
Unambiguous automata inference by means of

state-merging methods

François Coste, Daniel Fredouille

IRISA-INRIA,

Campus Universitaire de Beaulieu

35042 Rennes Cedex

{francois.coste|daniel.fredouille}@irisa.fr

http://www.irisa.fr/

Abstract We consider inference of automata from given data. A clas-

sical problem is to �nd the smallest compatible automaton, i.e. the

smallest automaton accepting all examples and rejecting all counter-

examples. We study unambiguous automata (UFA) inference, an inter-

mediate framework between the hard nondeterministic automata (NFA)

inference and the well known deterministic automata (DFA) inference.

The search space for UFA inference is described and original theoretical

results on both the DFA and the UFA inference search space are given.

An algorithm for UFA inference is proposed and experimental results on

a benchmark with both deterministic and nondeterministic targets are

provided showing that UFA inference outperforms DFA inference.

Introduction

Motivations: We consider inference of nondeterministic automata (NFA) from

given data. A classical problem is to �nd the smallest compatible automaton,

i.e. the smallest automaton accepting all examples and rejecting all counter-

examples. When automata are deterministic (DFA), the problem has been ex-

tensively studied and is NP-complete [Gol78,PW89]. However, if enough exam-

ples and counter-examples are provided, polynomial inference algorithms using

state-merging method perform well [OG92,Lan92,LPP98].

NFA inference is known to be harder than DFA inference [Hig97]. But, in the

Occam's razor paradigm, it is worth noticing that NFA may be exponentially

smaller than DFA. NFA also represent some structures - like �gaps� in genomic -

more explicitly than DFA, and therefore are better suited to be interpreted by an

expert of the application domain. Experimental results of [CF00,DLT01] show

that inferring regular languages using classes of automata containing nondeter-

ministic representations is a promising approach.

Nevertheless, all the complexity of NFA is not necessary to take advantage

of nondeterminism. We propose to study the inference of an intermediate class

of automata, the unambiguous automata (UFA). As we will show in this article,

inferring UFA enables to introduce a reasonable amount of nondeterminism while

keeping some advantages of the DFA representation.

2 François Coste, Daniel Fredouille

To tackle UFA inference, we consider this problem as a search of a particular

UFA in a space of NFA. We propose to adapt states-merging methods - which

have been proven successful for DFA inference - to realize UFA inference. We �rst

describe the search space for NFA inference in the state-merging framework by

revisiting results of [DMV94] (section 1). Then, we propose operators allowing

to explore this search space by considering only unambiguous automata (section

2). Thanks to operators de�ned in section 2, di�erent strategies for exploring the

search space can be applied. We have implemented a greedy strategy together

with a heuristic inspired from classical DFA inference algorithms. This algorithm

is shown to perform better on a benchmark of the domain than the original DFA

algorithm. A comparison with the DeLeTe2 algorithm which infer residual �nite

state automata (RFSA) [DLT01] showing that each algorithm is more adapted

to di�erent subparts of the benchmark is also given.

De�nitions and Notations: We denote by jEj the cardinality of a set E. A

partition of a set E is a set of subsets of E such that the intersection of each pair

of subsets is empty and the union of all subsets is E. An element of a partition

is called a block. Let � be a �nite alphabet, we denote by �

�

the set of words

on �, by � the empty word and by juj the length of a word u of �

�

.

De�nition 1. A nondeterministic automaton, or NFA, is a 5-tuple h�;Q; I; �; F i

where � is the input alphabet, Q is a �nite set of states, I � Q is the set

of initial states, � is the transition mapping de�ned from Q � � to 2

Q

, F

is the set of �nal states. The � function is classically extended to words by:

8q 2 Q; 8a 2 �; 8w 2 �

�

; �(q; �) = fqg; �(q; aw) =

S

q

0

2�(q;a)

�(q

0

; w). A tuple

hq; a; q

0

i with q

0

2 �(q; a) is called a transition

The regular language recognized by an automatonA is L(A) = fw 2 �

�

j 9q

i

2

I; �(q

i

; w) \ F 6= ;g. We associate two languages to each state q of an automa-

ton, its pre�x language which is the set of words w such that q 2 �(I; w); and its

su�x language which is the set of words w such that �(q; w) \ F 6= ;. NFA are

considered trimmed (i.e. no state has an empty pre�x or su�x language). The

size of a NFA A is de�ned as its number of states.

