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Abstract

We consider the problem of learning the set of all most

general DFA consistent with a labeled sample. The

paper proposess a constraints based speci�cation of the

set of solutions and gives an e�cient algorithm to build

the system of constraints. The e�ective production of

DFA may then be reduced to a graph coloring problem.

We have implemented and tested our approach on a

classical benchmark. First results are very encouraging

and show that the production of all solution DFAs may

be practically tractable.
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Introduction

The paper addresses the issue of inferring all the so-

lutions of a regular inference problem. More precisely,

the problem may be stated as follows:

Given

a set of positive sentences I

+

a set of negative sentences I

�

Find the set of all automata A verifying:

1. A is a deterministic �nite state automata ;

2. I

+

is structurally complete for A ;

3. L(A), the language accepted by A, does not contain

any string of I

�

;

4. L(A) is a most general language (i.e. no other solu-

tion A

0

is such that L(A) � L(A

0

)).

Given these conditions, the search space is �nite and

may be partially ordered.

Most of proposed algorithms focus on the pro-

duction of a single solution. They proceed either

with a depth �rst strategy (Oncina & Garcia

1992), a beam search strategy (Miclet & de

Gentille 1994), or with an optimization method

(Dupont 1994). The problem has been proven

NP-complete in the worst case (Angluin 1978;

Kearns & Valiant 1989).

Our approach is related to the version space

approach (Mitchell 1982) where all solutions of a

learning problem are characterized using two sets: the

set S of maximally speci�c solutions and the set G of

maximally general solutions. In our case, S may be

built straightforwardly, using the canonical automata.

Building G (also called Border Set (Dupont, Miclet,

& E.Vidal 1994)) is much more di�cult, due to the

size of the search space and, in some case, to the size

of G itself.

Very few authors have studied the character-

ization of G. Miclet has proposed in (Miclet

& de Gentille 1994) a heuristic algorithm. An

incremental approach using membership queries

has been proposed in (Parekh & Honavar 1996).

Preliminary studies have also been tried in

the context free case (Vanlehn & Ball 1987;

Giordano 1993).

When the language of generalization consists

of vectors of attribute-value pairs, several authors

have proposed to manage an implicit representation

of the version space (Hirsh 1992; Nicolas 1993;

Sebag 1994).

In the same spirit, we propose a compact represen-

tation of G, based on the set of admissible merging

of states (Coste & Nicolas 1997). We show that such

a set may be represented with a set of unequality

constraints and we give an e�cient algorithm to

build the elements of G, reducing the problem to the

coloring of the graph of constraints.



The next section briey introduces concepts and no-

tations we need to present our results. The third sec-

tion establishes a constraint characterization of the G

set. We propose in the fourth section an algorithm

for an e�ective production of automata elements of

G. The results of a �rst experimentation on a clas-

sical benchmark(Dupont 1996) are given in the �fth

section. It is the �rst time to our knowledge, that a

characterization of the whole set of solutions is pro-

posed for this benchmark. We conclude with a sketch

of various tracks of improvement for our work.

Regular Inference: de�nitions,

notations and theorems

Def 1 (DFA) A �nite state automata is a quintuplet

(Q;�; �; q

0

; F ) where Q is a �nite set of states, � an

alphabet, � a transition function from Q � � to 2

Q

(extended to Q� �

�

! 2

Q

), q

0

is the initial state and

F � Q is the set of accepting or �nal states.

If 8q 2 Q;8a 2 � �(q; a) has at most one element, the

automaton is said deterministic and we denote DFA

such an automaton.

An Automaton A accepts a regular language L(A).

Def 2 (Derived automata A=�) Given an au-

tomata A = (Q;�; �; q

0

; F ) and a partition

� = (B

0

; B

1

; : : : ; B

r

) of Q, the derived or quo-

tient automaton A=� = (�;�;�; B

0

; R) is de�ned as

follows:

� q

0

2 B

0

;

� R = fB

i

2 �; 9q 2 B

i

tq q 2 Fg ;

� B

j

2 �(B

i

; a) i� 9q 2 B

i

; 9q

0

2 B

j

such that q

0

2

�(q; a).

The set of all automata derived from A is a lattice

Lat(A).

Def 3 (Structural completeness) A set of words I is

structurally complete with respect to an automaton A

if there exists an acceptance of I such that every tran-

sition of A is exercised and every �nal state of A is

used as an accepting state.

Def 4 (A(L), MCA, PTA) The canonical automaton

of a language L, A(L) is the DFA accepting L which

has the minimal number of states.

The maximal canonical automaton with respect to a

set of words I, MCA(I), is the automaton A with the

largest number of states such that L(A) = I and I

structurally complete with respect to A.

The pre�x tree acceptor of I, PTA(I), is obtained from

MCA(I) by merging states sharing the same pre�xes.

