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CATIA Nastran Simulink  Scade  Rhapsody  …  

CAN  Flexray  
ARINC 

653  
Profiling  Energy  ECU/LRU 

Key challenge in system design 

Heterogeneity 

of skills, teams, 

tools, methods 

…  
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CATIA Nastran Simulink  Scade  Rhapsody  …  

CAN  Flexray  
ARINC 

653  
Profiling  Energy  ECU/LRU …  

Key challenge in system design 

analyse  

simulate  

map 
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CATIA Nastran Simulink  Scade  Rhapsody  …  

CAN  Flexray  
ARINC 

653  
Profiling  Energy  ECU/LRU …  

Key challenge in system design 

…  

analyse  

simulate  

map 
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Engineering or mathematics ? 

FORGET 

•! RTOS, RME, scheduling 

•! COTS, reuse 

•! ARINC 653, architactures 

•! C, Java, programming 

•! Simulink, UML, modeling 

•! ... 

REMEMBER 

•! Specifying sets and 
surfaces by equations 

•! Intersecting them by 
systems of equations 

•! Equations with no, 
one or many solutions 

•! Fixed-point and 

differential equations 

•! Solving them may be 

difficult 



7 

Engineering or mathematics ? 

ENGINEERING 

•! You want to reuse 
components 

•! Design system by 
composing modules 

•! Composition may be 
blocking or non 
deterministic 

•! Embedded systems have 

real-time behaviors 

•! Generate and execute 

code for components 

MATHEMATICS 

•! Specifying sets and 
surfaces by equations 

•! Intersecting them by 
systems of equations 

•! Equations with no, 
one or many solutions 

•! Fixed-point and 

differential equations 

•! Solving them may be 

difficult 
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Engineering or mathematics ? 

MATHEMATICS 

Composition is easy 

Execution is hard 

ENGINEERING 

Composition is hard 

Execution is easy 



9 

The essence of polychrony 

MATHEMATICS 

Composition is easy 

Execution is hard 

POLYCHRONY 

Synchronous 

composition is easier 

Code generation 

is harder 

The theory amounts to solving 

equations in a specific model of  

computation and communication 
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The essence of polychrony 

sync 

sync 

sync 

sync 

Synchronous hardware 

Synchronous dataflow 

Simulink diagrams (simple ones) 

Each module has a single clock that 

triggers all signals 

All different clocks are derived and 

sampled from a global master 

clock via a frequency or phase 

mechanism 

What it is not 
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The essence of polychrony 

sync 

sync 

sync 

sync 

Synchronous hardware 

Synchronous dataflow 

Simulink diagrams (simple ones) 

Execution is easy 

What it is not 
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The essence of polychrony 

sync 

sync 

sync 

sync 

Synchronous hardware 

Synchronous dataflow 

Simulink diagrams (simple ones) 

Execution is easier 

but .... 

What it is not 
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The essence of polychrony 

sync 

sync 

sync 

sync 

Synchronous hardware 

Synchronous dataflow 

Simulink diagrams (simple ones) 

Execution is easier 

Composition is harder 

What it is not 
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sync 

sync 

sync 

sync 

The essence of polychrony 

Specification of open systems 

with synchronous software 

components: polychrony 

Prepared to accept more 

components 

Each module is a synchronous 

software  

There is no global master clock 

The different clocks can be related 

by synchronization constraints 

What it is 
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sync 

sync 

sync 

sync 

The essence of polychrony 

Specification of open systems 

with synchronous software 

components: polychrony 

Prepared to accept more 

components 

Execution is harder 

What it is 
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sync 

sync 

sync 

sync 

The essence of polychrony 

Specification of open systems 

with synchronous software 

components: Polychronous 

Clocks can be related by 

synchronization 

constraints 

Execution is harder 

Composition is simpler 

What it is 
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Embedded software design with Polychrony 

•! Motivations 

•! Key challenge in system design 

•! Engineering or mathematics ? 