A deterministic �nite automaton, or DFA is a NFA h�;Q; I; �; F i such that:

jI j = 1 and 8q 2 Q;8a 2 �; j�(q; a)j � 1. Some particular DFA can be de�ned.

The canonical automaton of the regular language L, denoted by A(L), is the

unique minimal DFA accepting L. The universal automaton, UA(�) or more

simple UA, is the canonical automaton A(�

�

) accepting all words on � (�gure

2).

An acceptance for a word w 2 �

�

- with w = a

1

: : : a

jwj

- in an automaton

A = h�;Q; I; �; F i is a sequence (q

0

; : : : ; q

jwj

)

w

of jwj+1 states such that q

0

2 I ,

8i 2 [1; jwj], q

i

2 �(q

i�1

; a

i

), q

jwj

2 F . Transitions hq

i�1

; a

i

; q

i

i are said reached

by the acceptance. The ambiguity degree of an automaton A is the maximum

number of acceptances that exist in A for a word of �

�

. An unambiguous �nite

automaton, or UFA, is a NFA with an ambiguity degree inferior or equal to one

(�gure 1). When a NFA is not a UFA, we say it is ambiguous.

Unambiguous automata inference by means of state-merging methods 3

a,b

a a,b
Figure1. An example of UFA, representing the language �

�

a�

Notice that the class of DFA is included in the class of UFA. DFA and UFA

are obviously included in the class of NFA. NFA, UFA and DFA can represent

any regular language.

This document includes theorems for which only hints of proofs are provided;

for complete proofs the reader can consult [CF03].

1 Search space for automata inference

The search space we want to explore is the restriction to UFA of the search

space for NFA inference by means of state-merging methods. This �rst section

presents and revisits the NFA search space described by [DMV94,Dup96]. Next

section will study its restriction to UFA.

In the framework of inference from given data [Gol78], we try to infer lan-

guages from a training sample. In this paper, we de�ne a training sample of a

language L to be a couple of �nite sets hS

+

; S

�

i, where S

+

� L is called the

positive training sample and S

�

� �

�

rL is called the negative training sample.

For the sake of clarity we consider only the positive training sample in sections 1

and 2. However, results of these sections can be easily extended to consider unbi-

ased inference [AS95,Cos99], i.e. to consider symmetrically the two parts of the

sample.

An underlying assumption for inference of an automaton is that the positive

training sample is �representative enough� of the language to learn. This can be

formalized by the notion of structural completeness which intuitively means that

all constituents of target automaton are useful for the sample recognition. More

formally:

De�nition 2. A positive training sample S

+

is said to be structurally complete

with respect to an automaton A i� there exists an acceptance set A containing

exactly one acceptance for each word of S

+

such that:

- every transition of A is reached by an acceptance of A,

- every initial state of A is the �rst state of an acceptance of A,

- every �nal state of A is the last state of an acceptance of A.

Structural completeness hypothesis enables one to restrict the search space

to a �nite ordered set

1

of automata with a top and a bottom element. The top

element of this set is the universal automaton and the bottom element is the

Maximal Canonical Automaton (�gure 2).

De�nition 3. The maximal canonical automaton with respect to a positive sam-

ple S

+

= fw

1

; : : : ; w

jS

+

j

g, denoted by MCA(S

+

) or more simply MCA, is the

union of canonical automata A(fw

i

g) for each word of the sample (i 2 [1; jS

+

j]).

1

Vocabulary of this paper concerning ordered sets is taken from [DP90].

4 François Coste, Daniel Fredouille

The MCA realizes a learning by rote of the positive sample. Inference in the

state-merging framework consists in generalizing the language recognized by the

MCA by merging its states (or unifying them, see [DMV94] for a constructive

de�nition). Given an automaton A, and a partition � on states of A, we can

construct an automaton A=�. A=� is constructed by merging the states of A

being in a same block of the partition . We say that A=� is derived from A with

respect to partition �.

