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Abstract: Pattern discovery is limited to position-specific characterizations like Prosite’s
patterns or profile-HMMs which are unable to handle, for instance, dependencies be-
tween amino acids distant in the sequence of a protein, but close in its three-dimensional
structure. To overcome these limitations, we propose to learn automata on proteins.
Inspired by grammatical inference and multiple alignment techniques, we introduce a
sequence-driven approach based on the idea of merging ordered partial local multiple
alignments (PLMA) under preservation or consistency constraints and on an identifica-
tion of informative positions with respect to physico-chemical properties . The quality
of the characterization is asserted experimentally on two difficult sets of proteins by a
comparison with (semi)-manually designed patterns of Prosite and with state-of-the-art
pattern discovery algorithms. Further leave-one-out experimentations show that learn-
ing more precise automata allows to gain in accuracy by increasing the classification
margins.
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1 Introduction

Pattern Discovery. Proteins are essential to the structure and functions of all living cells and viruses.
They are amino acid chains that fold into three-dimensional structures but most of the time only amino
acid chains – a sequence over 20 letters each representing one amino acid – are available. Given the
rapidly growing amount of available sequences in the databases, produced in particular by DNA se-
quencing projects, prediction of the structure or the function of proteins from their sequences is one
of the major challenges in molecular biology.
One successful approach to assist the biologist in this task, is to define signatures of known fami-
lies of biologically related proteins (typically at the functional or structural level). Signatures usually
identify conserved regions among the family of proteins, revealing the importance for the function
of their structural or physico-chemical properties. A representative example of this approach is the
well-known Prosite database [15], gathering protein sequence patterns and profiles for a large number
of families.
Prosite’s patterns are restricted regular expressions while profiles (or weight matrices, the two terms
being used synonymously) are tables of position-specific amino acid weights and gap costs. Among
the other types of signatures which may be found in the integrated database of proteins signatures
InterPro [36], profile-HMM [11] are probably the most widely used. Profile-HMM, like Prosite’s pro-
files, are position-specific scoring systems but are enhanced with the addition of insertion and deletion
states. Prosite’s patterns and their statistical counter-part, the profile-HMMs, may be considered as
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the more expressive signatures [6] currently used for characterization of proteins, respectively in the
class of exact patterns (returning directly whether the sequences are accepted or not) and probabilistic
patterns (returning acceptation probabilities of the sequences).
Even if in Prosite these signatures are still defined essentially by experts on the basis of multiple se-
quence alignments, automatic discovery of such signatures (pattern discovery) is a dynamic research
area [29].Among the state-of-the-art algorithms learning expressive patterns, Pratt [17], EMotif Maker
[25], Teiresias [28] or Splash [7] have been shown to generate successfully Prosite-like patterns. Con-
cerning stochastic models, commonly used tools such as HMMER [30] and SAM [18] are able to
estimate the parameters of the simple architecture of the profile-HMM. Thus, to obtain a high de-
gree of accuracy for the classification of proteins, stochastic models need to use elaborated adequate
weighting schemes [11].
The major limitation of all these patterns is that they are restricted to position-specific characteriza-
tions: as a matter of fact, neither relations between positions (for instance, distant correlated amino
acids in contact in the three-dimensional structure) nor alternative paths (disjunction over more than
one position) can be expressed in these models, whereas it could be done in true regular expressions,
automata or formal grammars.

Towards grammatical inference. Searls [32] has advocated the benefit of viewing the biolog-
ical sequences as sentences derived from a formal grammar. This allows not only to overcome the
position-specific characterization of the sequences, but also to benefit from the explicit modelling
provided by grammars. Trying to parse a sequence using a grammar gives a prediction, e.g., whether
a sequence belongs to a particular family, but a successful parse provides also information about
the sequence: the semantics associated with the derivation, e.g. the reason why a sequence belongs
to a particular family. A survey on learning grammars (Grammatical Inference) for biological se-
quence analysis has been published recently by Sakakibara [31]. The results presented are mainly on
the estimation of probability parameters of stochastic grammars while the problem of learning the
structure of grammars remains a difficult task with a few positive results on biological sequences.
Concerning DNA sequences, one can mention the application of Sequitur [24] to infer a hierarchical
structure on human genome (but without generalization) and the application of ADIOS to the genome
of Caenorhabditis elegans [33], both algorithms showing good compression ratios. Although the al-
gorithm can be applied to proteins, the authors have not published yet results of the application of
ADIOS to proteins sequences (the authors present, instead, an experiment of classification by SVM
using sets of extracted motifs). Concerning the application of such methods for the characterization
of proteins, we are only aware of the early work of Yokomori [35] on learning locally k-testable lan-
guages for the identification of protein α-chain regions by using a subclass of automata, which may
be linked to n-grams and to persistent splicing systems. Locally k-testable languages are languages
for which it is sufficient to parse subsequences of length k to decide whether a sequence is accepted
or not. This method is thus restricted to local characterization of length k, which has furthermore to
be fixed usually to a small value to avoid over-specialization by the inference algorithm.

