
E�cient Ambiguity Detection in C-NFA

A Step Towards the Inference of

Non Deterministic Automata

Fran�cois Coste, Daniel Fredouille

IRISA/INRIA Rennes

Campus Universitaire de Beaulieu, 35042 RENNES Cedex, France

Phone : +33 2 99 84 71 00

Fax: +33 2 99 84 71 71

fFrancois.Coste|Daniel.Fredouilleg@irisa.fr

Abstract This work addresses the problem of the inference of non de-

terministic automata (NFA) from given positive and negative samples.

We propose here to consider this problem as a particular case of the in-

ference of unambiguous �nite state classi�er. We are then able to present

an e�cient incompatibility NFA detection framework for state merging

inference process.

key words : regular inference, non deterministic automata, �-

nite state classi�er, sequence discrimination



2

Introduction

This work addresses the problem of the inference of non deterministic automata

(NFA) from given positive and negative samples. This problem has been exten-

sively studied for the inference of deterministic automata (DFA), for which state

merging algorithms have been proven e�cient [OG92, Lan92, CN97, LPP98,

OS98]. Whereas DFA are polynomially identi�able from given data [Gol78,

dlH97], this result does not hold for NFA [dlH97]. In contrast, it is well known

that there exist languages such that their representation by DFA requires an ex-

ponential number of states with respect to the NFA representation. Considering

the inference of NFA instead of DFA allows therefore to obtain smaller solution

which we expect to require less samples to be characterized.

Few studies have been made on the inference of NFA. Yokomori [Yok94] has

proposed an algorithm that needs an oracle and can infer NFA that determinizes

polynomialy in polynomial time. We propose here to consider the inference of

compatible NFA as a particular case of the inference of unambiguous �nite state

classi�er presented in section 1. A �rst algorithm for checking unambiguousness

of a C-NFA is given in this section. The second section proposes an incremental

version of this algorithm for a state merging inference process, ensuring the com-

patibility of the corresponding NFA without parsing the sample. We conclude

with a �rst experimentation comparing minimum sized NFA and DFA inference

with respect to the size of the training sample.

1 Inference of Unambiguous Finite State Classi�er

The purpose of this section is to introduce the inference of �nite state classi�er

by means of state merging algorithms. Using this representation allows unbiased

inference [AS95, Alq97]. We propose here to take advantage of the simultaneous

representation of a set of languages for the inference of unambiguous automata.

1.1 De�nitions and Notations

De�nition 1. A C-classes non deterministic �nite state automata (C-NFA) is

de�ned by a 6-tuple (Q;Q

0

; �; �; �; �) where: Q is a �nite set of states; Q

0

� Q

is the set of initial states; � is a �nite alphabet of input symbols; � is a �nite

alphabet of C output symbols; � is the next-state function mapping Q�� to 2

Q

(if � maps Q � � to Q, the automaton is said deterministic and is denoted by

C-DFA); � is the output function mapping Q to 2

�

. The function realized by a

C-NFA is the classi�cation of sequences.

The classi�cation function  mapping �

�

�Q to 2

�

is de�ned by:

(q; w) =

[

q

0

2�(q;w)

�(q

0

)

where � has been extended to sequences following the classical way by:

8q 2 Q;8w 2 �

�

;8a 2 � [ f�g; �(q; �) = fqg; �(q; wa) =

S

q

0

2�(q;w)

�(q

0

; a)



3

The classi�cation of a sequence w by a C-NFA may then be de�ned as the set of

classi�cations obtained from the initial states. We also denote by  this function

mapping �

�

to 2

�

:

(w) =

[

q2Q

0

(q; w)

Given a C-NFAM , a sequence w is said classi�ed if its classi�cation is de�ned

(ie: (w) 6= ;). The set of classi�ed sequences is named the domain of M . The

classi�cation over this domain de�nes a C-tuple of regular languages denoted

L(M):

L(M) = hL

c

(M)i

c2�

where 8c 2 �; L

c

(M) = fw 2 �

�

jc 2 (w)g:

A C-NFA allows to handle simultaneously a set of languages. In this paper,

we focus on unambiguous C-NFA:

De�nition 2. A C-NFA is said unambiguous if each sequence is classi�ed in

at most one class.