We denote the set of partitions on the states ofMCA by P (MCA). An order

on the partitions of P (MCA) can be de�ned as follows: we say that a partition �

2

directly derives from partition �

1

, denoted by �

1

� �

2

, if �

2

can be constructed

from �

1

as follows: 9b

1

; b

2

;2 �

1

; b

1

6= b

2

; �

2

= (�

1

r fb

1

; b

2

g) [fb

1

[b

2

g. The

transitive closure of � is denoted by �

�

. P (MCA) is a complete lattice of

partitions under the �

�

order relation.

The relation �

�

between partitions is extended to the relation �

�

A

between

automata as follows: A

1

�

A

A

2

, 9�

1

; �

2

2 P (MCA); �

1

� �

2

; A

1

=

MCA=�

1

; A

2

=MCA=�

2

. The transitive closure of �

A

, denoted by �

�

A

, de�nes

an order relation on automata. An automaton A inferior in the sense of �

�

A

to

an automaton A

0

is said to be derivable from A

0

.

LetA

NFA

(MCA), or more simplyA(MCA), denote the set of NFA derivable

from MCA. In the following sections, we extend this notation to any classes

of automata and any automata, for example A

DFA

(A) will denote the set of

deterministic automata derived from automaton A. The following theorem holds

(illustrated by �gure 2).

Theorem 11 The search space for NFA under the hypothesis of structural com-

pleteness of a positive training sample S

+

is A(MCA(S

+

)).

Hint of the proof: The proof is an extension of the proof provided by [DMV94] tak-

ing into account our more precise de�nition of structural completeness and NFA having

more than one initial state.�

UA:

a,b

MCA:

b b a

a a a

b a a a
*

2{{q} | q Q}

{Q}

P (MCA) *
A

UA

MCA

A (MCA)

Figure2. Universal automaton (UA), Maximal canonical automaton (MCA) for S

+

=

faaa; bba; baaag, P (MCA) and A(MCA).

Let us remark that, as illustrated by �gure 3, even if P (MCA) is a lattice

of partitions, A(MCA) is not a lattice of automata under �

�

A

order relation.

Unambiguous automata inference by means of state-merging methods 5

This shows clearly a misuse of terms used in the regular grammatical inference

community.

a
a

a

a

a a

a

a

a

a

a

a

a

a
a

a

a

a

Figure3. We cannot deduce that P (MCA) be-

ing a lattice, A(MCA) is also a lattice because

an automaton of A(MCA) can be derived from

more than one partition of P (MCA). The �gure

illustrates this point by exhibiting a couple of au-

tomata - the two on top - without greatest lower

bound under �

�

A

order relation (relation is repre-

sented by arrows).

2 Search space for UFA inference

2.1 From DFA to UFA

The inference search space has often been restricted to DFA, and NFA inference

can be considered to be harder than DFA inference (indeed, NFA do not have a

canonical form and are not polynomially learnable from given data whereas DFA

are [Hig97]). We show, in this section, that properties known for the restriction

of the search space to DFA are also valid for the restriction of the search space

to UFA.

The bottom element of the search space of DFA is the pre�x tree acceptor

denoted by PTA(S

+

) or more simply PTA [DMV94] and is obtained by deter-

minisation of MCA. For UFA, MCA being unambiguous, the bottom element

stays MCA like for the search space of NFA.

A �rst link between DFA and UFA search space is given by theorem 21:

Theorem 21 Let A be a UFA and S

+

a positive training sample structurally

complete with respect to A. There exists one and only one partition � in P (MCA)

such that A =MCA=�.

Hint of the proof: There exists a partition � such that A = MCA=� (entailed by

UFA � NFA and theorem 11). We have to show that this partition is unique.

