloud pressure observed in the image plane. qion  As this model relies on the hydrostatic assumption,

The membership of top of clouds to pressure intervals (Cofl4s rejevant when the aspect ratio of the flow is small, thus

sequently to the different layers) is determined by cloughep, the horizontal scale of the flow is much greater than the
classification maps. Such classifications which are based 1Q0er depth. Thus, the smaller the layer thickness, the more

thresholds of top of cloud pressure, are routinely provided. ae the ICE model. Indeed, due to the hydrostatidoelat
by the EUMETSAT consortium. Both, top of cloud pressure may be viewed as an atmospheric layer thickness if we

. : . . o
and classification cgnsntute intermediate products used nteglect density variations. The ICE model then corresponds
generate the operational, segment-based EUMETSAT Cla%%léctly to shallow water mass conservation model [9]

fication products [23]. Obviously, the discrimination of/éas

according to classifications based on top of cloud potential oh*
temperature rather than top of cloud pressure would have bee —

. - ot
better suited to mesoscale. However, such classificat®nair L ] . ]
currently available. We denote lfy* a class corresponding toWhere 2* is the thickness function of thé-th layer. This

the k-th layer in the altimetric intervalz?, zF]. Note that the correspondence will be useful to derive in section IV-C the
top of cloud pressure image denoted Ay is composed of complete shallow water equation system.

segments of top of cloud pressure functigris)) related to . ) ]
the different layers. That is to say : Relatively to the different layers, transmittances arersgg

observed only in the presence of clouds. Thus, to tackle the

B . problem of missing observations in regions belonging’to
Py = Up(ztvs)§ seC”. (20) through smoothing div-curl functions and in the same time
g removing data belonging to other levels, we make use of tobus

Thus, pressure images of top of clouds are used to constitdtgimators. This is presented in the next section.
sparse pressure maps of the layer upper boundaries. As in

satellite images, clouds lower boundaries are always dedu . .
. o .B. Robust estimator for sparse observations
we coarsely approximate the missing pressure observatioris i ) _ _
p(zF) by an average pressure value observed on top of the® dense estimator dedicated to layer motion should consider
0 . . . .
layer underneath. And, finally, for the-th layer, we define simultaneously all cloudy regions belonging to a given taye

transmittance observationd as pressure differences : while discarding the influence of other clouds. For thh
layer, we previously remarked that outside the clags’,

doa o the so defined transmittancég is not significant of thek-th
p(E) — py = h* { =9 fz{i pdz if se€ 1) layer transmittance. Thus, we propose to |_ntroduce in Eq. 16
#9 [ pdz if seCF a masking operator on unreliable observations. We denote by
) A . I+ the operator which is identity if a pixel belongs to the
which are equal to density integrals on cloudy regiongaqq and which returns otherwise a fixed value out of the

corresponding to thé-th layer. Fig.2 illustrates the dif'ferentrange taken by.*. Thus, applying this new masking operator
stages of processing necessary to estimate sparse Idamdrein Eq. 16, we oﬁtain the robust data tetfa(v, h*) =
transmittance images using pressure images of the top of ' e

clouds and cloud classification maps.

+v* . VAF + BFdiv(v®) =0, (23)

pa{expdiv(vF (s))([hE (s)Vdiv(vF(s)) + VRE(s)] T v/ (s)

2) Transmittance-based model for atmospheric layers: ¢ Tk k
Referring to the previous section, layer transmittancesnlzs Fhp(8)) —Iox (hy(s))}ds, (24)
tions are approximated by pressure differences. Layere wewherev* = v* 4+ v/* corresponds to the density-weighted
defined here as the decomposition of the three-dimensioaaérage horizontal wind related to theth layer. The robust
space based on top of cloud pressure classification maghs-curl smoothing term (Eq. 17) is conserved. The masking
Moreover, we previously noted that the ICE model of Eq. procedure together with the use of robust penalty function
holds for negligible mass exchanges through the planar ion the data term allows to discard implicitly the erroneous
tegration boundaries related to transmittance obsenatioobservation from the estimation process. The robust pgnali
Thus, neglecting mass exchanges via vertical wind on layfeinction related to the smoother handles discontinuous
boundarieSZ{f and zF which are assumed to be locally pla-motion fields induced for example by the possible spatial
nar surfaces, the ICE model constitutes a physically souhdterogeneity of layers. It is important to outline that, floe



k-th layer, the method always provides a motion vector on @t large scalesA priori information introduced with such
points s of the image domain. Areas outside the cloud class dynamic model may enhance significantly the quality of
‘C** correspond to an interpolated wind field. estimates especially in the case of noisy and incomplete
observations.

The dedicated method which has been presented, proposes
to solve the three-dimensional motion estimation problgm et us remark that correlation-based displacement vectors
the inference of dense density-weighted average horikorase significant of motion on the upper boundary of layers.
wind fields related to different atmospheric strata. Theiamt Thus these measurements slightly differ from density-ieidg
extraction is done by fitting an image-adapted mass consaverage winds. Thus, we choose to rely on correlation-based
vation model to pressure observations. However, due to theasurements only at large scales and to rely on the ICE
complexity of atmospheric motion observed at mesoscale atiata model (Eq. 23) at finer scales. In an analogous way,
because of noise and sparse observations, motion estimagimce atmosphere dynamics appear to be more complex at
may lack in accuracy. Thus, the aim of the following sect®n finer scales, we choose to perform spatio-temporal smagthin
to devise a method allowing us to overcome such a limitatioanly at large scales employing a dynamical model describing
motion evolution on the layer upper boundary. Spatio-terapo
smoothing is therefore acting on the same resolution lesel a
the correlation-based constraints. This solution is thefimed

