
Embedded software design
with Polychrony

DATE’09 tutorial on Correct-by-Construction Embedded Software
Synthesis: Formal Frameworks, Methodologies, and Tools

Jean-Pierre Talpin, INRIA

List of contributors Albert Benveniste, Paul Le Guernic,

Thierry Gautier, Loïc Besnard, Dumitru Potop, Benoît Caillaud

2

Embedded software design with Polychrony

•! Motivations

•! Key challenge in system design

•! Engineering or mathematics ?

•! Polychronous model of computation

•! The essence of polychrony

•! The old-fashioned watch

•! Data structures and code generation

•! From equations to programs

•! Desynchronization and mapping

•! Use for architecture modeling and analysis

•! Conclusive remarks

3

CATIA Nastran Simulink Scade Rhapsody …

CAN Flexray
ARINC

653
Profiling Energy ECU/LRU

Key challenge in system design

Heterogeneity

of skills, teams,

tools, methods

…

4

CATIA Nastran Simulink Scade Rhapsody …

CAN Flexray
ARINC

653
Profiling Energy ECU/LRU …

Key challenge in system design

analyse

simulate

map

5

CATIA Nastran Simulink Scade Rhapsody …

CAN Flexray
ARINC

653
Profiling Energy ECU/LRU …

Key challenge in system design

…

analyse

simulate

map

6

Engineering or mathematics ?

FORGET

•! RTOS, RME, scheduling

•! COTS, reuse

•! ARINC 653, architactures

•! C, Java, programming

•! Simulink, UML, modeling

•! ...

REMEMBER

•! Specifying sets and
surfaces by equations

•! Intersecting them by
systems of equations

•! Equations with no,
one or many solutions

•! Fixed-point and

differential equations

•! Solving them may be

difficult

7

Engineering or mathematics ?

ENGINEERING

•! You want to reuse
components

•! Design system by
composing modules

•! Composition may be
blocking or non
deterministic

•! Embedded systems have

real-time behaviors

•! Generate and execute

code for components

MATHEMATICS

•! Specifying sets and
surfaces by equations

•! Intersecting them by
systems of equations

•! Equations with no,
one or many solutions

•! Fixed-point and

differential equations

•! Solving them may be

difficult

8

Engineering or mathematics ?

MATHEMATICS

Composition is easy

Execution is hard

ENGINEERING

Composition is hard

Execution is easy

9

The essence of polychrony

MATHEMATICS

Composition is easy

Execution is hard

POLYCHRONY

Synchronous

composition is easier

Code generation

is harder

The theory amounts to solving

equations in a specific model of

computation and communication

10

The essence of polychrony

sync

sync

sync

sync

Synchronous hardware

Synchronous dataflow

Simulink diagrams (simple ones)

Each module has a single clock that

triggers all signals

All different clocks are derived and

sampled from a global master

clock via a frequency or phase

mechanism

What it is not

11

The essence of polychrony

sync

sync

sync

sync

Synchronous hardware

Synchronous dataflow

Simulink diagrams (simple ones)

Execution is easy

What it is not

12

The essence of polychrony

sync

sync

sync

sync

Synchronous hardware

Synchronous dataflow

Simulink diagrams (simple ones)

Execution is easier

but

What it is not

13

The essence of polychrony

sync

sync

sync

sync

Synchronous hardware

Synchronous dataflow

Simulink diagrams (simple ones)

Execution is easier

Composition is harder

What it is not

14

sync

sync

sync

sync

The essence of polychrony

Specification of open systems

with synchronous software

components: polychrony

Prepared to accept more

components

Each module is a synchronous

software

There is no global master clock

The different clocks can be related

by synchronization constraints

What it is

15

sync

sync

sync

sync

The essence of polychrony

Specification of open systems

with synchronous software

components: polychrony

Prepared to accept more

components

Execution is harder

What it is

16

sync

sync

sync

sync

The essence of polychrony

Specification of open systems

with synchronous software

components: Polychronous

Clocks can be related by

synchronization

constraints

Execution is harder

Composition is simpler

What it is

17

Embedded software design with Polychrony

•! Motivations

•! Key challenge in system design

•! Engineering or mathematics ?

•! Polychronous model of computation

•! The essence of polychrony

•! The old-fashioned watch

•! Data structures and code generation

•! From equations to programs

•! Desynchronization and mapping

•! Use for architecture modeling and analysis

•! Conclusive remarks

18

The old-fashioned watch

•! “This is an old mechanical watch like the one I have. Turn the spring. The

watch goes for some time, and then stops. When it stops, turn again the

spring… and so on…”

 Albert Benveniste

•! This is an interesting example:

•! the output up-samples the input,

•! hence it is not a data-flow function.