For each word w 2 S

+

, A being a UFA, there exists only one acceptance acc

1

for

this word in A. The acceptance acc

2

for w in MCA de�nes a mapping function from

states of MCA to states of A, every ith state of acc

2

being mapped to ith state of acc

1

.

This mapping de�nes for every state of MCA the unique block of partition it can be

in, and therefore the unique possible partition. �

This property was known for DFA and theorem 21 replaces it in the more

general framework of UFA. From theorem 21 and as illustrated by �gure 4, UFA

have the advantage over NFA of being represented by only one partition. DFA

have the advantage over NFA and UFA of having a canonical form.

6 François Coste, Daniel Fredouille

a

a

a

c1

a

a

c1

a

a c1

NFA

DFA

UFA

UA(S)

MCA(S={aaaaaa})

Figure4. The �gure shows partitions of

minimum size 2 representing the same lan-

guage L = a

+

in P (MCA) with S

+

=

hfaaaaaagi. When looking at derived au-

tomata from these partitions, we count a

unique DFA, two UFA and 7 NFA, 5 being

isomorphic.

To explore the search space of UFA, we could consider only state-merging

from the MCA leading to other UFA. Indeed, we show in [CF03] - extending a

theorem of [Dup96] for DFA - that all UFA of the search space can be reached

from the MCA by a sequence of merge considering only UFA.

Nevertheless, we focus in this paper on another state-merging operator for

UFA inference called unambiguous merging. This operator can be considered as

the counterpart of the deterministic merging operator which has been extensively

used in DFA inference algorithms (e.g. [OG92,LPP98]).

2.2 From deterministic merging to unambiguous merging

The deterministic merging operator is based on a procedure called merging for

determinisation. After introducing a few de�nitions and a property, we present

the dual merging for disambiguisation procedure and then the unambiguous

merging operator

2

.

Two states q

1

and q

2

are said to be in common pre�x relation (resp. in com-

mon su�x relation) if the intersection of their pre�x languages (resp. their su�x

languages) is not empty. Two states q

1

and q

2

simultaneously in common pre�x

relation and in common su�x relation are said in parallel acceptance relation,

denoted by q

1

k q

2

.

Property 21 An automaton A = h�;Q; I; �; F i is ambiguous i� it has two

di�erent states in parallel acceptance relation.

Hint of the proof: For every couple of di�erent states hq

1

; q

2

i in parallel acceptance

relation, there exists a word u common to their pre�x languages and a word v common

to their su�x languages. This is equivalent to the existence of two acceptances for the

word uv, the �rst reaching q

1

and the second q

2

by the word u. �

The sets of common pre�x and common su�x relations can be computed

and incrementally maintained after each merge [CF00]. Common su�x relation

is presented here for the �rst time but can be maintained exactly like incom-

patibility relation presented in [CF00]. Parallel acceptance relation is directly

deduced from the previous.

2

Formal properties of the deterministic merging operator have never been formalized,

this section provides both its extension to the unambiguous case and a formalization

of this operator properties.

Unambiguous automata inference by means of state-merging methods 7

Algorithm 1 Merging for disambiguisation of A = h�;Q; I; �; F i

1: while 9q

1

; q

2

2 Q; q

1

k q

2

; q

1

6= q

2

do

2: A merge(A;q

1

; q

2

)

By using these relations, we can now de�ne the merging for disambiguisation

procedure (algorithm 1). This procedure consists in merging pair of states in

parallel acceptance relation. Each merge possibly entailing new relations, the

procedure stops merging when no more couple of states are in parallel acceptance

relation.

Compared to merging for determinisation, which can be de�ned as merging

of all states in common pre�x relation, merging for disambiguisation merges all

states both in common pre�x relation and common su�x relation. Therefore

merging for disambiguisation realizes only a subset of the merging needed by

merging for determinisation and allows a �ner exploration of the search space.

Merging for disambiguisation (resp. merging for determinisation) does all

necessary and su�cient merging to reach the �closest� UFA (resp. DFA) derived

from a NFA. We formalize this fact for UFA by property 22:

Property 22 Let A be a NFA, and A

0

the UFA obtained by merging for disam-

biguisation of A. Then every UFA of A

UFA

(A) is in A

UFA

(A

0

).