In order to enhance the estimation accuracy, we proposeiara second stage towards the estimation of density-weaighte
original two-stage estimation scheme for mesoscale motiamerage winds based exclusively on the ICE data model (Eq.
characterization. In a first stage acting at the upper rarfige23) and on spatial smoothing.
mesoscale dynamics, by the introduction of correlatioseda
gonstra_tints ?r?d the use tgpriori inforhmatic_)g on ftr:mosphetr_e A. Two-stage estimation scheme

ynamics, the proposed approach guides the variationa . . . . :

estimation process towards a large displacement solutica. ll'he displacement fiela* is decomposed into a displace-

second step acting at the lower range of mesoscale dynam!}?g,nlt field cth?r?(;tls ”Z;ntg dlatrg?_ scal@é‘l ar?d an additive
the solution is refined by an incremental process. ISplacement fie related to finer scales .

IV. A TWO-STAGE MESOSCALE MOTION ESTIMATOR

The proposed large displacement estimation step is an vh =9t vt (25)
alternative approach to common multiresolution  Us&gsening notations of section I1-C, we define for the estiorati
in the context of differential motion estimator. Unlikeyt \5riablev the new functional/ (v%, v¥)
a multiresolution scheme, our approach relies on a unique
representation of the full resolution image. Thus, the psega ko ok 1k ko ok kK ko
method tackles the non-linear estimation problem without]"l(V V5 )+ (VA FBIp (VU )7 (Y, V), (26)
making successive approximations in the calculation efhere J.(.), J,(.) are energy functions constraining large
interpolated images nor restricting itself to the chanazation scale displacements” to be close to a sparse correlation-
of large displacements of sufficiently large structurese Tthased vector field’. and to be consistent with a physically
proposed method takes advantage of a matching formulatiorsound predictionv’; relying on Navier-Stokes equations. In
the motion estimation problem within a differential franm@Ww the previous expression, and S denote weighting factors.
appropriate for global smoothing. More explicitly, supeigl Functionals.J.(.) and J,(.) will be further detailed in the
large displacement of both, fine and large clouds, can fslowing sections.
extracted with correlation-based methods for sufficiently
contrasted regions which possess a low spatial variabililjhe optimization problem is conducted sequentially. In st fir
Even in the difficult case where the layer underneath movstep, large displacementd are estimated while the variable
in an opposite direction, large displacements of fine angt ve¥” is fixed to zero in Eq. 26. Here, an analogous version of
sparse structures can be recovered. The idea is thus to athil alternate multigrid minimization scheme proposed ih [7
the multiresolution coarse estimation levels by introdgci [27] has been implemented, the only difference being in
a collection of correlation-based vectors in a differdntiahe internal Gauss-Seidel solver for varialsté estimation.
scheme for the estimation of a large scale dense motion fiefthce the minimum has been reached, a second refinement
step is launched : the small scale displacement increments
Furthermore, we propose that the estimation schenié are estimated while the large displacement variaiie
incorporatesa priori physical knowledge on fluid dynamicalis frozen in Eq. 26. More explicitlyy* is used to derive a
evolution. Indeed, in order to preserve spatio-temporalotion-compensated expression of the data model (Eq. 24),
consistency of displacement estimates at large scalesaral to express the div-curl in terms of the displacement
simplified Navier-Stokes dynamical model is adapted facrementv* = v¥ — v* (Eq. 17). This incremental motion
images depicting atmospheric layers. A dense displacemestimate relies neither on correlation-based vectors mor o
field is predicted by time integration of a physical dynarhicapatio-temporal constraints which only apply at large exal
model. The propagated field is then introduced in thehe displacement increment estimate is again obtained by
estimation process as a spatio-temporal smoother applyadternate multigrid minimization.



Note that in the caser, 3,y > 1, the energy minimization 2) large eddy shallow water prediction moddhynamical
leads to a large displacement field which can be seen rasdels describing wind field evolution are needed here for
a physically sound spatio-temporal interpolation of ththe prediction at timg + 1 of a large scale motion fielﬁf’g
correlation-based vectors. using the previous estimation performed for theh layer

between timet — 1 and¢. It is important to distinguish this
Sparse correlation measurements need to be introduced alymamical model from the layer transmittance-based model
constraint in the variational scheme employed for motidiz esproposed in section llI-A. Indeed, the latter is analogutmus
mation at large scales. We define the functional implemgntia likelihood term acting at large and fine scales while the
this constraint in the following section. We will then dexiv former only provides am priori knowledge conditioning the
from filtered Navier-Stokes equations a simplified dynainiceemporal consistency of the estimates at large scales.
model for spatio-temporal smoothing at large scales.