From the de�nition, it follows that a C-NFA M is unambiguous i� the C-tuple

of languages represented by M are mutually disjoint, i.e.: 8i; j 2 �; L

i

(M) \

L

j

(M) = ;:

The unambiguousness property is important for the search of compatible au-

tomata from positive and negative samples and other applications dealing with

discrimination of sequences by �nite state machines. The choice of a C-NFA rep-

resentation of a set of languages, instead of the classical automata representation,

allows to e�ciently characterize the disjunction of the recognized languages. We

propose to take advantage of this property in the next sections devoted to the

inference of unambiguous C-NFA.

1.2 State Merging Inference

The problem of inferring a C-NFA may be seen as a C-regular inference problem

[Cos99]. We assume that a training sample S = hS

c

i

c2�

is given such that each

S

c

is a sample from the target language L

c

(M), i.e. a �nite subset of L

c

(M).

One classical assumption made in grammatical inference is that the sample is

structurally complete with respect to the target machine. Under this assumption,

the inference of C-NFA may then be done by means of state merging algorithm,

which proceeds by merging states of theMaximal Canonical Automaton, denoted

by MCA(S), which is the automaton resulting from the union of the canonical

C-NFA for each sequence of S (�gure 1 and algorithm 1). When looking for

unambiguous C-NFA, the search is pruned as soon as the current automaton

is detected ambiguous, since all automata obtained by merging states of an

ambiguous automaton are ambiguous.

Detecting ambiguity is simple in the deterministic case. It can be done by

checking that no states of di�erent classes have been merged, or even by parsing

the automaton with the training set. In the non-deterministic case, parsing may



4

a

a

a

a

a

b

c2

a

c1

c2

Figure1. MCA(S) for S = hfabg; faaa; aagi.

Algorithm 1 Greedy state merging algorithm

1: Greedy SMA(S)

2: /* Input: training sample S */

3: /* Output: a C-NFA compatible with S */

4: A  Maximal Canonical Automaton(S)

5: while Choose States To Merge(q

1

,q

2

) do

6: A

0

 Merge(A,q

1

,q

2

)

7: if A

0

is not ambiguous then

8: A  A

0

be done by a viterbi-like procedure. For classical automata parsing the nega-

tive sample is su�cient to ensure compatibility. For non deterministic C-NFA,

compatibility with samples and unambiguousness should not be confused: when-

ever all the samples are correctly labeled by the automaton, sequences outside

the training set may have more than one classi�cation. We propose in the next

section a �rst algorithm to detect the ambiguousness of C-NFA.

1.3 Ambiguity Detection

Only two cases of ambiguity exist. A C-NFA is ambiguous if:

{ There exists a state such that its output func-

tion returns two di�erent classi�cations. For

C-DFA, it is the unique case of ambiguity.

w
c1

c2

{ There exist paths labeled by the same sequence w leading to states with

de�ned and di�erent classi�cations.

w

w

c1

c2
or

w

w

c2

c1

We introduce the notation 

1

6� 

2

(

1

incompatible with 

2

) for two di�erent

and de�ned classi�cations 

1

and 

2

:



1

6� 

2

, ((

1

6= 

2

) ^ (

1

6= ;) ^ (

2

6= ;)):

Otherwise, the classi�cations are said compatible (denoted 

1

� 

2

).



5

It is easy to detect whether the �rst case holds. For the second case, we need

to introduce the de�nition of incompatible pair of states. Two states q

1

and q

2

are incompatible, (denoted q

1

6� q

2

), if there exists a word whose classi�cations

from these states are incompatible:

q

1

6� q

2

, 9w 2 �

�

; 9(s

1

; s

2

) 2 �(q

1

; w)� �(q

2

; w); �(s

1

) 6� �(s

2

)

Otherwise, the states are said compatible (denoted q

1

� q

2

).

Then, ambiguity detection for a C-NFA reduces to checking if a state is in-

compatible with itself or if two initial states are incompatible.