•! Polychronous model of computation 

•! The essence of polychrony 

•! The old-fashioned watch 

•! Data structures and code generation 

•! From equations to programs 

•! Desynchronization and mapping 

•! Use for architecture modeling and analysis 

•! Conclusive remarks 
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The old-fashioned watch 

•! “This is an old mechanical watch like the one I have. Turn the spring. The 

watch goes for some time, and then stops. When it stops, turn again the 

spring… and so on…” 

 Albert Benveniste  

•! This is an interesting example: 

•! the output up-samples the input, 

•! hence it is not a data-flow function. 

•! We show how to analyze and execute it. 
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The old-fashioned watch 

 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

In equational style 

Input IN 

Decrement X 

Return X if positive 

Input IN is negative .... 

IN  

X 

ZX > 0 

ZX < 0 
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The old-fashioned watch 

 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

In diagrammic style (Eclipse) 

IN  

X 

ZX > 0 

ZX < 0 
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The old-fashioned watch 

 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

A few definitions 

An event is a time tag and a value 

A signal is a set of events 

Its time tags are totally ordered 

 (t0, 0) 

{(t0, 0), (t1, 3), (t2, 2), (t3,1), (t4, 0)} 

 (t0, 0)<(t1, 3)<(t2, 2)<(t3,1)<(t4, 0)  
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The old-fashioned watch 

 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

A few definitions 

A trace is a set of signals 

Its time tags are partially ordered 

A process is a set of trace 

 IN (t0, 3)                             (t4, 3) 

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) 

X   (t0, 3) (t1, 2) (t2, 1) (t3,0) (t4, 3) 
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The old-fashioned watch 

 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

A few definitions 

Tags are related when events are 

synchronized and equations are 

composed 

IN ^= when (ZX < 0) 

 IN (u0, 3)                            (u4, 3) 

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) 
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A demo 

IN X ! ! 

ZX < 0 

 IN (t0, 3)                             (t4, 3) 

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) 

X   (t0, 3) (t1, 2) (t2, 1) (t3,0) (t4, 3) 

t0 

t1 

t2 

t3 t4 

The old-fashioned watch 
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 (|  X := IN default ZX-1 
  | ZX := X$ init 0 
  | IN ^= when (ZX < 0) 
  |) 

From equations to programs 

Synchronization (BDDs) 

IN ^= when (ZX < 0) 

 IN (u0, 3)                            (u4, 3) 

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) 

Causality (scheduling graphs)  IN (u0, 3)                            (u4, 3) 

  X (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) X := IN default ZX-1 

Scheduling and execution 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

Scheduling graph 

X IN ZX 

H [B] 

B 

[B] H-[B] 

Causality 

Clock causality 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

[B] H-[B] 

Evaluated nodes in red 

•! Root(s) of the graph 

•! State variable(s) 

Enabled transitions in red 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

[B] H-[B] 

Evaluation in red 

•! Immediate successors 

•! All predecessors of B 

are enabled 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

[B] H-[B] 

Evaluation in red 

•! Value [B] can be 

determined from its 

predecessors 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

true false 

Evaluation in red 

•! Initially B is true 

•! IN is active 

•! Its transition is active 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

true false 

Evaluation in red 

•! X can be computed 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

false true 

Evaluation in red 

•! Second time, B is false 

•! IN is inactive 

Scheduling graph 
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Scheduling and execution 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

Equations for synchronization 

X IN ZX 

H [B] 

B 

false true 

Evaluation in red 

•! X is computed from ZX 

Scheduling graph 
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Scheduling and execution 

    B := (ZX < 0) 
 | IN ^= [B] 
 |  H ^= B ^= X ^= ZX 

Equations for synchronization 

    X  <-  IN when B  
 |  X  <-  ZX when ¬B 
 |  B  <- (H,ZX)  
 | [B] <-  B 
 | ZX  <-  H  
 | IN  <- [B] 

Clock and scheduling 

relations are part of the 

Signal syntax 

Scheduling graph 
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Scheduling and execution 

    B := (ZX < 0) 
 | IN ^= [B] 
 |  H ^= B ^= X ^= ZX 

Equations for synchronization 

    X  <-  IN when B  
 |  X  <-  ZX when ¬B 
 |  B  <- (H,ZX)  
 | [B] <-  B 
 | ZX  <-  H  
 | IN  <- [B] 