Hint of the proof: Let A = A

1

; A

2

; : : : ; A

n

= A

0

be the sequence of automata created

by the merging for disambiguisation procedure. From property 21 we can show that there

is no UFA in A

UFA

(A

i

)�A

UFA

(A

i+1

). The theorem can then be proven by induction

on i 2 [1; n[. �

Let us remark that property 22 entails that whatever the order of merging

realized by merging for disambiguisation (or merging for determinisation), these

merging always lead to the same automaton.

We now introduce the operator of unambiguous merging (resp. determin-

istic merging. Unambiguous (resp. deterministic) merging consists in merging

two states of an automaton and applying merging for disambiguisation (resp.

determinisation) to the resulting automaton.

We will denote by A

1

�

dis

A

2

(resp. A

1

�

det

A

2

) if automaton A

2

can

be obtained by applying one unambiguous (resp. deterministic) merging on A

1

.

Relations �

�

dis

and �

�

det

will denote respectively the transitive closure of �

dis

and �

det

.

As shown by theorem 22, every UFA derived from a given UFA A - i.e.

automata of A

UFA

(A) - can be reached by a sequence of unambiguous merging

from A. More formally: 8A

1

; A

2

2 UFA; A

1

2 A(A

2

)) A

2

�

�

dis

A

1

.

Theorem 22 Let A be a UFA, for all UFA A

0

of A

UFA

(A), there exists a se-

quence of automata A

0

; : : : ; A

n

such that A

0

�

dis

A

1

�

dis

: : : �

dis

A

n

and

A = A

0

, A

0

= A

n

.

Hint of the proof: This can be proven as a consequence of property 22.�

The counterpart of this theorem for DFA and deterministic merging is also true,

i.e.: 8A

1

; A

2

2 DFA; A

1

2 A(A

2

)) A

2

�

�

det

A

1

.

8 François Coste, Daniel Fredouille

Section 3 presents the use of the operator of unambiguous merging to explore

the space of UFA.

3 Experimental comparison

3.1 Algorithms and benchmarks

Section 2 detailed both the search space for UFA and operators available to

explore it. Di�erent strategies can be applied when using these operators. Our

experimental results are based on a greedy search - presented by algorithm 2 -

which is the classical approach applied for DFA inference (e.g. [OG92,LPP98]).

The choose-two-states method of this algorithm represents the heuristic, i.e.

Algorithm 2 Principle of greedy state-merging algorithms.

Function greedy-state-merging-algorithm(S = hS

+

; S

�

i)

A MCA(S

+

) (or A PTA(S

+

) for DFA inference)

while choose-two-states(A; q

1

; q

2

) do

A

0

 state-merging(A; q

1

; q

2

)

if A

0

is compatible with S

�

then A A

0

return A

the order used to try state-mergings. The state-merging method depends on

which class of automata is inferred: we use deterministic merging and unambigu-

ous merging for respectively DFA and UFA inference.

We compared the best heuristic known for DFA inference, called EDSM

[LPP98], a hill-climbing strategy for UFA (detailed in subsection 3.2) and in-

ference of RFSA (Residual Finite State Automata) with the DeLeTe2 algorithm

[DLT01]. The experimental comparison of DFA, UFA and RFSA inference is

based on benchmarks provided in [DLT00,DLT01]. These benchmarks contain

training and testing sets for languages generated using di�erent methods: con-

struction of random DFA, random NFA and random regular expressions. We

added to this benchmark languages generated by a UFA generator.

The UFA generator takes �ve parameters: a number of states N , a proba-

bility p

i

for a state to be initial, a probability p

f

to be �nal, an alphabet �

and a number of transition t. After constructing the N states of the generated

automaton A, each state is set initial with probability p

i

; then each state is set

�nal with probability p

f

, except if this entails that A became ambiguous; and

then, we try t times to insert a new transition hq

1

; a; q

2

i between states of A

(q

1

, q

2

and a being chosen uniformly in Q � � � Q), this transition insertion

is rejected if it entails A to be ambiguous. UFA of the benchmark have been

generated with parameters: N = 20, p

i

= 0:3, p

f

= 0:3, t = 60 and � = f0; 1g.

