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Abstract
In this paper, we address the problem of estimating dense

motion fields related to a stratified atmosphere which is ob-
served through satellite imagery. Estimating the evolving
vertical distribution of horizontal wind fields from satellite
image time series is of great importance for the study of at-
mospheric dynamics. Because of the sparse 3-dimensional
nature of observations, classical correlation-based tech-
niques are not suited for the dense estimation of layer mo-
tion. Moreover, such methods are not necessarily tempo-
rally consistent. This paper proposes a sound energy-based
estimator producing dense wind fields estimates for each
partially observed atmospheric layer. The energy function
to be minimized is composed of a data term based on the
continuity equation which cancels out the influence of unde-
sirable layers and of a specific div curl regularization term.
To preserve the temporal consistency of the estimates, the
variational method is initialized by propagation of the pre-
vious estimated field according to a velocity-vorticity for-
mulation of Navier-Stokes equations. The relevance of our
estimator is demonstrated on Meteosat image sequences.

1. Introduction
The analysis of complex fluid flows behaviors is a major

scientific issue. In particular, understanding atmospheric
dynamics is of great importance for meteorologists inter-
ested in weather forecasting, climate prediction, mesoscale
system analysis, etc.
Introduction of radiosonde, automated balloon launchers,
in-flight aircraft data have improved the estimation of wind
fields and have been a subsequent step toward the under-
standing of meteorologic phenomena. However the net-
work’s temporal and spatial resolutions may be insufficient
for the analysis of mesoscale dynamics. In an effort to avoid
these limitations, geostationary satellite image sequences,
characterized by higher acquisition rates and finer spatial
resolutions, have been exploited by meteorologists.
Atmospheric motion estimators using satellite images have
been developed since the seventies. Currently used methods
for atmospheric motion estimation are based on cloud corre-
lation in consecutive images. On one hand, these techniques

constitute very fast methods and are generally locally very
robust to noise. On the other hand, these approaches suf-
fer from deficiencies (traceable features must be sufficiently
contrasted and must persist over time on consecutive im-
ages), and therefore produce sparse results. The estimation
is in addition local and thus prone to erroneous spatial vari-
ability, which can be reduced with the use of filters. To over-
come these limitations, countour tracking techniques[4] or
optical-flow methods dedicated to fluid motion have been
recently introduced [7; 2]. These approaches have the main
advantage to produce dense atmospheric motion fields.
Nevertheless, the underlying 3-dimensional nature of the
projected scene may lead to erroneous results. Indeed, as-
suming that cloud layers are independent, they should not
interfere during the estimation process. Furthermore, as the
underlying associated optimization method are gradient de-
scent techniques, a particular attention should be devoted to
the initialization procedure.
We are interested in this work in deriving wind fields for
specific cloud heights using satellite image sequences. The
objective is to use the ability of a dense estimator dedicated
to fluid flows while constraining the estimation to operate
only on a specific atmospheric layer. This work also focus
on initialization issues, by propagating in time a current es-
timate using a dynamic model.
To date no satisfying technique exists to extract accurately
dense and temporally consistent wind fields related to dif-
ferent atmospheric layers. The remainder of this paper is
organized as follows. Section 2 gives an overview on ex-
isting methods for the estimation of fluid flows. The pro-
posed estimator dedicated to atmospheric layer motion is
then explained in section 3, followed by some remarks on
minimization issues. The propagation of motion fields be-
tween consecutive estimations using the vorticity equation
is then detailed. Finally, the results described in section 4
demonstrate the interest of our approach.

2. Related works on optical flow methods
Standard estimator. Optical-flow estimation aims at re-
covering the apparent displacement field between two con-
secutive frames in an image sequence. Letw denote the un-



known displacement field defined over the continuous plane
domains ∈ Ω andf(s, t) the luminance function at point
s which is assumed to be continuous in space and time.
The most accurate optical flow estimators used in com-
puter vision are issued from Horn and Schunck method [6].
They are defined as the minimizer of an energy function
H = H1 + H2 composed of two terms. The first one as-
sumes the constancy of the luminance of a point along its
trajectory (dfdt = 0). This so-called optical-flow constraint
(OFC) is captured by letting :

H1(w, f) =

Z
Ω

φ[∇f(s).w(s) +
∂f(s)

∂t
]ds. (1)

The penalty functionφ is usually theL2 norm but it may
be changed to a robust function attenuating the effect of
data that deviate significantly from the OFC-based data-
model [1]. The second termH2 of the energy function is
usually a standard first-order spatial smoothness term :

H2(w) = α

Z
Ω

φ(‖ ∇w ‖)ds. (2)

where α > 0 is a parameter controlling the balance
between the smoothness and the global adequacy to the
brightness constancy assumption. Functionφ may be the
quadratic penalty if the searched solution is smooth every-
where or a robust norm function if one wants to handle im-
plicitly the spatial discontinuities of the field [1].
Fluid dedicated estimator. The standard dense estimator
defined as the minimizer ofH is generic.
First, in order to capture some specificities of image se-
quences with fluid motion, instead of the OFC-based data-
model, we may build the data term using the continuity
equation :