Learning automata. We introduce in this paper a sequence-driven approach initiated in [10,9]
to learn automata on proteins. Inspired by grammatical inference and multiple alignment techniques,
the approach relies on the idea of merging ordered partial local multiple alignments.
Local multiple alignments are commonly used. They may be defined as the alignment of a signifi-
cantly conserved region of a set of sequences. In pattern discovery, many tools, such as Gibbs Sam-
pling [20], MEME [4] or Model [14], have been proposed to identify ungapped local multiple align-
ments. The purpose of these algorithms is to find the best alignment of the sequences on a given length
l without indels. Since the classical setting is biased toward aligning all the sequences, we introduce
the term of partial local multiple alignments (PLMA) to designate those which are not required to
involve all the sequences of the set. The interest of PLMAs is that they are more likely to represent



strongly conserved regions. Merging a PLMA is defined precisely hereafter. Roughly speaking, this
operation allows to obtain a local consensus on a subset of the sequences. By merging successively
PLMAs, we will be able to build automata representing complex succession of local consensus.
Our approach can be summarized as follows in a two-phase algorithm: first, a characterization stage
detects and orders representative PLMAs, then a generalization stage merges successively the PLMA
candidates under preservation or consistency constraints to identify globally conserved areas in which
only informative positions are conserved. The approach is sketched in figure 1 and its implementation
for learning automata on proteins is detailed in the next sections. A first validation of the approach by
leave-one-out experiments on difficult families of proteins is presented in the last section.

Figure 1. Main scheme of merging ordered PLMAs approach. The list of ordered PLMA is built during the
characterization phase. During the generalization phase several automata are built: (a) Maximal Canonical
Automaton, (b) result of merging the blue PLMA, (c) result of merging all the PLMAs and merging non
representative positions, (d) Automata returned by the method after the identification of physico-chemical
positions according to Taylor’s Venn diagram [34].



2 Characterization

In this section, we focus on the detection

Figure 2. Incompatible SFPs: by merging SFP A
with SFP B, position 3 would be merged with two
position 1 and 2 of the first sequence.

of the representative PLMAs of a set of protein
sequences and on scoring them. The first part
of the problem may be stated as that of finding
PLMAs with high similarity but on enough sen-
tences and on a sufficient length in order to be
significant. The second part of the problem con-
sists in defining a score that allows to compare
two PLMAs, ideally even if they are of different length and involve a different number of sequences.
Since there is no standard way to tackle these problems, many approaches can be proposed. We have
chosen to privilege the reduction of the number of parameters by developing an approach based on
significantly similar fragments pairs (SFP) as in the multiple alignment tool DIALIGN2 [23].
The term protein fragment designates here a contiguous subsequence of a protein and we consider
protein fragment pairs such that both fragments have the same length. The similarity of such a pair is
the sum of the individual similarity values (given by a substitution matrix) of the facing amino acids.
Difficulty in comparing the similarity of two different length fragment pairs is a well known problem.
To overcome this problem, DIALIGN2 [23] uses sets of significantly similar fragment pairs (SFPs):
DIALIGN’s first step consists in finding all fragment pairs such that their similarity is significantly
larger than expected on random sequences (as measured by a weight function w(s, l) related to the
probability of finding any fragment pair of length l with a score at least as large as s taking into ac-
count the lengths of the protein sequences). In DIALIGN2, these SFPs are then combined to make a
multiple alignment optimizing the global sum of weights under consistency constraints.

Similar Fragments Pairs Characterization.

We propose here to first consider SFPs as

Algorithm 1 SFP characterization.

Require: a set P of SFP.
Result: ordered list L of PLMAs s.t. each one is a SFP.

for each p ∈ P do
COMPUTE SCORE(p) . support, implication index . . .

while P 6= ∅ do
p← BEST SCORE SFP(P )
L.APPEND(p)
P ← P \ ({p} ∪ {q ∈ P | q incompatible with p})

return L

being PLMAs of the simplest type (i.e. involv-
ing only two sequences) and to rank them ac-
cording to their representativity. Ordering the
SFPs is necessary for choosing between two
incompatible SFPs. Two SFPs are incompati-
ble if a position of one sequence is aligned by
each SFP to two different positions in another
sequence (see figure 2). We name this con-
straint preservation constraint since merging
both SFPs in this case would merge on itself a
characteristic fragment and thus loose the de-

tected characterization. A pseudo-code for the SFP characterization is given in algorithm 1.
Different scores can be used for ordering the SFPs. To order the SFPs with respect to their represen-
tativeness of the whole family, we propose to estimate their support in other sequences of the family,
i.e. we count for each SFP the number of sequences containing a fragment sufficiently similar to it.
Several criteria can be chosen to decide whether a fragment is similar to two other ones. Let us note
that transitivity does not hold for similarity. We use the triangular inequality since it is simple, robust
and parameter-free. To simplify the expressions, we use w(f1, f2) instead of w(s, l) to designate the
DIALIGN2 weight of a fragment pair p = (f1, f2) having similarity score s and length l. A SFP
(f1, f2) is said to be supported by a fragment f if: w(f, f1) + w(f, f2) ≥ w(f1, f2). A SFP is said
to be supported by a sequence if it is supported by at least one fragment of the sequence. Let p be
a SFP. We define the support of p in a set of sequences S as the number of sequences supporting