As atmosphere dynamics is governed by fluid flow laws,
B. Correlation within a variational estimation scheme we may rely on Navier-Stokes equations in order to derive

In order to obtain a dense estimation of large scale displagimplified dynamical models for short time propagation of

ments fitting a sparse correlation-based displacement fi%%r mesoscale motion. However, predicting atmospheric
(Eq. 9), we define a functional where tifé correlation-based dynamics at the pixel scale of order of a few kilometers

vector v’ = (u*,7") located at the poing® = (z”, ") influ- . . -
ences its nei(ghbor)hood according tg a shiftec(i twg_éimmmrequwes the accurate knowledge of dense three-dimersiona

Gaussian\ (s’ — s) of varianceo related to the correlation Maps characterizing atmospheric state variables. As aor ai
window size is restricted to spatio-temporal smoothing at large scales

L rely instead on the filtered Navier-Stokes equations ptiedjc

Je(VF,ve) = / D Tex (gi/\fi(si —)[ve — \"k(S)lz) ds, (27) wind fields at scales of order of 100 km, that is to say where
@i=1 rotational motion dominates divergent motion.

whereL andg® denote respectively the number of correlation

vectors and confidence factors which were fixed to the valuEsr characteristic scales of order of 100 km, the layering of

taken by the dissimilarity function. In the previous exgies, the atmosphere constitute a good approximation. We assume

the masking operatdi-« () was introduced since the joint useincompressibility within the layers. That is to say we caiesi

of correlation and optical-flow is not possible in regionshwi a constant density,, which implies under hydrostatic balance

no image observations. that horizontal divergence is weak. Let us remark that this

For sake of completeness, in appendix |, we briefly detarcompressibility simplification which underlies a shallo

the modifications induced by the introduction &f(.) in the water system is reasonable, while it may be erroneous for

multigrid Gauss-Seidel solver used for the minimization dfner scales. Denoting respectively B, 7 = (74, 7:) ", ¢,

Eq. 26. T anda, the viscous forces, turbulent viscosity dissipation at
subgrid scales [12], latitude, Earth angular velocity aaius,
C. Physical a priori for spatio-temporal smoothing the horizontal momentum equations read thus [17] :
1) Spatio-temporal consistencyhe functionalJ,(.) aims
at constraining motion field at large scales to be consisterft @: + - V(@) — 22228 4 f;—; = +2Yvsing +F + Ta
with a physically predicted wind field. We simply define this| &, +7-V(7) + @ + % = —2Yasin¢+F+ Ty
functional as a quadratic distance between the estimateed fie (29)
v* and the dense propagated fie?iﬁ = (Up, Up): where the unknown quantities are the pressure fungtion
and horizontal wind fields(a, v) filtered with a Gaussian
Jp(\_,k7\_,z;) :/ I \_,1;(5) —*(s) |12 ds. (28) kernel function of stanc_iard dev_iation equa_lmc_: 1_005;1
Q where 6, denotes the image pixel resolution in kilometers.

This approach constitutes an alternative to the spatigpteat Adaptation of filtered Navier-Stokes equations to mesescal
smoother defined in [40] and is to some extent similatmospheric short time evolution relies on the scale aiglys
to the temporal constraint introduced in [32]. In [40], th@resented in appendix Il. It enables us to neglect the curgat
temporal derivative of the velocity vectors are constrdite terms and viscous effects. Note that the wind fi¢ld v)
be weak, which is not consistent with fluid flow dynamicsdefined in Eq. 29 is different from the wind field*. The
The smoothing proposed in [32] constrains the estimatéarmer quantity is related to two-dimensional winds at a
vorticity to be close to a prediction. Our propagation modghysical point of the three-dimensional space while theetat
includes a two-dimensional divergence component which ésrresponds to a spatially filtered density-average hot&o
equal to zero only for incompressible two-dimensional flowsvind v* related to the:-th layer. To recover the latter quantity,
As it is detailed below, our approach extends this schemeitoposing incompressibility in the hydrostatic relatiorg(E.8),
the spatio-temporal smoothing of the full velocity field iran integrated form of the momentum equations is produced
the case of three-dimensional geophysical flows driven bybg vertical integration in-between thieth layer boundaries. It
shallow water evolution law. The modifications induced byields to the shallow water momentum equations [9]. However
the introduction ofJ,(.) in the multigrid Gauss-Seidel solvera simplified model of these equations can be obtained when
are detailed in appendix I,. relying on the assumption that, at large scales, horizontal
motion on the upper boundary of layers is similar to the



A,
6v/2

density-weighted average horizontal wind [19]. Moreowete equal to(-=x)? [6]. The simplified vorticity-divergence model
that so-defined winds related to layer boundaries are densis reads :

with the previously introduced correlation-based disptaent

vectors. Thus, by adding the filtered mass conservation mode ( ¢F + v . V(¥ + (CF + f?)D* = (CAL)?|CF|ACK
obtain by filtering spatially Eq. 23, we form a simplified { Df = (L£)?ADF,

6v2
hall I iolis eff vhi
feaa\d:vy water system supplemented by Coriolis effects Icrhe curl and divergence completely determine the undeglyin

2D velocity field and the current velocity estimate can be
recovered from these quantities up to a laminar flow. Indeed,
denoting the orthogonal gradient By = (—-9/dy,9/0x)",

the Helmholtz decomposition of the field into a sum of

gradients of two potential functions is expressed as

N

(33)

{ i+ V()T - gVRF + {(1) _01] =T (30)