We can know characterize the search space of DFA's

for an inference problem (Dupont, Miclet, & E.Vidal

1994).

Theorem 1 Let I

+

be a positive sample. The set �

of automata such that I

+

is structurally complete with

any automaton in � is Lat(MCA(I

+

)).

Theorem 2 Let I

+

be a positive sample. Let L be

the target language. If I

+

is structurally complete

with respect to A(L), then A(L) is an element of

Lat(PTA(I

+

)).

Another way to look at this theorem is to state that

every language, such that I

+

is structurally complete

with respect to its canonical automaton, is learnable

in the lattice:

Corollary 1 Let I

+

be a positive sample.

A regular language L is said admissible if I

+

is struc-

turally complete with respect to A(L), the canonical au-

tomaton of L.

The set of canonical automata of all admissible lan-

guages is included in Lat(PTA(I

+

)).

A constraint characterization of the set

of minimal DFA

Given a positive sample I

+

, the set of solution

automata may be derived from the null element

A

0

= PTA(I

+

). The issue is then to �nd partitions

� such that A

0

=� veri�es all conditions de�ned in

introduction.

By construction, condition 2 is always satis�ed.

Conditions 1 and 3 generate some constraints on the

set of admissible partitions. We are characterizing

these constraints in this section. Condition 4 will be

satis�ed if one chooses to minimize the number of

unequalities. So we just need to explicit conditions 1

and 3.

We introduce a preliminary notation:

Let Q be the set of states of an automata. For a

given partition � = (B

0

; B

1

; : : : ; B

r

) of Q and a given

state q, we denote q

�

the set B

i

; i 2 [0; r] to which q

belongs.

Characterization of non admissible

merging of states with respect to a

negative sample I

�

We introduce here the concept of augmented PTA

(APTA) following in this the data structure proposed

in ( Higuera (de la), Oncina, & Vidal 1996) in order

to handle simultaneously the positive sample I

+

and



the negative sample I

�

.

Intuitively, the APTA may be considered as the su-

perposition of PTA(I

+

) and PTA(I

�

), each state be-

ing labeled into three classes : accepting state, reject-

ing state or intermediate state, accepting no positive

and no negative instance.

Def 5 An augmented PTA (APTA) with respect to a

positive sample I

+

and a negative sample I

�

, denoted

APTA(I

+

; I

�

), is a 6-tuple (Q;�; �; q

0

; F

+

; F

�

) where

� PTA(I

+

[ I

�

) = (Q;�; �; q

0

; F

+

[ F

�

)

� F

+

and F

�

are subsets of Q respectively identifying

accepting states of I

+

and I

�

� F

+

is the set of �nal states of APTA(I

+

; I

�

)

We give as an illustration, the APTA

of sample 1 of language 2 in our

benchmark (cf section Experimentation).
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In this sample, I

+

= fabababg, I

�

=

fa; b; abaa; abbbb; ababbbbag. States of F

+

are double

circles and states of F

�

are triangles.

By construction, we get the following properties :

L(APTA(I

+

; I

�

)) = I

+

(1)

Moreover, for a partition � of states of the PTA(I

+

),

we get:

L(APTA(I

+

; I

�

)=�) = L(PTA(I

+

)=�) (2)

Considering the APTA, instead of the PTA, has

the great advantage of explicitly propagating the

consequences of merging some states in the PTA on

the acceptance of negative instances.

More precisely, an instance of I

�

is accepted by an

automata APTA=� if the corresponding accepting

state f

�

in the APTA is merged with a �nal state of

the APTA, i.e. 9f

+

2 F

+

; f

�

�

= f

+

�

.

Now, pairs of F

+

� F

�

are not the only states that

cannot be merged. Merging a set of states in an au-

tomaton A may lead to a non deterministic automaton

A

0

. If the determinization of A

0

entails the creation of

a new state merging a state of F

+

and a state of F

�

,

the same inconsistency appears. For instance, in the

previous example, merging state 3; 4 and 8 leads to a

non deterministic automata. If this automata is de-

terminized (Aho & Ullman 1972), a set of new states,

ff3; 4; 8g; f3; 4; 5; 8g; f3; 4; 8; 12g; f3; 4; 6; 8; 12gg, cor-

responding to subsets of the previous set of states, are

created. Since inconsistent pair (6; 8) occurs in the

new state f3; 4; 8; 6; 12g, merging state 3; 4 and 8 leads

to an inconsistent automata.

Since we are only interested in deterministic au-

tomata, the previous case may be easily handled in the

more general framework of deterministic constraints.

It is the subject of the next section.

Characterization of non admissible

merging of states with respect to

determinization

Algorithms such as RPNI (Oncina & Garcia 1992) use

a procedure merging states until the corresponding

automaton becomes deterministic. It allows the search

to stay in the space of deterministic automata.