Training and testing samples are generated with the method used in [DLT01]:

for each word w of the sample, its length is chosen uniformly in [0; 29] and w is

Unambiguous automata inference by means of state-merging methods 9

chosen uniformly between words of this length. w is labeled by '+' if it is in the

generated language and by '-' otherwise. 30 languages are generated for each size

of training sample (50, 100, 150 or 200). The generated language is kept only if

the corresponding training sample contains at most 80%, and at least 20%, of

words labeled by `+'. Testing sample of each language contains 1000 examples

and counter-examples.

3.2 Heuristics for UFA and DFA inference

Heuristic: For UFA inference, we use a hill-climbing heuristic, i.e. we choose the

unambiguous merging leading to the smallest automaton (which is equivalent to

the unambiguous merging entailing the most state-mergings). For DFA inference

we used the EDSM heuristic (for Evidence Driven State-Merging). This heuristic

has been proposed by [LPP98] and won the grammatical inference competition

Abbadingo [Abb98]. EDSM chooses the deterministic merging that entails the

most number of merge between �nal states by merging for determinisation.

In practice, these two heuristics need the computation respectively of each

possible deterministic mergings and unambiguous mergings of two states. A score

is given to each state pair (consisting in the number of merged states for UFA,

and of the number of merged �nal states for DFA), and the states pair with the

best score is choosen.

Even if a priori di�erent, these two heuristics may be seen as closely related

to each other with respect to the notion of acceptance.

Indeed, the choice of counting merge between �nal states instead of merge

between every states in EDSM can be seen as a measure of the �size� of the

intersection of su�xes languages of the two scored states. The pre�x languages

of states of a DFA being disjoint, this measure can also be seen as a measure of

the number of acceptances being uni�ed by the state-merging.

This idea is also present in the hill-climbing heuristic for UFAs. Each state-

merging computed by the merging for disambiguisation procedure is due to the

existence of two acceptances for a word. These state-mergings therefore enable

to unify acceptances, and the number of merged states can can be considered as

a measure of the number of uni�ed acceptances.

Use of counter-examples: Counter-examples may be used in di�erent ways.

We can consider biased inference which consists in generalizing examples and

stopping the generalization with the counter-examples [DMV94]. We can also

consider unbiased inference [AS95,Cos99], which consider that the couple S

+

and

S

�

are examples respectively of the target languageL and of L

�

= �

�

rL. In this

context, the two languages L and L

�

are inferred by generalizing simultaneously

S

+

and S

�

using a classi�er automaton. Generalization is stopped with the

constraint L \ L

�

= ; (instead of L \ S

�

= ;).

The DeLeTe2 algorithm works in the biased inference paradigm. The EDSM

heuristic has been presented in [LPP98] in the unbiased inference paradigm but

can also be applied to biased inference (as presented in the previous paragraph).

In this paper we compare the use of the EDSM heuristic for DFA inference both

10 François Coste, Daniel Fredouille

in the unbiased and biased paradigm, hill-climbing for UFA inference both in the

unbiased and biased paradigm and DeLeTe2. Corresponding algorithms will be

denoted respectively D

edsm

, Db

edsm

, U

hc

, Ub

hc

, and DLT2. We will also consider

the majority vote denoted by MAJ.

3.3 Inference results

The evaluation consists in scoring each algorithm for each benchmark thanks to

its average recognition level on the test sets (�gure 5). Like [DLT01], we also

compare algorithms thanks to matches (noted algo1-algo2 in �gure 6). A match

consists in counting the number of time an algorithm is better than another

(in term of recognition rate), and we count a tie when the di�erence is not

signi�cant (using the Mac Nemar test [Die98]). Those matches are noted as

tuple: wonByAlgo1,nbTie,wonByAlgo2. Since experiments have been made on

di�erent machines with di�erent implementations, comparing running time is

di�cult. Nevertheless, in these experimentations, our algorithm Ub

hc

seems to

be 2 orders of magnitude slower than DLT2, which is slower than Db

edsm

. The

symbol * in the cell designates when some experiments have not �nished due to

the time limit of 100h on 750 Mhz cpu (more precisely, two runs on the 480 runs

of the algorithm U

hc

did not �nished on time).