To mark incompatible states, we propose an algorithm (algorithm 2) inspired

by the algorithm of Hopcroft and Ullman designed to mark non equivalent states

for automaton minimization [HU80]

1

. Since the automata we consider are not

necessarily deterministic, the original algorithm has been changed by inverting

the propagation direction of the marking process, which results in O(n

2

) time

complexity for tree-like automata. This algorithm may be used to construct the

set of incompatible pairs of states E

6�

and to raise an exception if it detects

ambiguity.

Algorithm 2 Incompatible states and C-NFA ambiguity.

1: Incompatible States(A = (�;�;Q;Q

0

; �; �)):

2: /* Search of the set of incompatible states of A */

3: /* and ambiguity detection of A */

4: E

6�

 ; /* set of incompatible states */

5: for all fq

i

; q

j

g 2 Q�Q, �(q

i

) 6� �(q

j

) do

6: if fq

i

; q

j

g 62 E

6�

then

7: Set Incompatible And Propagate(q

i

, q

j

)

8: return E

6�

9: Set Incompatible And Propagate(q

1

,q

2

):

10: /* ambiguity detection */

11: if (q

1

= q

2

) _ (q

1

2 Q

0

^ q

2

2 Q

0

) then

12: throw exception(\ambiguous C-NFA")

13: /* Incompability memorization */

14: E

6�

 E

6�

[ fq

1

; q

2

g

15: /* Propagation */

16: for all a 2 �, fp

1

; p

2

g 2 �

�1

(q

1

; a)� �

�1

(q

2

; a) do

17: if fp

1

; p

2

g 62 E

6�

then

18: Set Incompatible And Propagate(p

1

; p

2

)

1

The partition re�nement algorithm to minimize automata may not be used here

since the state equivalence relation is transitive whereas the compatibility relation

is not.



6

In the worst case, the complexity of algorithm 2 is O(j�jn

4

) : O(n

2

) calls of

the function Set Incompatible And Propagate, whose body needs O(j�jn

2

) steps.

However, if we denote by t

a

the maximal number of incoming transitions with

the same symbol in a state, one can re�ne the complexity result. The complex-

ity of Set Incompatible And Propagate body with respect to t

a

is O(j�jt

2

a

) which

leads to a global complexity of O(j�jt

2

a

n

2

). Therefore the complexity lies more

practically between O(j�jn

2

) and O(j�jn

4

) according to the value of t

a

.

In an inference process, this algorithm may be used to determine whether

each candidate is unambiguous. In the next section, we propose an incremental

version of this algorithm to detect ambiguity in an extension of the classical

state merging framework.

2 Considering Unmergeable States during Inference

We propose here to extend the classical state merging algorithm to consider

pairs of unmergeable states (denoted for two states q

1

and q

2

of a C-NFA by

q

1

6' q

2

). At each step of the inference, instead of always merging the chosen

pair of states, the algorithm will be allowed to set this pair of states unmergeable.

This may be used to guide the search or to prune an entire part of the search

space: either because it has already been explored or either because it is known

that no solution may be found in it.

2.1 Detection of Unmergeable States Due to Ambiguity

During the inference of unambiguous automata, some pairs of states may be

detected to have no other choice than being set unmergeable to ensure unam-

biguousness. The �rst relation that can be used is that two incompatible states

are also unmergeable:

8q

1

; q

2

2 Q�Q; q

1

6� q

2

) q

1

6' q

2

:

We can detect more unmergeable states by considering the counterpart of

merging for determinization used in the deterministic framework [OG92], that is

considering pairs of states that are reachable by a common word from the initial

states.

De�nition 3. Two states q

1

and q

2

are said to be in relation k, denoted by q

1

k

q

2

, if they are reachable by a common word from initial states. More formally,

we have q

1

k q

2

, 9w 2 �

�

, q

1

; q

2

2

S

q

0

2Q

0

�(q

0

; w).

The algorithm computing relation k is very similar to algorithm 2 for incom-

patible states. The loop in line 5 is replaced by a loop on pairs of initial states,

and backward propagation in line 17 is replaced by forward propagation (using

� instead of �

�1

). This algorithm can also detect ambiguity since it tries to put

in relation k two states with incompatible output.