Such a procedure corresponds to the existence of a

binary relation between pairs of states. Formally, if we

denote ! such a relation, we have

(q

1

; q

2

)! (q

0

1

; q

0

2

)

iff 9a 2 � �(q

1

; a) = q

0

1

^ �(q

2

; a) = q

0

2

(3)

The transitive closure of ! is denoted !

�

.

Although ! induces only one kind of constraints,

namely if q

1

and q

2

are merged then q

0

1

and q

0

2

must be

merged also. One may re�ne them in two cases:

� consistency constraints (on pairs of states): q

1

can-

not be merged with q

2

if (q

1

; q

2

)!

�

(f

+

; f

�

), where

f

+

2 F

+

, f

�

2 F

�

, then clearly, q

1

and q

2

cannot

be merged since there exists a same su�x accepted

from q

1

and rejected from q

2

.

� determinization constraints (on couple of pairs of

states): if (q

1

; q

2

) ! (q

0

1

; q

0

2

), then merging q

1

and

q

2

implies that q

0

1

and q

0

2

must also be merged in

order to produce a deterministic automaton.

In our example, (5; 0) ! (6; 7) leads to a consistent

constraint and (0; 1) ! (7; 2) is a determinization

constraint.

Finally we are able to give a purely constraint char-

acterization of the set of solutions of the minimal DFA

problem.



Inferring automata as the resolution of a

set of unequality constraints

We characterize the set of non admissible merging of

states in the APTA, denoted NAM(APTA(I

+

; I

�

)).

Since the space of mergings is �nite we might obtain

dually the set AM of admissible mergings.

Def 6 NAM(APTA(I

+

; I

�

)) is the set of constraints

on admissible partitions � of Q, the set of states in

APTA(I

+

; I

�

).

q

+

�

6= q

�

�

8q

+

2 F

+

;8q

�

2 F

�

(4)

q

0

1�

6= q

0

2�

) q

1�

6= q

2�

8q

0

1

; q

0

2

2 APTA(I

+

; I

�

)=

(q

1

; q

2

)! (q

0

1

; q

0

2

) (5)

Note that constraints of type 5 may be reversed in

form of equality constraints q

1�

= q

2�

) q

0

1�

= q

0

2�

.

Moreover, the system of constraints may be simpli�ed,

applying modus ponens and discarding redundancy.

In our example, part of constraints

are (q

�

6= q

0

�

is simply denoted (q; q

0

))

f(1; 6); (7; 6); (8; 6); (11; 6); (15; 6); (0; 5); (5; 10); (2; 7))

(0; 1); (7; 9)) (0; 2); (1; 3)) (0; 2); : : :g

Since the APTA is a tree, there is at most one pair

(q

1

; q

2

) such that (q

0

1�

6= q

0

2�

)) (q

1�

6= q

2�

)

We give hereafter an algorithm for building the sim-

pli�ed set of constraints.

If n is the number of states in Q, NAM contains

at most n(n + 1)=2 constraints, since each pair of

states appears at most once in the set of (left part of)

constraints.

Thus the algorithm has a quadratic complexity in

the worst case.

Building the set of admissible canonical

automata

In this section, we propose an algorithm for an

e�ective resolution of the previously de�ned system of

constraints.

Two types of algorithms may be a priori designed

for our problem. The �rst solution is to use a con-

straint solving algorithm, looking for a minimization

of the number of unequalities. Such a minimization

constraints renders di�cult the formalization of the

problem in this framework. We propose a second solu-

tion, considering the problem as a graph coloring issue.

Algorithm 1 Algorithm building NAM

NAM  ;

for all q

+

2 F

+

do

for all q

�

2 F

�

do

NAM  NAM [ f(q

+

�

6= q

�

�

)g

end for

end for

T  ;

for all q 2 Q do

for all q

0

2 Q do

if (q

0

> q) ^ (In Symbol(q) = In Symbol(q

0

))

then

T  T [ f(q

�

6= q

0

�

) ) (parent(q)

�

6=

parent(q

0

)

�

)g

end if

end for

end for

for all (D

1

) D

2

) 2 T do

if D

1

2 NAM then

NAM  NAM [ fD

2

g fmodus ponensg

else

if D

2

62 NAM then

NAM  NAM [ fD

1

) D

2

g fredundancyg

end if

end if

end for

Type 4 constraints may be represented with a graph

on set Q, where each edge between vertices q and q

0

corresponds to a constrain q

�

6= q

0

�

. We give the �gure

of the corresponding graph in our example.