•! We show how to analyze and execute it.

19

The old-fashioned watch

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

In equational style

Input IN

Decrement X

Return X if positive

Input IN is negative

IN

X

ZX > 0

ZX < 0

20

The old-fashioned watch

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

In diagrammic style (Eclipse)

IN

X

ZX > 0

ZX < 0

21

The old-fashioned watch

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

A few definitions

An event is a time tag and a value

A signal is a set of events

Its time tags are totally ordered

 (t0, 0)

{(t0, 0), (t1, 3), (t2, 2), (t3,1), (t4, 0)}

 (t0, 0)<(t1, 3)<(t2, 2)<(t3,1)<(t4, 0)

22

The old-fashioned watch

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

A few definitions

A trace is a set of signals

Its time tags are partially ordered

A process is a set of trace

 IN (t0, 3) (t4, 3)

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0)

X (t0, 3) (t1, 2) (t2, 1) (t3,0) (t4, 3)

23

The old-fashioned watch

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

A few definitions

Tags are related when events are

synchronized and equations are

composed

IN ^= when (ZX < 0)

 IN (u0, 3) (u4, 3)

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0)

24

A demo

IN X ! !

ZX < 0

 IN (t0, 3) (t4, 3)

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0)

X (t0, 3) (t1, 2) (t2, 1) (t3,0) (t4, 3)

t0

t1

t2

t3 t4

The old-fashioned watch

25

Embedded software design with Polychrony

•! Motivations

•! Key challenge in system design

•! Engineering or mathematics ?

•! Polychronous model of computation

•! The essence of polychrony

•! The old-fashioned watch

•! Data structures and code generation

•! From equations to programs

•! Desynchronization and mapping

•! Use for architecture modeling and analysis

•! Conclusive remarks

26

 (| X := IN default ZX-1
 | ZX := X$ init 0
 | IN ^= when (ZX < 0)
 |)

From equations to programs

Synchronization (BDDs)

IN ^= when (ZX < 0)

 IN (u0, 3) (u4, 3)

ZX (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0)

Causality (scheduling graphs) IN (u0, 3) (u4, 3)

 X (t0, 0) (t1, 3) (t2, 2) (t3,1) (t4, 0) X := IN default ZX-1

Scheduling and execution

27

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

Scheduling graph

X IN ZX

H [B]

B

[B] H-[B]

Causality

Clock causality

28

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

[B] H-[B]

Evaluated nodes in red

•! Root(s) of the graph

•! State variable(s)

Enabled transitions in red

Scheduling graph

29

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

[B] H-[B]

Evaluation in red

•! Immediate successors

•! All predecessors of B

are enabled

Scheduling graph

30

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

[B] H-[B]

Evaluation in red

•! Value [B] can be

determined from its

predecessors

Scheduling graph

31

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

true false

Evaluation in red

•! Initially B is true

•! IN is active

•! Its transition is active

Scheduling graph

32

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

true false

Evaluation in red

•! X can be computed

Scheduling graph

33

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

false true

Evaluation in red

•! Second time, B is false

•! IN is inactive

Scheduling graph

34

Scheduling and execution

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

X IN ZX

H [B]

B

false true

Evaluation in red

•! X is computed from ZX

Scheduling graph

35

Scheduling and execution

 B := (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

 X <- IN when B
 | X <- ZX when ¬B
 | B <- (H,ZX)
 | [B] <- B
 | ZX <- H
 | IN <- [B]

Clock and scheduling

relations are part of the

Signal syntax

Scheduling graph

36

Scheduling and execution

 B := (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

 X <- IN when B
 | X <- ZX when ¬B
 | B <- (H,ZX)
 | [B] <- B
 | ZX <- H
 | IN <- [B]

Clock and scheduling

relations define an

interface model used to :

•! represent a module in its

environment

•! separately compile a module

•! map a set of modules on an

architecture

Scheduling graph

37

Scheduling and execution

 B := (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

Equations for synchronization

 X <- IN when B
 | X <- ZX when ¬B
 | B <- (H,ZX)
 | [B] <- B
 | ZX <- H
 | IN <- [B]

Clock and scheduling

relations define a

calculus to :