7

Thanks to relation k we can detect new unmergeable states with the following

equation which is illustrated in �gure 2:

q

1

6� q

2

^ q

2

k q

3

) q

1

6' q

3

w2 w2

c2

c1

w1

w1

q2

q3

q1

~

~

~

Figure2. Illustration of the equation q

1

6� q

2

^ q

2

k q

3

) q

1

6' q

3

: given a relation

q

2

k q

3

involved by a word w

1

, and an incompatibility q

1

6� q

2

involved by a word w

2

,

the merging of q

1

and q

3

is not possible since it entails the acceptation of the word

w

1

w

2

in two di�erent classes. We can also notice that the relation q

1

6� q

2

) q

1

6' q

2

is due to a particular case of q

1

6� q

2

^ q

2

k q

3

) q

1

6' q

3

with q

2

= q

3

thus thanks to

the fact that every state is in relation k with itself.

Relation k enables also earlier ambiguity detection: to detect ambiguity, we

can check that no incompatible states have to be set in relation k (or that no

states in relation k have to be set incompatible). This property comes from

the fact that if two states are in relation k due to a word w

1

and that they

are incompatible due to a word w

2

, then the word w

1

w

2

has an ambiguous

classi�cation.

Notice also that this detection can replace the one given in section 1.3 (al-

gorithm 2 line 11) since all initial states are in relation k, and every state is in

relation k with itself.

To summarize, before computing a merge we can check in some cases if it will

lead to ambiguity, but this checking is not always possible (we do not detect all

mergings leading to ambiguity, see �gure 3). In this case, ambiguity is detected

during the merge thanks to the addition of new relation k and 6�.

(a)

q0

q1a

c2

q2
a c1

(b)

q01

a
q2a

c2

c1

Figure3. part a. States q

0

and q

1

are unmergeable but not detected with our equations

(the automaton resulting from the merge, �gure3. part b, is ambiguous; for example,

in this automaton the word aa is both classi�ed c1 and c2.



8

We dispose of various relations between states which are useful not only to

detect ambiguity, but also to prevent merging of states that leads to ambiguity.

We now propose to maintain these relations after each merge during an inference

algorithm.

2.2 Incremental Maintenance of Relations

Let E

6'

(q) (resp. E

6�

(q), E

k

(q)) denote the set of states unmergeable (resp. in-

compatible, in relation k) with state q.

At the beginning of an inference algorithm, E

6'

(q), E

6�

(q) and E

k

(q) have

to be initialized. E

6�

(q) and E

k

(q) can be computed with algorithm 2 and its

counterpart for states in relation k, but update of E

6'

(q) must also be done ;

for that reason we use the function Initialize (algorithm 3). Function Merge'

Algorithm 3 Initialization of E

6�

, E

k

and E

6'

1: Initialize(A=< �;�;Q;Q

0

; �;  >)

2: 8q 2 Q, E

6�

(q) = ;; E

k

(q) = ;; E

6'

(q) = ;

3: for all fq

1

; q

2

g 2 Q

0

�Q

0

do

4: SetCP

1

(q

1

,q

2

) /* maintain E

6'

, add k relation and propagate */

5: for all fq

1

; q

2

g 2 Q�Q, (q

1

) 6� (q

2

) do

6: SetIncompatible(q

1

,q

2

) /* maintain E

6'

, add incompatibility and propagate */

(algorithm 4) realizes the merging of two states and update sets E

k

, E

6�

and

E

6'

. This update is realized by propagating existing relations incompatible and

k on the state created by the merging (functions PropagateIncompatibility and

PropagateCP

1

, algorithm 5).

For example, the ambiguity of the automaton �gure 3 part b, may be detected

during the merging thanks to addition of new relations: the incompatibility q

0

6�

q

2

is transformed into q

01

6� q

2

by the merging, then this relation is propagated

to q

01

6� q

01

by the function PropagateIncompatibility. At this step an exception

is thrown since it would imply a k relation and an incompatibility between the

same states.

Every time an incompatibility or a relation k between two states has to be

added (functions SetIncompatible and SetCP

1

, algorithm 5), two actions are to

be taken: (1) we check that the new relation does not mean ambiguity of the

C-NFA (algorithm 5, line 3), (2) we compute new unmergeable states using the

relation q

1

k q

2

^ q

2

6� q

3

) q

1

6' q

2

(algorithm 5, line 11-14, and algorithm 6).