∂ρ

∂t
+ div(ρv) = 0, (3)

whereρ denotes the fluid density,v = (u, v, w)T is the
3D velocity anddiv = ∂

∂x + ∂
∂y + ∂

∂z stands for the diver-
gence operator. Indeed, it has been demonstrated that the
formation model of top of clouds infrared images is similar
to the one used in transmittance imagery [3]. Thus, a ver-
tical integration of the continuity equation (3) provides the
constraint

∂f

∂t
+ div(fw) = 0. (4)

which can be introduced in the data term as

H1(w, f) =

Z
Ω

φ[div(f(s)w(s)) +
∂f(s)

∂t
]ds. (5)

However, such a data-model is highly sensitive to the pres-
ence of noise and is very likely not to hold everywhere.
Also due to its differential nature, the model concerns ve-
locity and not displacement. Therefore it is not valid in
case of large displacements. Unlike the brightness con-
stancy which can be directly expressed in a integrated form
asf(s + d(s), t + ∆t) − f(s, t) = 0, the continuity equa-
tion, as it stands, cannot serve as the basis of an incremental

data-model. To cope with this problem, velocities are as-
sumed constant between the instantst andt + ∆t. In that
case, equation (3) constitutes a simple first-order differen-
tial equation which can be integrated fromt to timet + ∆t
along trajectories. Setting∆t = 1 for notational conve-
nience, the data-termH1(w, f) is expressed as :Z

Ω

φ[f(s + w(s), t + 1) exp(divw(s))− f(s, t)]ds. (6)

Secondly, concerning the regularization term, it can be
demonstrated that a first order regularization (Eq. 2) is not
adapted to fluid phenomena as it favors the estimation of
velocity fields with low divergence and vorticity. A second
order regularization can advantageously be consider as pro-
posed in [10] :

H2(w) = α

Z
Ω

φ(‖ ∇ζ(s) ‖2 + ‖ ∇ξ(s) ‖2)ds, (7)

whereξ = curlw = −∂u
∂y + ∂v

∂x andζ = divw = ∂u
∂x + ∂v

∂y

stand for the vorticity and the divergence of the 2D field
w = (u, v)T . To circumvent the difficulty of implement-
ing second order smoothness constraint, this regularization
term can be simplified in a computational point of view in
two interleaved first-order div-curl regularizations based on
two auxiliary variablesζ1 andξ1 approximating the diver-
gence and the vorticity of the flow [2]. Thus we have :

H2(w) = α

Z
Ω

φ[(ζ(s)− ζ1)
2 + β ‖ ∇ζ1 ‖2

+(ξ(s)− ξ1)
2 + β ‖ ∇ξ1 ‖2]ds, (8)

whereβ is a positive regularization parameter. In order to
avoid non-conditioned problems, a particular attention has
been payed for the discretization of divergence and curl op-
erator for which an uncentered discretization scheme has
been used.

3. Dense estimator for layer motion
3.1. Introduction of layers

To construct a relevant dense estimator for layer motion,
we propose to cancel out the influence of undesirable cloud
layers by introducing a spatial mask in the data term of
the energy function. Layers classifications based on cloud
heights are produced automatically by a technique based
on thresholds on the equivalent brightness temperatures [8].
These maps are routinely provided by the EUMETSAT con-
sortium, the European agency which manages the Meteosat
satellites. Let us denote byCi the class corresponding to
the i-th layer and byMs∈Ci

the operator which is identity
if s ∈ Ci and which returns otherwise a fixed value out
of the range taken by functionf(s, t). Employing a robust
penalty functionφ, the new data term is written as

H1(w, f) =
∫

Ω

φ[f(s + w(s), t + 1) exp(ζ(s))

−Ms∈Ci
(f(s, t))]ds. (9)



The first-order div-curl regularization term (Eq.8) is con-
served. For both termsH1 andH2, M-estimator penalty
function are chosen for their advantageous minimization
properties [5]. The masking procedure together with the
use of robust penalty function on the data term allows to dis-
card implicitly the corresponding data from the estimation
process. It is important to outline that the method always
provides motion vector for all points of the image domain
and areas corresponding to undesirable layers correspond to
an interpolated wind field.
3.2. Minimization issues

In order to handle long range displacements, an incre-
mental estimation of the dense displacement field is con-
ducted through a multi resolution structure. Such process
consists roughly in implementing estimation scheme on a
pyramidal hierarchical representation of the image data as-
sociated to successive linearization around the estimate of
coarser resolution. At a given resolution, a semi-quadratic
energy function of the formH = H1 + H2 is minimized.
Two main sets of variables have to be estimated. The first
one is the motion fieldw, and the second one consists in
the two auxiliary scalar fieldsξ1 and ζ1. The estimation
is conducted alternatively by minimizingH with respect to
w, ξ1 andζ1 respectively. For the motion field, consider-
ing the div and curl estimatesξ1 andζ1 as being fixed, the
robust minimization with respect tow is solved with an iter-
atively reweighted least squares technique. This optimiza-
tion is embedded in an efficient multi-parametric adaptive
multigrid framework. In turn,w being fixed, the minimiza-
tion of H with respect toξ1 andζ1 is in fact equivalent to
the minimization ofH2 and is again conducted using an it-
eratively reweighted least square technique. More details of
the minimization issues can be seen in [2].
3.3. Vorticity propagation