¥ +9F . VRF + R*D* =0,

whereh”* and f¢ = 27 sin ¢ denote respectively the filtered
height functions and the Coriolis coefficient. The induced DA VA TR V2 SR (34)
turbulent dissipation can be approached by sub-grid models

proposed in large eddy simulation literature. The simpbest Where ¥7, is a harmonic transportation pardi¢vy,, =

is the well known Smagorinsky sub-grid model. Assumin§Urtv;,,. = 0) of the field¥* and where the stream function
isotropic turbulence in agreement with Kolmogorov “K41"¥ and the velocity potentia® correspond to the solenoidal
theory [12], sub-grid model proposes a turbulent viscogisy and the irrotational part of the field. The latter are linked
sipation implemented with a weighted Laplacian operatbt.[3 t0 divergence and vorticity through two Poisson equations.
For a vorticity based LES formulation, we may rely on similaEXPressing the solution of both equations as a convolution
enstrophy-based subgrid models relying on Taylors Vd,yticiproduct with the 2D Green kernel associated with the
transfer and dissipation by small scales theory [38]. CondeaPlacian operator = G«(, @ = G*D, the whole velocity
quently, denoting by, a subgrid scale viscosity coefficient,field can be recovered with the equation

7T is replaced by a diffusion term in the above momentum

equations. Let us denote the vorticity B§ = curl(¥*) and v = VNG« )+ V(G DY)+, (35)

the divergence byD* = div(¥*). The previous system may

be expressed in its vorticity-divergence form which can be efficiently solved in the Fourier domain. The

harmonic transportation componetjf,.. is recovered by sub-
stracting to the field?* its solenoidal and irrotationnal parts.

Df +¥* - VD* + (D*)? = 2| — gARF + £CF = v, AD"
¥ +9F . VR + R*DF =0

{ @k_k‘—,klvg?k_'_(c_k_,'_fd:)Dk:VSAC_IC

(31) From time indext = 1 to the last image index :

where |J| is the determinant of the Jacobian matrix of ¢ PU(t) andpy(t+1) — read pressure images

. Lk o {(hk(t), hE(t+1))} — recovery of2K transmittance image
variables(", v*), and where we have chosen the enstrophy o v.(t) <« extraction of a correlation-based vector field

(%]

based subgrid scale model proposed in [24] [31] [41] : « For layer indexk = 1 to K :
—k “k Tk k

Vs = (CAI)2|§’“|, (32) - Za%)e sé)éIZn%)tionOé\i}t?rg;tionhp(t Y
whereC' has a universal value d@f.17. In the two previous i :Pttr:ogu?o:noof functionals/ () and J.(.)
shallow water formulations, dynamical models predict the + Until convergence (alternate multigrid optimizatior) :
evolution of 3 variables which may depend on each other. One - ¥"(t) «+ GS(EQ. 26) w.rt. v*(t)
of the major difficulties is induced by the fact that variabfe - (v «— GS(EQ. 26) w.r.t{y
is derived only for cloudy regions corresponding to th¢h - Dy «— GS(Eq. 26) w.rtDy
layer. Therefore, variable*, and thus all unknowns, can only| - hy(t) — compensate imaghy; (¢ + 1) with v*(t)
be propagated on a sparse spatial support. However, in pp- — Fine scalemotion increment estimation
position to the classical formulation, the vorticity-digence * Removal of functionals/,(.) and Jo(.)
equations provide a dynamical model for which the vorticity * U”}'}l convergence (a|tefnatermultlgrld optimizatior]) :
evolution is independent of variablé® and for which the di- : Z (f_) ES((;S(Egé)Z\?V)thVg't"' ()
vergence evolution depends only weakly on varidieBased . Dy — GS(S{J_ 26) W.rtDy
on the realistic assumption that, at large scales, divesgén - VR = TR () + ¥R (1)
weak almost everywhere and comparable to noise, we proppse - h%(t) < compensate imagk/: (¢ + 1) with v¥(¢)
to simplify the divergence dynamical model in order to make — VE(t+1) « propagation of ¥*(t) via Eq.33 and Eq.3p

it independent of variablg®. DivergenceD is assumed to be
driven by a Gaussian random function of standard deviatipngs(eq. 26)” denotes one Gauss-Seidel iteration used éontinimization
equal to A,t/2 with stationary increments (i.e. a standarflyf gq. 26. Note that in this algorithm the robust parametémegion steps
Brownian motion). As a consequence, neglecting probasilit| have been omitted for clarity.
of increments greater tham\,¢/6, divergence expectation
asymptotically obeys to a heat equation of diffusion coigffic Fig. 3. Global flowchart for atmospheric motion estimation.