Generator NFA Regular Expressions

Sample size 50 100 150 200 50 100 150 200

MAJ 69.0 66.2 65.7 67.8 64.7 66.7 62.3 62.8

Db

edsm

67.1 70.0 73.1 73.3 83.7 85.5 91.8 92.1

D

edsm

67.0 67.6 70.7 71.0 79.5 81.7 89.7 93.1

Ub

hc

70.4 70.8 74.0 73.1 75.8 82.9 91.7 91.2

U

hc

67.0 71.2 73.7 71.3 76.0 81.5 88.8 91.0

DLT2 69.8 74.8 77.1 79.4 81.7 91.7 92.3 95.9

Generator UFA DFA

Sample size 50 100 150 200 50 100 150 200

MAJ 83.8 82.1 81.4 81.9 70.7 71.0 72.5 73.8

Db

edsm

89.2 91.1 94.3 93.2 69.1 73.3 74.8 76.3

D

edsm

79.1 81.0 89.6 90.2 65.7 68.3 70.4 74.7

Ub

hc

90.7 91.9 94.2 93.8 70.4 73.4 74.5 77.5

U

hc

89.7 89.8 92.5� 91.6 71.1 72.9 75.9 77.8�

DLT2 88.6 90.4 91.9 92.7 61.9 65.1 68.3 70.7

Figure5. Average recognition level on test sets.

We remark that algorithms based on UFA inference have better recognition

scores on the benchmark than the original DFA algorithm (Ub

hc

won 170 times

against 119 for Db

edsm

). This result was hoped for NFA, regular expressions

and UFA benchmarks. More surprisingly, UFA inference performs better than

Unambiguous automata inference by means of state-merging methods 11

Generator NFA Regular Expressions

Sample size 50 100 150 200 50 100 150 200

D

edsm

-Db

edsm

10,8,12 5,13,12 5,10,15 6,12,12 7,12,11 5,13,12 5,16,9 3,23,4

Ub

hc

-Db

edsm

16,9,5 11,12,7 12,10,8 12,10,8 5,12,13 11,6,13 10,14,6 6,10,14

U

hc

-Ub

hc

4,11,15 4,20,6 5,18,7 6,11,13 9,13,8 9,5,16 5,13,12 6,13,11

DLT2-Ub

hc

9,6,15 12,13,5 14,10,6 16,11,3 15,8,7 17,8,5 10,10,10 18,9,3

Generator UFA DFA

Sample size 50 100 150 200 50 100 150 200

D

edsm

-Db

edsm

1,4,25 1,6,23 2,13,15 6,6,18 4,10,16 2,7,21 2,12,16 7,10,13

Ub

hc

-Db

edsm

17,6,7 13,14,3 7,15,8 13,9,8 13,13,4 11,14,5 8,16,6 15,11,4

U

hc

-Ub

hc

5,15,10 4,14,12 3,15,11� 3,12,15 8,16,6 4,21,5 10,18,2 10,16,3�

DLT2-Ub

hc

6,11,13 4,14,12 3,13,14 6,13,11 1,7,22 1,2,27 2,6,22 2,5,23

Figure6. Matches between algorithms.

DFA inference on the DFA benchmark. We explain this by considering that

choosing the wrong unambiguous merging at a step of the algorithm causes less

constraints on future mergings than choosing a wrong deterministic merging.

A wrong unambiguous merging can therefore be �partly corrected� by future

mergings.

We can also remark that the biased versions of the algorithms are much

better than the unbiased one on benchmarks for which L and �

�

r L are not

generated symmetrically (Ub

hc

won 135 times against 63 for U

hc

, and Db

edsm

won 168 times against 56 for D

edsm

on these benchmarks).