To perform a sound initialization, a motion fieldw es-
timated between timet − 1 andt is propagated up to time
t + 1 using a dynamic model.
The dynamic model for mesoscale winds in the lowest at-
mosphere part may be derived from Navier-Stokes equa-
tions. However, assuming sufficiently small horizontal den-
sity variations and neglecting vertical winds, we may avoid
the pressure function estimation by employing its velocity-
vorticity form. For the horizontal wind fieldw, this model
reads

∂ξ

∂t
+ w.∇ξ + ξζ =

µ

ρ0
∆ξ (10)

whereρ0 is a known reference density function depending
only on height. Divergenceζ is assumed to be a Gaussian
random function with stationary increments. It thus defines
a Brownian motion whose expectation asymptotically obeys
to a heat equation of diffusion coefficientνζ :

∂ζ

∂t
− νζ∆ζ = 0. (11)

The curl and divergence completely determine the underly-
ing 2D velocity field and the current velocity estimate can
be recovered from these quantities up to a laminar flow. In-
deed, the Helmholtz decomposition of the field into a sum
of gradient of two potential functions is expressed as

w = ∇×Ψ +∇Φ + wlam. (12)

wherewlam is the laminar part (divwlam = curlwlam =
0) of the fieldw and where the stream functionΨ and the
velocity potentialΦ correspond to the solenoidal and the
irrotationnal part of the field. The latter are linked to di-
vergence and vorticity through two Poisson equations. Ex-
pressing the solution of both equations as a convolution
product with the 2D Green kernelG associated to the Lapla-
cian operator :Ψ = G ∗ ξ, Φ = G ∗ ζ, the whole velocity
field can be recovered with the equation

w = ∇× (G ∗ ξ) +∇(G ∗ ζ) + wlam, (13)

which can be efficiently solved in the Fourier domain.
Thus, the vorticity and the divergence fields are developed
from t to t + 1 using a discretized form of equations (10)
and (11) and time increments∆t. After each time incre-
ment, assumingwlam constant between the same time in-
terval, equation (13) is used to update the velocityw needed
by (10), with the current vorticity and divergence estimates.
To avoid instability, an implicit time discretization scheme
is used to discretize pde’s (10) and (11). A classical cen-
tered finite difference scheme is used for the curl and diver-
gence discretization. To solve the linear system associated
to the implicit discretization scheme, the matrix has been
constrained to to be diagonally dominant, which is a suf-
ficient condition for a well-conditioned inversion problem.
This condition readsh ≥ maxs(|u| + |v| − |ζ|), where the
number of time incrementsh = 1/∆t.

4. Experimental results
Our experiments have been carried out on 2 Meteosat

infrared images sequences of 15 frames acquired every 15
minutes. The first sequence exhibits a cyclone which ap-
peared over the Indian ocean while the second sequence
displays a perturbation over the North Atlantic ocean. In
order to analyze visually both the temporal consistency and
the accuracy of the estimation method, the trajectories of
uniformly spread points have been reconstructed using a
fourth-order Runge-Kutta integration method [9].
The visual inspection of Fig.1 outlines that our physically
sound initialization procedure enhances temporal consis-
tency of the wind fields estimates. Although the dynamics
of the hurricane center are satisfactorily extracted with our
without initialization, for accurate tracking of surrounding
structures, wind fields need to be propagated in time. In-
deed, several non-realistic trajectory discontinuities in the
cyclone periphery disappear with our initialization scheme.
Trajectories of the North Atlantic highest layer shows that



Figure 1. Initialization contribution. Left: compar-
ison between trajectories related to a cyclone estimated
with (red plot) and without (white plot) our initialization
scheme. Right: comparison between trajectories related
to high layer dynamics estimated with (below) and without
(above) our initialization scheme.

temporal consistency brought by wind field propagation
may also enhance, thanks to the div-curl regularization, spa-
tial homogeneity in the case of low amount of observations.
The relevance of the layer dedicated estimation is demon-
strated on the same North Atlantic area. Indeed, Fig.2 en-
ables the visual comparison of trajectories corresponding to
a layer mixture and trajectories corresponding to 3 different
atmospheric layers. This layer decomposition reduces sig-
nificantly the complexity of the 2D projected flow. Homo-
geneity of wind fields is enhanced and erroneous estimates
near layer frontiers are removed. In particular, non-relevant
average trajectories have been estimated in these areas for
the layer mixture, while 2 perpendicular trajectories have
been reconstructed for the middle and high cloud layers.

5. Conclusions
In this paper, we have presented a new method for the

estimation of dense layer motion from satellite image se-
quences. The proposed estimation is a minimization-based
approach where the observation term has been constrain to
only consider specific layers. A physical sound initializa-
tion procedure has been introduced to preserve temporal
consistency of the wind field estimates. Experimental re-
sults have demonstrated the interest of such an approach to
analyze 3D atmospheric motions.
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