Let us sum up this prediction process. The vorticity antlansmittance-based model and the potential of the entire
the divergence fields are developed in time in betweenethod.
consecutive image frame using a discretized form of Eq. 33
and time incrementst. After each time increment, assumingHowever, for an exhaustive evaluation of the spatio-terpor
vF .. constant within each frame interval, Eq. 35 is used &moother and the introduction of correlation-based magshi
update the velocityw* needed by Eq. 33, with the currentin a variational scheme, we propose instead to rely on a
vorticity and divergence estimates. simulated flow. A Direct Numerical Simulation (DNS) of a
two-dimensional, incompressible, and highly turbulenivflo
To avoid instability, a semi-implicit time discretizatischeme has been used to generated an image sequence depicting the
is used to integrate forward Eq. 33. Classical centerecefinihotion of a continuous scalar field. The main interest of such
difference schemes are used for the curl and divergereesynthetic image sequence is the knowledge of the exact
discretization. Geometrical deformations due to slantwviesolution along time and for a wide range of spatial scales
effects are neglected for geostationary satellite obsiens including pixel resolution.
at tropical and temperate latitudes in order to performiapat
discretization using directly the pixel grid. Let us notattthis
equation system describes the dynamics of physical qiemti
expressed in standard units. Thus, a dimension factor eppea The sequence of scalar images of 256 by 256 pixels
in front of the coriolis factor when this equation system itogether with the true vector fields generated by the DNS
discretized on a pixel grid with velocity expressed in pixedf an incompressible two-dimensional flow possessing a
per frame. Reynolds number 030, 000 were provided by the laboratory
To solve the linear system associated with the semi-impligif fluid mechanics ofCemagref (center of Rennes, France)
discretization scheme, the matrix has been constrained Tiwo-dimensionality was chosen to simplify the simulation.
be diagonally dominant, which is a sufficient condition fofl he latter assumption, which involves a non-divergent fisw,
a well-conditioned inversion problem. This condition readconsistent with the fact that divergence was considerekwea
1/6t > max,(|a®| + |o%| — |D*|). and comparable to noise. Thus, the transmittance congsrvat
model reduces in this special case to the classical OFC data
Finally, the dynamical model time integration is donénodel (Eq. 11). Note that as divergence vanishes, the spatio
independently for each layer. This procedure results int@mporal smoothing constrains only vorticity to be cohéren
predicted average horizontal wind field related to each in time.
layer. In order to experiment our method with correlation-based
vectors with different noise level, the correlation-based
The complete algorithm for atmospheric motion estimatin vectors have been substituted by DNS vectors contaminated
summarized in figure 3. by additive Gaussian noise. As correlation techniques only
operate on contrasted regions, vector constraints were
attached to regions with sufficient gradient. To be realisti
with correlation measurements, DNS vectors have been
In this section, we assess the respective merits of theb-sampled in those regions. Fig.4 presents the noise free
multi-layer model used for motion estimation which has beddNS velocity vectors, which have been selected as coroelati
presented in section 1lI-B, of the collaborative frameworkneasurements. They are superimposed on the scalar image.
introduced in section IV-B and of the spatio-temporahs for this experimental case, the propagation model and the
smoother presented in section IV-C. OFC data model (Eg. 11) are valid for both, large and fine
scales, the temporal and correlation-based constrainte we
Because of the extent and the variety of scales of geopHysigwintained during the two estimation stages.
flows, ground truth data can not be collected at mesoscale in
a three-dimensional space. An alternative recourse is temaased on the non-noisy correlation constraints defined
a comparison with so called ‘analyzed winds’ produced hyreviously, we first compare our two-stage collaborative
data-assimilation. However, they are model-dependent ascheme to the fluid flow dedicated multiresolution approach
can not be considered as proper ground truth. Moreovdescribed in [7]. In Fig.5, it clearly appears that the
analyzed winds are calculated at coarse resolution fomgiveultiresolution approach hardly estimates fine turbulent
pressure levels. Because of turbulence properties, mot&tnucture while the collaborative method manages to
might be slightly different when observed at finer spatial archaracterize most of the vorticity field structures. Indeed
temporal resolution. in scalar imagery, low contrast regions correspond to high
As a consequence, the assessment of the proposedicity areas. Thus, the multiresolution technique ertgf
transmittance-based model for atmospheric layers fiom a lack of information in those crucial regions. And,
mainly conceptual and relies on physical justificationsncorporating motion constraints in contrast areas around
Nevertheless, as we shall see in section V-B, qualitativertices reduces the degree of freedom of the solution and
comparisons performed on a real METEOSAT imagtus, considerably enhances the estimated motion field. The
sequence demonstrate the enhancements brought by wag the two levels of estimation operate is illustrated ig.5i

lA. Synthetic two-dimensional turbulent flows

V. EXPERIMENTAL EVALUATION



Fig. 4. Velocity constraints and fluid imagery for a two-dimensiohflow. Velocity vectors provided by the DNS which have been selecte
as constraints are superimposed on the image.

Fig. 5. Comparison in the image domain of multiresolution and cobarative schemes in the case of a two-dimensional flow.
Above : vorticity provided by the DNS (left), vorticity @sétion by the fluid flow dedicated multiresolution approa¢i7g(right). Below :
vorticity estimation after the first (left) and the seconif(t) level of the collaborative scheme.

. the global shape of the vorticity field is retrieved in théhe velocity spectrum. This spectral analysis shows that th
first level, while in the second level finer errors are removeadethod improves the main shape of the motion field while
and the solution is refined. For a better visual inspectioperforming a better estimation of fine structures.

Fig.6.a reveals the enhancement brought by the collaberati

method on a typical horizontal slice of the image. Spectra

of the velocity are shown in Fig.6.b for the DNS, for thdn order to evaluate the robustness of the collaborative
multiresolution and for the collaborative approach. It caffethod to inaccurate constraints, Gaussian noise of zero
be observed that, both for large and for small wavelengtifgean and increasing variance has been added to the true

the collaborative approach exhibits a better represemtaif Velocity vectors provided by the DNS. An example of noisy
correlation constraints superimposed on a related image
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Fig. 6. Comparison in the image and spectral domains of multirestdin and collaborative schemes in the case of a two-dimensio
flow. Above : on a particular horizontal slice of the image, com@an of vorticity estimated by the multiresolution and lagcle level of the
collaborative scheme with vorticity provided by the DNSloBe: comparison in ’log-log’ coordinates of average honetal velocity spectra
estimated by the two different approaches and by the DNS.