•! give an operational semantics

and interpret a system of

equations

•! define correctness-preserving

transformations and code

generation functionalities

Scheduling graph

38

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

[B]

H-[B]

Clocks and scheduling relations

39

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

[B]

H-[B]

H is available

40

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

[B]

H-[B]

The state variable X is fetch

41

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

[B]

H-[B]

B is computed

42

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

[B]

H-[B]

B is tested

43

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

true

false

Initially, B is true

44

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

true

false

IN is fetch

45

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

true

false

X is computed and sent

46

Scheduling and execution

if (!read_watch_H(&H))
 return FALSE;
B = X < 0;
if (B) {
 if (!read_watch_IN(&IN))
 return FALSE;
 X = IN;
} else X = X - 1;
write_watch_X(X);
return TRUE;

Code generation

X IN ZX

H

[B] B

false

true

Next time, B will be false

47

Scheduling and execution

Model transformation and

code generation based on

clocks and scheduling
relations

•! Serialization reinforcement

of a graph for sequential code

generation
•! Input-driven or output-driven

clustering for modular code

generation

•! Distributed code generation

•! GALS architecture mapping X IN ZX

H

[B] B

[B]

H-[B]

48

Correctness

 X := IN default ZX-1
 | ZX := X$ init 0
 | B ^= (ZX < 0)
 | IN ^= [B]
 | H ^= B ^= X ^= ZX

What if IN is not synchronized ?

Consequence

X is still deterministically
defined by IN or ZX

Is this harmless ?
X IN ZX

H

[B] B

[B]

H-[B]

49

Correctness

In a synchronous environment IN still has its own clock

The clock still decides when to schedule H and IN

X IN ZX

H

[B] B

[B]

H-[B]

clock
Input signals Output signal

H H H H

IN _ _ _

3 2 1 0

The clock is deterministic

50

Correctness

In an asynchronous environment, timing is elastic

X IN ZX

H

[B] B

[B]

H-[B]

Synchronous signals are interfaced

to asynchronous channels

Reaction triggering defines module

activation

clock

…

Input channels Output channel

GALS wrapper

H H H H

IN IN

51

Correctness

But the core relies on the absence or presence of IN

 The watch can be reset at any time

 The intended specification is broken

clock

…

Input channels

Output channel

GALS wrapper

H H H H

IN IN IN

Output channel

?

Output channel

4 4 4 4 ?

4 3 2 1 ?

52

Endochrony

The capability of a module to

internally compute the presence

or absence of all signals

... so that it can be interfaced

with asynchronous channels

X IN ZX

H

[B] B

[B]

H-[B]

This is deterministic This is endochronous

X IN ZX

H

[B] B

Correctness

53

Problem : endochrony is not

compositional

If two modules p and q are

endochronous then p | q not

necessarily is

Solution : weakening endochrony [Potop et al.,’05-’07]

Existence of stuttering states

 From any execution point (e.g. in the scheduling graph)

 one reaches a stuttering state

Confluence

 Two compatible reactions (e.g. two sub-graphs) can be

 scheduled in any order and yield to the same stuttering state

Correctness

54

Weak endochrony is compositional

If two modules p and q are weakly endochronous

if there composition p | q is non blocking

then p | q is weakly endochronous

X IN ZX

H

[B] B

Correctness

If a module p is endochronous then it is weakly endochronous

H G

X

...
...

A conservative, static and compositional decision procedure

55

Embedded software design with Polychrony

•! Motivations

•! Key challenge in system design

•! Engineering or mathematics ?

•! Polychronous model of computation

•! The essence of polychrony

•! The old-fashioned watch

•! Data structures and code generation

•! From equations to programs

•! Desynchronization and mapping

•! Use for architecture modeling and analysis

•! Conclusive remarks

56

Example of the loosely time-triggered architecture

(Benveniste et al.)