Thanks to this new algorithm, we are able to infer e�ciently non determin-

istic and non ambiguous C-NFAs. This algorithm can also be directly applied

to the inference of classical NFA by inferring a 2-NFA and enabling only merges

1

CP stands for Common Pre�x, and correspond to the k relation. We do not detail

the functions SetCP and PropagateCP which are the counterpart for relation k of

functions SetIncompatible and PropagateIncompatibility shown in algorithm 5.



9

Algorithm 4 Merge two states and update E

6�

, E

k

and E

6'

1: Merge'(A,q1,q2)

2: /* detection of unmergeable states */

3: if q

1

2 E

6'

(q

2

) then

4: throw exception

5: else

6: A Merge(A,q

1

,q

2

) /* substitute q

2

by q

1

in A and E

6'

, E

6�

, E

k

*/

7: for all q

0

2 E

k

(q

1

) do

8: PropagateCP(q

0

,q

1

)

9: for all q

0

2 E

6�

(q

1

) do

10: PropagateIncompatibility(q

0

,q

1

)

11: return A

Algorithm 5 Add a new incompatibility in E

6�

and propagates its e�ects

1: SetIncompatible(q

1

,q

2

)

2: if q

1

62 E

6�

(q

2

) then

3: if q

1

2 E

k

(q

2

) then

4: throw exception

5: else

6: /* add q

1

to E

6�

(q

2

) and q

2

to E

6�

(q

1

) */

7: E

6�

(q

1

) E

6�

(q

1

) [ fq

2

g ; E

6�

(q

2

) E

6�

(q

2

) [ fq

1

g

8: /* Propagation */

9: PropagateIncompatibility(q

1

,q

2

)

10: /* Update the blocs in relation 6' */

11: for all q 2 E

k

(q

1

) do

12: SetUnmergeable(q

2

,q)

13: for all q 2 E

k

(q

2

) do

14: SetUnmergeable(q

1

,q)

15: PropagateIncompatibility(q

1

,q

2

)

16: for all a 2 �; fp

1

; p

2

g 2 �

�1

(q

1

; a)� �

�1

(q

2

; a)g do

17: SetIncompatible(p

1

,p

2

)

between states of MCA(hS

+

; S

�

i) created by the positive sample S

+

. In this

framework, branches created by the negative sample are only used to check the

ambiguity of the current C-NFA. To �nd the corresponding NFA, we suppress in

the C-NFA the part of MCA(hS

+

; S

�

i) corresponding to the negative sample.

We present in the next section experiments applying this approach for the

inference of classical NFAs.

3 Experiments

We have implemented our algorithm to carry out �rst experiments in order to

test the validity of our approach. Our idea is to compare the information needed

to correctly infer a NFA versus its determinized version. We �rst present the

benchmark designed for this experiment and the state merging algorithm we

have used before giving the experimental results.



10

Algorithm 6 Add unmergeable states in E

6'

1: SetUnmergeable(q

1

,q

2

)

2: if q

1

= q

2

then

3: throw exception

4: else

5: if q

1

62 E

6'

(q

2

) then

6: E

6'

(q

1

) E

6'

(q

1

) [ fq

2

g; E

6'

(q

2

) E

6'

(q

2

) [ fq

1

g

3.1 Benchmark

We have chosen for this benchmark di�erent non deterministic automata (�g-

ure 4) inspired by di�erent papers [Dup96, SY97, DLT00] or speci�cally designed

for the benchmark.

We have tried to represent the various processes of determinization. The

benchmark contains: a DFA such that no smaller NFA that recognizes the same

language is expected to exist (L1) ; a NFA such that its determinization is

polynomial (L2) ; NFAs with exponential determinization, representing a �nite

language (L3) or not (L4, L5) ; a simple NFA common in the DFA literature

[Dup96], with a transition added in its transition function (L6).

The various properties of these automata are summarized in table 1. A pa-

rameter n is set for some of the automata allowing to tune their size, the value

chosen for n in the benchmark is indicated in the third column of table 1.