is displayed in Fig.7. This can be compared to the noisgle and in the spectral domain. The global enhancement
free vectors presented in Fig.4. To quantify the estimatiamn estimation accuracy brought for both, multiresolutiow a
accuracy, Root Mean Square (RMS) errors on vorticity amllaborative methods is shown in Fig.8. There is obviounsly
indicated in the legend of Fig.7. As the flow is non-divergenimprovement for the first pair of images for which only a null
thanks to Helmholtz decomposition, the curl of the flovinitialization is available. It is worth noting that the ioigpo-
completely determines the underlying two-dimensional flovation of temporal consistency is all the more advantageous
up to a harmonic transportation component. Therefore, RM& small scales. This can be visualized by comparing the
errors on vorticity reveal the global accuracy of the esteéda spectra of Fig.8. Indeed, the temporally regularized spett
field. In Fig.7, we can visually inspect the influence ois closer to the true one for high frequencies. Therefore, if
noise on the estimated solution for a particular horizontkrge vortices are sufficiently well estimated, then introidg
slice of the image and for the global image domain bg vorticity temporal consistency can significantly imprakie
referring to RMS values. It clearly appears that, even in thestimation of small vortex structures. In other words, thtdy
presence of noise, motion estimation is better achieved layge scales are estimated, the better fine scales areedferr
our collaborative scheme than by a classical multiresmtuti by spatio-temporal smoothing.

approach.

Spatio-temporal smoothing benefits are assessed in the im-
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Fig. 7. Influence of noise.Above : Gaussian nois&’(0, 1) has been added to the true velocity vectors provided by th8.0OKe sub-parts
which have been selected as constraints are superimposttedomage. Below : on a typical horizontal slice of the imagaticity estimates
and RMS vorticity error for increasing noise in comparisanthe multiresolution approach.
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Fig. 8. Evaluation of spatio-temporal smoothing in the case of twanensional flows.Left : RMS vorticity errors calculated on five
consecutive images for the multiresolution approach, tbkaborative scheme constrained by vectors contaminate@ li5aussian noise
N(0,1/2) combined or not with spatio-temporal smoothing. Right : parison in the spectral domain in 'log-log’ coordinates ofeaage
horizontal velocity estimated by the different methods praided by the DNS.



Fig. 9. Trajectories for the multiresolution technique based onetinfrared-based’ model [7] (left) and our ‘transmittanc®ased’ model
considering a single layer (righthave been reconstructed based on wind fields estimated freequence of 18 METEOSAT images above
the north Atlantic Ocean, off the Iberian peninsula. Thgectories are superimposed on the final infrared or tranganite image of the
sequence. Gray lines represent costal contours, meridéaasparallels (everyl0°).

B. METEOSAT satellite image sequence in non cloudy regions. Without the use of a masking operator,
g?e transmittance-based model tends to reveal no motion
In clear sky areas, while the infrared-based model tends to
provide a non zero solution in those regions. This appears

The benchmark data was composed by a sequence oft(ié)e a natural consequence of the absence of observations
P y q in clear sky areas for transmittance images contrarily to

METEOSAT Second Generation (MSG) images, showing tq

. . N9 18R¢ra-red images. Finally, a visual inspection does noaidie
of cloud pressures with a cor_resppndlong cloud classm’matla”ow us 1o state the best model.
sequence. The 512 x 512 pixel images cover an area OK?er

. ) . .“Nevertheless, an important remark is that the color dynamic
the north Atlantic Ocean, off the Iberian peninsula, d_urmgf images related to the infrared-based model is inverted
part of one day (5-June-2004), at a rate of one ima

every 15 minutes. The spatial resolution is 3 kilometers %T comparison to transmittance images. This means that, in
y ' P flie case of a divergent motion in hydrostatic equilibrium

the center .O.f the whole Earth image dls.k' Clou_ds from (‘:f‘onditions, on the contrary of transmittance-based model,
cloud-classification were used to segment images into Bdbr%e infrared-based model will under-estimate the divergen
layers, at low, intermediate and high altitddépplying the

. . . . . sources or sinks. Indeed, according to Eq. 6, mass dispersio
methodology described in section IlI-A, transmittance gjes . . .
. . is compensated by a decrease of brightness along the motion
were derived from pressure images for these 3 layers.

Trajectories reconstructed from the estimated wind ﬁeléra]ectones. And, in the case of infrared imagery, a brigiss

. : . o ecrease implicates an increase of altitude, which is in
provide a practical visualization tool to assess the qualft .y : . .
LT - V7 contradiction with altitude decrease induced by the mass
the estimation in time and space. Therefore, for visuatmat

. . . . ispersion. Moreover, the only model providin hysicall
issues, trajectories have been reconstructed using ahfouPtSpe S10 oreover, the only model providing a physica

. . . h for | ition is th i -
order Runge-Kutta integration method as suggested in Wl-EZLsJZS cs)ﬁeeme or layer decomposition is the transmittance

We then turned to qualitative comparisons on a re
meteorological image sequence.