0

5

10

1

6

7 8 11 15

Type 5 constraints may be considered as dynamic

constraints of type 4. Indeed, if during the building

of �, some blocks q

�

and q

0

�

are chosen for two states

q and q

0

, it is possible to propagate in the graph

all the consequences of this choice. If q

�

6= q

0

�

and

q

�

6= q

0

�

) D, then constraint D may be added in

the graph. In a dual way, equality constraints may be

propagated with modus tollens.

The relation between the set of solution automata

and this graph may be formulated in terms of graph

coloring:

Solution automata A

0

=�, � = (B

0

; : : : ; B

r

), are such

that for every part B

i

; i 2 [0; r], all its states are



compatible, that is, all its states may be colored with

the same color.

Finding an admissible solution is equivalent to

�nding a k-coloring of the graph. Condition 4 states

that we have to �nd a minimal coloring.

To be more precise, we do not have exactly one

graph to color. Since some constraints are dynamic,

we must consider a set of graphs, ranging from the

graph where all left part of type 5 constraints are false

to the graph where all left part of type 5 are true.

Best k-coloring are obtained for k being the minimal

chromatic number of this set of graphs.

The �gure gives the sole canonical automaton solu-

tion in our example.

1 2
a
b

A sketch of the production algorithm follows:

Algorithm 2 Production of solution canonical au-

tomata

Build the APTA

Build NAM falgorithm 1g

Find all minimal colorings of the PTA, propagat-

ing dynamically the constraints, following the type

5 constraints (states with di�erent color) and their

reversed form (states with same color).

For each minimal coloring, product the correspond-

ing solution automaton, derived from the PTA by

merging the states with the same color.

Note that stating the problem as a graph coloring

problem allows to implement a much more exible

resolution strategy than in classical approaches.

Partitions of the states of the APTA may be searched

for, following an ordering depending solely on the

states themselves.

The coloring is NP-complete in the general case. The

complexity of our algorithm remains unclear, due to

the particular form of the graph. Our aim is to break

the barrier of practically solvable problems, allowing

more e�cient heuristics to be tested. Next section

shows a �rst experimental evidence in this respect. Re-

mark also that test of consistency with respect to pos-

itive and negative instances are compiled in our algo-

rithm and this is a factor of improvement with respect

to traditional algorithms. We never have to consider

automata themselves while building partitions of the

states of the PTA.

Experimentation

We have used a benchmark described in (Dupont

1996) for a �rst validation of ideas developed in this

paper.

We have implemented algorithm 2 using a version

of DSATUR algorithm (Br�elaz 1979) for the coloring

step.

Results are summarized in the following table.

#s/#t characterizes the size of target automata in

terms of number of states and transitions, #G is the

mean number of automata found in G. APTA is the

mean size of the augmented PTA. #c1 is the mean

number of constraints of type 4, running time is given

in seconds, with an UltraSparc 200MHz processor.

Language #s/#t #G APTA #c1 time

L1 1/1 1 3.2 0 0.01

L2 2/2 1 25.3 43.0 0.03

L3 4/7 1.75 180.9 998.2 18.3

L4 3/5 8.5 102.2 192.2 7.08

L5 4/8 2.1 65.1 217.8 1.81

L6 3/6 2.45 40.7 108.5 0.51

L7 4/7 4.75 85.2 545 3.15

L8 2/2 1.25 19.0 43.0 0.02

L9 4/7 1.65 60.8 357.9 0.45

L10 5/6 2.4 81.2 431.7 0.59

L11 4/8 2.85 64.8 214.85 4.17

L12 3/3 1.5 37.6 120.2 0.09

L13 2/4 1.25 32.4 70.7 0.20

L14 3/4 1.4 37.6 100.5 0.16

L15 4/6 2.1 70.7 353.3 0.34

The production of solutions is on the whole very fast.

The benchmark needs of course to be com-

pleted with more di�cult problems, increasing the

size of the vocabulary and the size of the tar-

get automaton. The Abbadingo competition (see

http://abbadingo.cs.unm.edu/) seems a good starting

point in this respect.

However, our method already gives results that were

beyond the reach of other methods. A particularly

amazing fact is that the number of solutions remains

generally low and loosely correlated to the recognition

rate of RPNI algorithm.

For complex problems, stating them in terms of solv-

ing a system of constraints will allow to easily intro-

duce auxiliary criteria in the selection process of rele-

vant automata.



Conclusion

We have proposed a characterization of the set of

minimal DFA that may be inferred from a positive

and negative sample of words. We have also reduced

the issue of generating explicitly the automata to a

graph coloring problem.

First results are very encouraging, many tracks of

improvement are possible in the coloring algorithm.

We have to study the determination of a coloring

order on states, based on an a priori observation of

most constrained states. No clever backtracking at-

tempt has been made in our �rst implementation and

this may lead to a great reduction in the overall search.

Our research will also look for the integration of this

work in the version space framework. The next step

in this direction will consist to de�ne an incremental

version of the algorithm.
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