L2

b

a

b

a

b

a

a

a

b
L3

a
b

a

b

a

a

b
a

b
L4

a b

a

a b a b

L5

a b

b

a

b a

b

L1

a

b

b

a

a

b

b
a

b

a

b

a

b

aa
b

L6

a

b

b a

a

a

b

Figure4. Automata of the benchmark



11

number Language with � = fa; bg n in the size size

benchmark of NFA of DFA

L1 all word such that the absolute

value of its number of a minus

its number of b modulo n is 0 8 n n

L2

0

b

1

a

b
a

b

n-2
a

b

n-1
a

a

a

b

4 n (n � 1)

2

+ 2

L3 fw 2 �jw = uav; jwj < n 5 n+ 1 2

n=2+1

� 1 if n is even

^jvj = bn=2c � 1g 3 � 2

bn=2c

� 1 if n is odd

L4 �

�

a�

n

2 n+ 2 2

n+1

L5 f(b

�

a)

(n�1):x+n:y

jx 2 IN; y 2 IN

+

g 3 n 2

n

� 1

L6 see automaton - 3 7

Table1. Characteristics of the benchmark's automata

Samples of training and testing sets were generated following a normal distri-

bution for length and a uniform distribution for words of a given length. Training

and testing sets are disjoint.

3.2 Algorithm

In these experiments, we consider the inference of a minimum sized non deter-

ministic automaton. We propose to use the \coloring" scheme which has been

proven e�cient for this search in the deterministic case [BF72, CN97, OS98].

We briey describe the algorithm we have used. A set C of colored states

(the states of the target automaton) is maintained. Search space exploration is

performed by a function choosing at each step a state q of Q � C and calling

itself recursively, �rst after each successful merging between q and a state of C,

and second, after the promotion of q in C. Adopting a Branch & Bound strategy,

the search is pruned if the number of states in C is greater than in the smallest

solution found.

The same heuristic than in [CN97] has been used both for the deterministic

and the non deterministic automaton inference: at each step the state, having the

maximum number of colored states unmergeable with it, is chosen to be colored.

This algorithm has been used in the upper bound framework [BF72, OS98],

which means that it tries to �nd a solution of size one and increments the size

until a solution is found. Within this framework, we guarantee that the solution

found is of minimum size and structurally complete with the samples.



12

3.3 Results

The result of algorithm's runs are given in �gure 5 and table 2. We can ver-

ify that for all the experiments except one, identi�cation of the NFA requires

a smaller sample than identi�cation of its deterministic version. The only ex-

ception is L1 which has been constructed so as to be hard to identify in the

non deterministic approach. For all other languages non deterministic approach

seems clearly better suited to this task as sparse training data are available.

We may interpret this result by applying Occam's razor principle: smaller

automaton compatible with positive and negative samples are more likely to

identify the target language.

This results may also be explained by the amount of data needed to ensure

structural completness with respect to the target automaton.

language number of samples needed to

reach \stable" 100% of recognition

deterministic case non deterministic case

L1 166 278

L2 372 23

L3 > 500 79

L4 65 22

L5 100 32

L6 190 27

Table2. convergence observed

Conclusion

We have proposed an algorithm to detect whether a C-NFA is ambiguous. This

algorithm may be used incrementally in a state merging inference process, taking

into account not only the possible state merging but also the impossible ones.

We have applied this approach for the exact search of minimal NFA with a

saturation strategy. Experimental results are promising and tend to show that

less data may be needed to identify the non deterministic automata representa-

tion of a language than its deterministic representation.

However the main problem for the inference of non deterministic automata

remains the lack of canonical form. Denis & al. [DLT00] have presented very

recently a �rst response to this problem by constructing a subclass of NFA for

which a canonical form can be de�ned. Their results could be integrated in

the state merging framework in order to reduce the search space and to obtain

identi�cation results.

Acknowledgments: The authors wish to thank Jacques Nicolas for helpful

discussions about this work and Tallur Basavanneppa for valuable comments on

the manuscript.