Results obtained without discarding clear sky areas by a

masking operator are presented in Fig.9 for the transnaigtan T he global motion decomposition into a set of 3 independent
based model and for the infrared-based model proposed.in [f@yer motions is presented in Fig.10. Several trajectory
To enable the comparison, smoothing and robust paramet@fferences are striking. Some of them are very relevant.
were tuned similarly and a unique layer comprising all cludor instance, near the middle of the image, the lower layer
was considered. Globally, estimations are visually caftereP0Ssesses a southward motion while the intermediate layer

One can nevertheless notice few differences, as for instaffgoves northward. This difference in motion is partially
estimated with the layer decomposition. However, other

1\\e note that the EUMETSAT extraction procedure was not ctiréuned ~ trajectories related to the intermediate and higher lageesn
when the classification was extracted (June 2004). Afterpasimon with to be inconsistent with the visual inspection of the image

cloud classifications obtained by other methods, it appktat general cloud ; ; ;
coverage was under evaluated. The high-level cloud cogenage also found sequence, ESpeCIa"y for regions far from cloud boundaries

to be underestimated in favour of medium-level clouds. €hd#ferences
should not change radically the following evaluation, sir&clarge majority . . L .
of cloudy pixels are correctly assigned. Neverthelesstebatlassification Ndeed, the multiresolution framework remains insufficien

products are likely to significantly enhance the perforneaatthe method.  catch large displacement of fine structures when an impiortan
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Fig. 10. Layer decompositionOn the left, trajectories estimated for a unique layer. @a tight, trajectories related to the higher (above),
the intermediate (middle) and the lower (below) layer. Gliags represent costal contours, meridians and parallelsety 10°)
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Fig. 11. Correlation constraints.Correlation-based sparse wind field vectors related to tighést layer.(left) are interpolated using spatio-
temporal smoothing in order to produce a dense wind fieldregte relevant of large scales (right). Gray lines represenstal contours,
meridians and parallels (every0°)

Fig. 12. Vorticity and divergence temporal constraint®n the left, lower layer vorticity (above) and divergenbel¢w) predicted fields are
introduced as large scale spatio-temporal smoothers. Reguarge scale vorticity (above) and divergence (bel@gjimates are displayed
on the right. The image spatial domain corresponds here ¢oatlea above the north Atlantic Ocean selected previously.
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Fig. 13. Collaborative approach and spatio-temporal smoothing urghceon the estimation of wind field for the higher layer. Abovea- tr
jectory reconstruction for multiresolution estimationheme without (left) and with (right) spatio-temporal snioog. Below : trajectory
reconstruction for the two-stage collaborative estimatischeme without (left) and with spatio-temporal smoothiright). Gray lines

represent costal contours, meridians and parallels (evi)s)

structures underneath moves in an opposite direction. This

is the case of small clouds of the intermediate and highatio-temporal smoothing can remove ambiguities in those
layers moving above a large stratus belonging to the lowgigions where no observations are available, by propagatin
layer. The problem is tackled using vector constraints. Lgtsolution in time and space. Fig.12 shows the vorticity and
us briefly describe the correlation-based method, proposgdergence components of the large scale wind field prediicte
in [37], which has been used to derive wind vector constsaindy shallow water large eddy simulation. In particular, the
associated with the infrared meteorological images. Is thitroduction of sucta priori temporal constraints enforces the

algorithm, the vector extraction procedure is done on aleggujarge scale wind field solution to be consistent with presiou
pixel-grid and undergoes a series of quality tests : removadtimates. This consistency is illustrated in Fig.12.
of outliers and spatio-temporally non consistent vectors.
However, no height assignment or layer differentiation ié

undertaken n ;he mfthOd' n Olr?.e ' tg aVOcde thet extractlo? BY the collaborative estimation scheme and by spatio-teaipo
erroneous wind vectors, correlation-based vectors smoothing are presented in Fig.13. It can be noticed in this

on f%osgbl)? ciccluided refgmr:jst have been lr(ta_moveoll aggmparative figure that the collaborative scheme succeeds
confidence factorgy™ were fixed 1o cross-correlation values,, characterizing large displacement of small cirrus while

assomatgd with the vector gonstramts. An exa'_“p'e of tRe multiresolution approach fails. Moreover, one canawoti
sparse field pf v_ector constraints related to the higherrlay at the introduction of spatio-temporal constraints stheo
is displayed in Fig.11. It also presents the large SCEJ‘IeEderIFajectory discontinuities and propagates motion in regio

motion f_|eld_wh|ch has bee.” produced b)_/ mterpc_JIatlng trWhere observations are missing. Improvements brought by
sparse field in our collaborative scheme using Spat'o'tem'pospatio-temporal smoothing on trajectories related to thero

smoothing. layers are presented in Fig.14. In particular, in the mididle

hancements in motion estimation of the higher layer bnbug
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the image, one can notice a better retrieval of the northwammbust second-order smoother preserving divergent artatvor
motion related to sparse clouds of the intermediate layéctwh ity structures of the flow.

are above a stratus underneath moving southward. In order to capture mesoscale dynamics, a collaborative est
mation scheme is developed. In a first stage, large displace-
VI. CONCLUSIONS ments are estimated in a variational framework on the bdsis o

In this paper, we have presented a new method for etRrelation-based constraints and image observatiorig wh

mating winds in a stratified atmosphere from satellite imageSecond stage, the solution is refined using a motion compen-
sequences of top of cloud pressure. The proposed motisfed functional. This two-stage estimation scheme doiesi
estimation method is based on the minimization of a funetion@" advantageous alternative to the standard multiresaluti
including a two part global smoother. framework.