Architecture modeling and analysis

Writer, bus and reader are periodic

They have non-synchronized triggers

synchronous

timed

 asynchronous timed (bounded delay)

synchronous

timed

57

The loosely time-triggered protocol (EMSOFT’02)

Architecture modeling and analysis

Upgrade LTTA with protocol for bounded inter-clock jitter

Use GALS mapping techniques

synchronous

timed

 asynchronous timed (bounded delay)

synchronous

timed

sync

sync

sync

sync

58

RT-Builder (Geensys)

Architecture modeling and analysis

Signal

application

module

synchronous

communication

refined as

Signal

architecture

module (*)

Signal

architecture

module (*)

Signal architecture module from library of components

Signal

application

module

Real-time simulation and architecture exploration, verification, validation

(*) example : library of Signal models for the APEX ARINC-653 real-time operating system services

59

RT-Builder (Geensys)

Architecture modeling and analysis

Real-time, hardware in-the-loop, simulation of electronic equipments

60

Conclusions - methodology

Continuous and/or discrete real-time processing

 Abstraction of control by partially ordered scheduling relations

In is present iff either Hi or Lo is present

Hi and Lo are never present simultaneously
Hi and Lo cannot happen before In

Synchronous abstraction of heterogeneous functionalities

Sensor Filter In
Hi

Lo

In

Lo

Hi

In

Hi Lo

61

Conclusions - methodology

A refinement-based design process

Bridge between functional specification and architecture modeling

Specification of multi-clocked systems by partially related symbolic clocks

 Transformation and code generation for mapping on GALS architectures

In

Hi Lo

Tick

Alarm

Filter
In

Hi

Lo

Check

Tick
Alarm

Filter
In

Hi

Lo

Check

Tick
Alarm

Hi
Bus

62

Conclusions - methodology

Encapsulation of heterogeneous functionalities with interface descriptions

Pivot formalism for architecture exploration

Transport and integration of encapsulated functions and services

Component-based design process

In

Hi Lo

Filter
In

Hi

Lo

Check

Tick
Alarm

Hi

Tick

Alarm Hi

interface component interface component

Bus
Filter

In

Hi

Lo

Check

Tick
Alarm

Hi

63

•! Signal data-flow language

•! Libraries (RTOS services)

•! Analysis engine

•! Transformation algorithms

•! Model checker

•! Controller synthesis

•! Import functionalities: GCC-SSA,

StateCharts, Simulink, Lustre, Scade

…

•! Code generators: C, C++, Java

=> SME, an Eclipse-TopCased plug-in

An experimental toolset

Conclusions - tools

64

A unified model of computation for

architecture exploration of

integrated modular avionics

•! Data-flow for computation

•! Mode automata for control

•! Libraries for services

An eclipse interactive interface

•! Open import functionalities

•! High-level visual editor

•! Analysis and transformation

visualization and traceability

SME, synchronous modeling environment

An open-source Eclipse plugin for Polychrony

Component of the TopCased and OpenEmbeDD project

Conclusions - tools

65

Principle

One diagram per conceptual view (SLAP’06) :

•! Untimed data-flow diagram

•! A relational timing model

An open and extensible framework

•! multi-clocked mode automata (EMSOFT’06)

•! integrated modular avionics (SEAA’06)

Conclusions - tools

66

Synoptic - domain-specific design language for space application software

Conclusions - tools

67

Conclusion

The polychronous model of computation and communication

A clear and solid semantics

Compositional correctness criteria

A calculus of synchronization and scheduling

Sequential, modular, distributed code generation

Interface models, abstraction and refinement

Model (oCC) transformations

Heterogeneous architecture modeling and analysis

Virtual prototyping

Tools

RT-Builder by Geensys

Polychrony, experimental and academic freeware by INRIA

68

Bibliography
On the model of computation

"Polychrony for system design" Le Guernic, P., Talpin, J.-P., Le Lann, J.-C. Journal for Circuits,

Systems and Computers. Special Issue on Application Specific Hardware Design. World

Scientific, August 2003.

On desynchronization

“Correct-by-construction asynchronous implementation of modular synchronous

specifications”. D. Potop-Butucaru, B. Caillaud. In Fundamenta Informaticae. IOS Press,

2006.

On architecture modeling

"Polychronous design of embedded real-time systems" Gamatié, A., Gautier, T., Le Guernic, P.,

Talpin, J.-P. ACM Transactions on Software Engineering and Methodology. ACM Press,

2006.

On virtual prototyping

"Formal refinement checking in a system-level design methodology" Talpin, J.-P., Le Guernic,

P., Shukla, S. K., Gupta, R., Doucet, F. Special Issue of Fundamenta Informaticae on

Applications of Concurrency to System Design. IOS Press, 2004.

On model-driven engineering

"A metamodel for the design of polychronous systems" Brunette, C., Talpin, J.-P., Gamatié, A.,

Gautier, T. Journal of Logic and Algebraic Programming, Special Issue on Applying

Concurrency Research to Industry. Elsevier, 2008.

Website http://www.irisa.fr/espresso