Clock and scheduling 

relations define an 

interface model used to : 

•! represent a module in its 

environment 

•! separately compile a module 

•! map a set of modules on an 

architecture 

Scheduling graph 
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Scheduling and execution 

    B := (ZX < 0) 
 | IN ^= [B] 
 |  H ^= B ^= X ^= ZX 

Equations for synchronization 

    X  <-  IN when B  
 |  X  <-  ZX when ¬B 
 |  B  <- (H,ZX)  
 | [B] <-  B 
 | ZX  <-  H  
 | IN  <- [B] 

Clock and scheduling 

relations define a 

calculus to : 

•! give an operational semantics 

and interpret a system of 

equations 

•! define correctness-preserving 

transformations and code 

generation functionalities 

Scheduling graph 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

Clocks and scheduling relations 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

H is available 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

The state variable X is fetch 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

B is computed 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

B is tested 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

true 

false 

Initially, B is true 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

true 

false 

IN is fetch 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

true 

false 

X is computed and sent 
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Scheduling and execution 

if (!read_watch_H(&H)) 
  return FALSE; 
B = X < 0; 
if (B) { 
  if (!read_watch_IN(&IN))  
    return FALSE; 
  X = IN; 
} else X = X - 1;  
write_watch_X(X); 
return TRUE; 

Code generation 

X IN ZX 

H 

[B] B 

false 

true 

Next time, B will be false 
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Scheduling and execution 

Model transformation and 

code generation based on 

clocks and scheduling 
relations 

•! Serialization reinforcement 

of a graph for sequential code 

generation 
•! Input-driven or output-driven 

clustering for modular code 

generation 

•! Distributed code generation 

•! GALS architecture mapping X IN ZX 

H 

[B] B 

[B] 

H-[B] 
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Correctness 

    X := IN default ZX-1 
  | ZX := X$ init 0 
  | B  ^= (ZX < 0) 
  | IN ^= [B] 
  | H  ^= B ^= X ^= ZX 

What if IN is not synchronized ? 

Consequence 

X is still deterministically 
defined by IN or ZX 

Is this harmless ?  
X IN ZX 

H 

[B] B 

[B] 

H-[B] 
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Correctness 

In a synchronous environment IN still has its own clock 

The clock still decides when to schedule H and IN 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

clock 
Input signals Output signal 

H H H H 

IN _ _ _ 

3 2 1 0 

The clock is deterministic 
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Correctness 

In an asynchronous environment, timing is elastic 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

Synchronous signals are interfaced 

to asynchronous channels 

Reaction triggering defines module 

activation 

clock 

… 

Input channels Output channel 

GALS wrapper 

H H H H 

IN IN 
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Correctness 

But the core relies on the absence or presence of IN  

 The watch can be reset at any time  

 The intended specification is broken 

clock 

… 

Input channels 

Output channel 

GALS wrapper 

H H H H 

IN IN IN 

Output channel 

? 

Output channel 

4 4 4 4 ? 

4 3 2 1 ? 
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Endochrony 

The capability of a module to 

internally compute the presence 

or absence of all signals 

... so that it can be interfaced 

with asynchronous channels 

X IN ZX 

H 

[B] B 

[B] 

H-[B] 

This is deterministic This is endochronous 

X IN ZX 

H 

[B] B 

Correctness 
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Problem : endochrony is not 

compositional 

If two modules p and q are 

endochronous then p | q not 

necessarily is 

Solution : weakening endochrony [Potop et al.,’05-’07] 

Existence of stuttering states 

 From any execution point (e.g. in the scheduling graph) 

 one reaches a stuttering state  

Confluence 

 Two compatible reactions (e.g. two sub-graphs) can be 

 scheduled in any order and yield to the same stuttering state 

Correctness 
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Weak endochrony is compositional 

If two modules p and q are weakly endochronous 

if there composition p | q is non blocking 

then p | q is weakly endochronous 

X IN ZX 

H 

[B] B 

Correctness 

If a module p is endochronous then it is weakly endochronous 

H G 

X 

... 
... 

A conservative, static and compositional decision procedure 
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Example of the loosely time-triggered architecture 

(Benveniste et al.) 