The data term relies on the integrated continuity equatiétn both synthetic images and real satellite images, thet wferi
mass conservation model. Indeed, the hydrostatic assumpﬁhe novel data-model and of the introduction of correlation
enables a layer decomposition of the atmosphere. This decdi@sed and temporal constraints have been demonstrated. A
position is used to derive, relatively to each layer, traibsmScalar image sequence generated by direct numerical simu-

tance observations from top of cloud pressure satellitgygma lation of a turbulent two-dimensional flow was chosen for
Resulting observations verify independent mass consenvatan exhaustive evaluation. Analyses were performed usiisg th

models. To overcome the problem of sparse observations?g[ichmark data in the image and in the spectral domain. In
robust estimator is introduced in the data term. particular, the improvements brought by a two-stage estima
A novel spatio-temporal smoother is proposed. An appro)gion schgme with noisy correlation—based.c.:onstraints @:nd_b
mation of shallow water momentum equations expressed i spatio-temporal smoother were quantified. By qualiati
divergence-vorticity form is used to derive temporal camnee comparisons, the novelties of the method were also evaluate
constraints. These temporal constraints are combined avittfPn @ real meteorological image sequence. The two-stage



estimation scheme, the proposed observation model and pragspectively denote the contribution of the correlatiaisdx
agation model proved their relevance for the charactéoizat and the propagated field constraint. Similarly, the new arect
of mesoscale dynamics relatively to atmospheric layers. b’ is the sum of the previous vectbyand ofb. andb, which

In view of the various meteorological studies relying on theespectively denote the contribution of the correlatiarsdx
analysis of experimental data of atmospheric dynamics, vaad the propagated field constraint.

believe that the multi-layer horizontal wind field estinceti Let us denote by the Kronecker product and byu, v),
technique we have presented constitutes a valuable toel. Th,, v,) and (i, v) the components of wind fieldg®, v¢ and
extension of the layer-independent transmittance-basstem \75. After a few analytical calculations, one can demonstrate
to a global model able to capture layer interactions via matsgat the previously introduced matrix and vectors are esqwé
exchanges driven by vertical winds is our next step towards:
a more complete characterization of distribution of three-
dimensional atmospheric winds. K 10
A = ’ngl./\/"(sz—s) {O 1] ®a

i=1
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APPENDIX | : 01
GAUSS-SEIDEL SOLVER FOR MOTION ESTIMATION b, = B b(up — )
P b(vp — )

For better and faster convergence, the minimization with
respect to the displacement fieldis performed using coarse-where for the affine model the coefficients read :
to-fine multigrid technique introduced in [25]. In this apiza-

tion scheme, the searched displacement field is constrained 1 =z y

to be piecewise parametric relatively to an image partition a = |z 2% ay

which becomes finer and finer according to a grid level. y wy ¢

More precisely, at _“grid" level, the pixe_l grid is partiti_oneq b = [1 = y]T

in blocks B of size 2!x2! and the displacement field is

constrained to satisfy while for the constant model they reduce to :
vF(s) = Pi(s)0;" +v"(s),Vn,Vs € B (36) a=Lb=1lc=1d=1

wherev* (s) is the current estimate and wheg's) is a matrix

depending on the chosen parametrization at léaid 0" is

the parameter vector for block;*. Until grid level [ > 2, the APPENDIX I

affine parametrization is used, i.e. SCALE ANALYSIS OF NAVIER-STOKES EQUATIONS

For mesoscale atmospheric motions observed through a

VI, P(s = (z,y)) = {(1) :(1)7 g (1) 2 2] ;0 € RC, METEOSAT images sequence which has been low-pass
filtered to obtain a characteristic horizontal scalel0 km,
while for grid level I < 2, a constant parametric model isthe following characteristic scales hold :
chosen, i.e.
U ~ 10ms~! horizontal velocity
~ 5
w.ne=@ =y 9o er B e denth
At level I, Eq. 26 is rewritten with respect to the set of 9P 10° P . horizontal pressure fluctuation
parameter vectorg = {0'} which definesu via Eq. 36. This po 1k9§” density _
symbolic rewriting is explained in [25]. It yields a quadcat At ~ 150 ;‘ . temp.or'al Sampl!ng period
cost function whose minimum corresponds to the solution  “ ~ 107 s friction coefficient
of linear systems4#? = b. In those system, matriced a ~ Whm Earth radius
and vectorsh are functions of the other variables used in 1sin¢ ~  107%s Coriolis coefficient

the minimization. More details on the Gauss-Seidel regmiut
related to this cost term are provided in [7].

For the minimization of the energy defined in Eq. 26 wit
respect tov*, matrix A and vectom have to be slightly mod- o )
ified because of the contribution of the new energy functionjs @ + @ - V() — ftTm = o T2Musing+F+Ta
vJ.(.) and BJ,,(.) derived from Eq. 27 and Eq. 28. Thus, a| o +7-V(7) + =222 = 24 _2Yusing + F + T
new system is defined ad4’0;' = b’. The new matrix4’ is

the sum of the previous matrid, with A. and A, which using the characteristic scales reads :

Scale analysis of terms in the horizontal momentum equa-
I];.ions (Eq. 29)



A B C D E 18]
x-eq. | % 2Yvsing 2 tong 1 % F [19]
y-eq. % 2Yusin ¢ % % g_g i
scales | £ YsingU U lf_z vy 201
ms~ - - - - -
(ms?) | 1072 107* 1074 1072 10710

[21]
We conclude that terms C and E can be neglected in
comparison to the other terms. Moreover it is well know[}z]
that, for high Reynolds numbers characteristic of atmosphe
flows, due to the energy dissipation at unobservable scales,
turbulent viscosity dissipatior? can not be neglected in (23l
Navier-Stokes numerical simulations [33] [35]. We obtding
the momentum equations written in a vectorial form [24]

po (F¢ + V(9)%) = —Vp — 2T sin ¢ {(1) ‘01} 94T, o5

with the notationsV (v) = (Va, Vo).
[26]
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