13

75

80

85

90

95

100

50 100 150 200 250 300

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

3
4
5
6
7
8

50 100 150 200 250 300#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L1

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400 450 500

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L2

75

80

85

90

95

100

0 50 100 150 200 250 300

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

2
4
6
8

10

0 50 100 150 200 250 300#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L3
55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

2
3
4
5
6
7
8

10 20 30 40 50 60 70 80 90 100#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L4

50

55

60

65

70

75

80

85

90

95

100

20 40 60 80 100 120 140 160

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

2
3
4
5
6
7

20 40 60 80 100 120 140 160#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L5
50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180 200 220 240

re
c
o

g
n

it
io

n
 l
e

v
e

l

deterministic inference
non deterministic inference

2
3
4
5
6
7

0 20 40 60 80 100 120 140 160 180 200 220 240#
a

u
to

m
a

to
n

 s
ta

te
s

#samples

L6

Figure5. Graphs giving recognition level on testing set and size of automaton found

(ordinate) compared to the number of samples in training set (abscissa). Inference of

DFAs and NFAs is given on same graphs for each language.



14

References

[Alq97] Alqu�ezar (R.). { Symbolic and connectionist learning techniques for grammat-

ical inference. { Th�ese de PhD, Universitat Politecnica de Catalunya, mars

1997.

[AS95] Alqu�ezar (R.) et Sanfeliu (A.). { Incremental grammatical inference from

positive and negative data using unbiased �nite state automata. In : Shape,

Structure and Pattern Recognition, Proc. Int. Workshop on Structural and

Syntactic Pattern Recognition, SSPR'94, Nahariya (Israel), pp. 291{300. {

1995.

[BF72] Biermann (A. W.) et Feldmann (J. A.). { On the synthesis of �nite-state

machines from samples of their behaviour. IEEE Transactions on Computeurs

C 21, 1972, pp. 592 { 597.

[CN97] Coste (F.) et Nicolas (J.). { Regular inference as a graph coloring problem.

In : Workshop on Grammar Inference, Automata Induction, and Language

Acquisition (ICML' 97). { Nashville, TN., USA, juillet 1997.

[Cos99] Coste (F.). { State merging inference of �nite state classi�ers. { Rapport

technique n

�

INRIA/RR-3695, IRISA, septembre 1999.

[dlH97] de la Higuera (C.). { Characteristic sets for polynomial grammatical inference.

Machine Learning, vol. 27, 1997, pp. 125{138.

[DLT00] Denis (F.), Lemay (A.) et Terlutte (A.). { Apprentissage de langages r�eguliers

�a l'aide d'automates non d�et�erministes. In : Conf�erence d'apprentissage

CAp'00. { 2000.

[Dup96] Dupont (P.). { Utilisation et apprentissage de mod�eles de langages pour

la reconnaissance de la parole continue. { Th�ese de PhD, Ecole Nationale

Sup�erieure des T�el�ecommunications, 1996.

[Gol78] Gold (E. M.). { Complexity of automaton identi�cation from given data.

Information and Control, vol. 37, 1978, pp. 302 { 320.

[HU80] Hopcroft (J.) et Ullman (J.). { Introduction to Automata Theory, Languages,

and Computation. { N. Reading, MA, Addison-Wesley, 1980.

[Lan92] Lang (K. J.). { Random dfa's can be approximately learned from sparse

uniform examples. 5th ACM workshop on Computation Learning Theorie,

1992, pp. 45 { 52.

[LPP98] Lang (K. J.), Pearlmutter (B. A.) et Price (R. A.). { Results of the abbadingo

one DFA learning competition and a new evidence-driven state merging al-

gorithm. Lecture Notes in Computer Science, vol. 1433, 1998, pp. 1{12.

[OG92] Oncina (J.) et Garcia (P.). { Inferring regular languages in polynomial update

time. Pattern Recognition and Image Analysis, 1992, pp. 49 { 61.

[OS98] Oliveira (A. L.) et Silva (J. P. M.). { E�cient search techniques for the

inference of minimum size �nite automata. In : South American Symposium

on String Processing and Information Retrieval. { 1998.

[SY97] Salomaa (K.) et Yu (S.). { Nfa to dfa transformation for �nite languages. In :

First international workshop on implementing automata, WIA'96, p. 188. {

1997.

[Yok94] Yokomori (T.). { Learning non-deterministic �nite automata from queries

and counterexamples. Machine Intelligence, vol. 13, 1994, pp. 169{189.