Architecture modeling and analysis 

Writer, bus and reader are periodic 

They have non-synchronized triggers 

synchronous 

timed 

              asynchronous timed (bounded delay)         

synchronous 

timed 
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The loosely time-triggered protocol (EMSOFT’02) 

Architecture modeling and analysis 

Upgrade LTTA with protocol for bounded inter-clock jitter 

Use GALS mapping techniques 

synchronous 

timed 

              asynchronous timed (bounded delay)         

synchronous 

timed 

sync 

sync 

sync 

sync 
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RT-Builder (Geensys) 

Architecture modeling and analysis 

Signal  

application 

module 

synchronous 

communication 

refined as 

Signal 

architecture 

module (*) 

Signal 

architecture 

module (*) 

Signal architecture module from library of components 

Signal  

application 

module 

Real-time simulation and architecture exploration, verification, validation 

(*) example : library of Signal models for the APEX ARINC-653 real-time operating system services 
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RT-Builder (Geensys) 

Architecture modeling and analysis 

Real-time, hardware in-the-loop, simulation of electronic equipments 
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Conclusions - methodology 

Continuous and/or discrete real-time processing 

 Abstraction of control by partially ordered scheduling relations 

In is present iff either Hi or Lo is present 

Hi and Lo are never present simultaneously 
Hi and Lo cannot happen before In 

Synchronous abstraction of heterogeneous functionalities 

Sensor Filter In 
Hi 

Lo 

In 

Lo 

Hi 

In 

Hi Lo 
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Conclusions - methodology 

A refinement-based design process  

Bridge between functional specification and architecture modeling 

Specification of multi-clocked systems by partially related symbolic clocks 

 Transformation and code generation for mapping on GALS architectures 

In 

Hi Lo 

Tick 

Alarm 

Filter 
In 

Hi 

Lo 

Check 

Tick 
Alarm 

Filter 
In 

Hi 

Lo 

Check 

Tick 
Alarm 

Hi 
Bus 
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Conclusions - methodology 

Encapsulation of heterogeneous functionalities with interface descriptions 

Pivot formalism for architecture exploration 

Transport and integration of encapsulated functions and services 

Component-based design process 

In 

Hi Lo 

Filter 
In 

Hi 

Lo 

Check 

Tick 
Alarm 

Hi 

Tick 

Alarm Hi 

interface component interface component 

Bus 
Filter 

In 

Hi 

Lo 

Check 

Tick 
Alarm 

Hi 
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•! Signal data-flow language 

•! Libraries (RTOS services) 

•! Analysis engine 

•! Transformation algorithms 

•! Model checker 

•! Controller synthesis 

•! Import functionalities: GCC-SSA, 

StateCharts, Simulink, Lustre, Scade 

… 

•! Code generators: C, C++, Java 

=> SME, an Eclipse-TopCased plug-in 

An experimental toolset 

Conclusions - tools 
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A unified model of computation for 

architecture exploration of 

integrated modular avionics  

•! Data-flow for computation 

•! Mode automata for control 

•! Libraries for services 

An eclipse interactive interface 

•! Open import functionalities 

•! High-level visual editor 

•! Analysis and transformation 

visualization and traceability 

SME, synchronous modeling environment 

An open-source Eclipse plugin for Polychrony 

Component of the TopCased and OpenEmbeDD project  

Conclusions - tools 
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Principle 

One diagram per conceptual view (SLAP’06) : 

•! Untimed data-flow diagram 

•! A relational timing model 

An open and extensible framework 

•! multi-clocked mode automata (EMSOFT’06) 

•! integrated modular avionics (SEAA’06) 

Conclusions - tools 
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Synoptic - domain-specific design language for space application software 

Conclusions - tools 



67 

Conclusion 

The polychronous model of computation and communication 

A clear and solid semantics 

Compositional correctness criteria 

A calculus of synchronization and scheduling 

Sequential, modular, distributed code generation 

Interface models, abstraction and refinement 

Model (oCC) transformations 

Heterogeneous architecture modeling and analysis 

Virtual prototyping 

Tools 

RT-Builder by Geensys 

Polychrony, experimental and academic freeware by INRIA 
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