When comparing UFA and RFSA inference, tables of �gures 5 and 6 show

that UFA inference and RFSA inference are each better suited to di�erent sub-

part of the benchmark: Ub

hc

performs better than DLT2 on UFA and DFA based

benchmarks. However, DLT2 is the best algorithm on benchmarks based on NFA

and regular expressions. Thus, we suppose that the class of UFA is �closer� to

DFA than the class of RFSA is �close� to NFA and regular expressions.

Conclusion

We have revisited the search space for automata inference. We formalized prop-

erties known on the DFA search space, and extended them to the UFA search

space. This work leaded to the extension of the well known deterministic merging

operator to the unambiguous merging operator, which seems very promising for

automata inference. Indeed, this new operator allows us to propose a heuristic

closely related to EDSM [LPP98]. The use of the unambiguous merging operator

together with this heuristic has been shown to perform well on benchmarks of

the domain.

Deeper studies on the deterministic merging operator and on the unambigu-

ous merging operator have shown that these operators give a lattice structure to

the search space [CF03]. Therefore, practical results presented in this paper use

12 François Coste, Daniel Fredouille

only part of the available theoretical properties. Integrating these properties in

inference algorithms is an open perspective to our research.

References

[Abb98] Abbadingo one, 1998. http://abbadingo.cs.unm.edu/.

[AS95] R. Alquézar and A. Sanfeliu. Incremental grammatical inference from positive

and negative data using unbiased �nite state automata. In Shape, Structure and

Pattern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern

Recognition, SSPR'94, Nahariya (Israel), pages 291�300, 1995.

[CF00] F. Coste and D. Fredouille. E�cient ambiguity detection in C-NFA, a step

toward inference of non deterministic automata. Grammatical Inference: Algo-

rithms and Applications, ICGI'00, pages 25�38, 2000.

[CF03] F. Coste and D. Fredouille. What is the search space for

the inference of nondeterministic, unambiguous and determinis-

tic automata ? Technical report, IRISA, to appear, download:

http://www.irisa.fr/prive/dfredoui/down/report.ps.gz, 2003.

[Cos99] F. Coste. State merging inference of �nite state classi�ers. Technical Report

INRIA/RR-3695, IRISA, September 1999.

[Die98] Thomas G. Dietterich. Approximate statistical test for comparing supervised

classi�cation learning algorithms. Neural Computation, 10(7):1895�1923, 1998.

[DLT00] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using non

deterministic �nite automate. Grammatical Inference: Algorithms and Appli-

cations, ICGI'00, 2000.

[DLT01] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSA.

In Proceedings of the 12th International Conference on Algorithmic Learning

Theory, ALT'01, pages 348�363, 2001.

[DMV94] P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular

inference ? Grammatical inference and Applications, ICGI'94, pages 25�37,

1994. Springer Verlag.

[DP90] B. Davey and A. Priesley. Introduction to lattices and order. Cambridge math-

ematical textbooks, 1990.

[Dup96] P. Dupont. Utilisation et apprentissage de modèles de langages pour la recon-

naissance de la parole continue. PhD thesis, Ecole Nationale Supérieure des

Télécommunications, 1996.

[Gol78] E. M. Gold. Complexity of automaton identi�cation from given data. Infor-

mation and Control, 37:302 � 320, 1978.

[Hig97] C. Higuera (de la). Characteristic sets for polynomial grammatical inference.

Machine Learning, 27:125�138, 1997.

[Lan92] K. J. Lang. Random dfa's can be approximately learned from sparse uniform

examples. 5th ACM workshop on Computation Learning Theorie, pages 45 �

52, 1992.

[LPP98] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one

DFA learning competition and a new evidence-driven state merging algorithm.

Lecture Notes in Computer Science, 1433:1�12, 1998.

[OG92] J. Oncina and P. García. Inferring regular languages in polynomial update

time. Pattern Recognition and Image Analysis, pages 49 � 61, 1992.

[PW89] L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be

approximated within any polynomial. In 21st ACM Symposium on Theory of

Computing, pages 421�444, 1989.