p in S, denoted by σS(p). Hereafter, we denote SupportS(p) as the set of sequences included in S

supporting p.
More elaborate indexes based on the support may also be constructed. In particular, if a set of
proteins known not to belong to the family is available (we will denote this set by N ), we pro-
pose to rank the SFPs according to how discriminative they are, i.e. how their support in the fam-
ily implies their proportion to be supported in the family and in the other set of sequences. To
achieve this goal, we compute an implication index for each SFP p based on [22], denoted by ι(p) :
ι(p) = −P (SupportN(p))+P (SupportS(p))×P (N)√

P (SupportS(p))×|N |)
where |X| denotes the cardinality of a set X and P (X)

denotes its proportion with respect to S and N : P (X) = |X|
|S|+|N | . This formula is a normalized evalu-

ation of how the support of the SFP in the family implies its proportion to be supported in the family
and in the other set of sequences.
In the following, ordering the SFPs according to their support (resp. their implication index), and
according to weights of the SFPs in case of tie score, will be referred to as the support heuristic (resp.
implication heuristic).

Clique Characterization. From the SFP characterization presented in the previous section,
PLMAs involving more than two sequences will be progressively built by merging the SFPs. One
can be faced then with the situation of merging to SFP (f1, f2) and (f2, f3) such that the fragment
pair (f1, f3) is not significantly similar. This reasoning can be extended to chains of SFPs. The PLMA
corresponding to such single-linkage like merging of SFPs are likely to present a weak conservation.
In order to have more homogeneous PLMAs, we propose here an alternative characterization based
on cliques of SFPs, i.e. considering only PLMAs such that each pair of fragments involved in the
PLMA is a SFP and by merging only non intersecting PLMAs.

The clique approach allows us to re-

Algorithm 2 Clique characterization.

Require: a set P of SFP, a set S of sequences.
Result: ordered list L of PLMAs s.t. each one is a clique of SFPs.

z ← |S| . target size of the clique
while z > 1 do
C ← {C = {f1, ..., fz} | ∀(fi, fj) ∈ C, (fi, fj) ∈ P}
for each C ∈ C do

COMPUTE SCORE(C) . classically: Σp∈Cw(p)

while C 6= ∅ do
C ← BEST SCORE CLIQUES(C)
L.APPEND(C)
I1 ← {p ∈ P | ∃q ∈ C, p incompatible with q}
I2 ← {(fa, fb) ∈ P | ∃fi, fj ∈ C, fa ⊂ fi, fb ⊂ fj}
I3 ← {(fa, fb) ∈ P | ∃fi ∈ C, fa ∩ fi 6= ∅,

∀fj ∈ C, fb ∩ fj = ∅}
C ← C \ ({C} ∪ {C ′ ∈ C | C′ ∩ (I1 ∪ I2 ∪ I3) 6= ∅}

z ← z − 1

return L

strict the number of candidate PLMAs;
we are then able to propose a practical al-
gorithm performing an exhaustive search
of cliques for decreasing target sizes. The
pseudo-code is given in algorithm 2 where
I1, I2, I3 designate respectively incompat-
ible, included and interfering fragment pairs
with C . Let us note that while the max-
imum clique search is NP-Complete, in
practice, the number of large cliques is
small and finding a large clique may dras-
tically reduce the number of remaining
fragment pairs (especially with the incon-
sistency constraints introduced in section
3). Moreover, beginning by the most di-
vergent sequences is a good heuristic to
reduce the visited search space.

3 Generalization

Characterization allows to find representative PLMAs of the sample set: it allows to identify the
important positions in the sequences with respect to the sample. We will see in this section how to use
this characterization to build an automata modeling the family by generalizing the sample. The goal
is to build a model allowing to recognize new members of the family (with a good accuracy) but also
to get an explicit model of the family allowing to gain new insights on the sequences.



PLMA Merging. This first generalization step applies the classical state-merging scheme
popularized by RPNI [26] and EDSM [19] to PLMA. We consider the more general case allowing to
learn non-deterministic automata. Following the definitions of [8], to which we refer the reader for
details, the general sketch of this kind of algorithm is to first construct an automaton, named maximal
canonical automaton (MCA) representing exactly the training set of sequences and then to generalize
the recognized language by merging (unifying) some of its states.

To define PLMA merging, we first extend

Algorithm 3 PLMAs Merging generalization.

Require: sample sequence set S, ordered list of PLMA L.
Result: Automata A.

A←MCA(S) . Maximal Canonical Automata
for each plma ∈ L do

if COMPATIBLE(plma) then MERGE(A, plma)

return A

state-merging to local alignment merging. Let
us first remark that since MCA represents ex-
actly the training set, one can define a one-to-
one function from the amino acids positions
to the corresponding transitions in MCA. The
aligned positions of a local alignment deter-
mine thus a set of pairs of transitions. We de-
fine the local alignment merging procedure as
merging, for each corresponding pair of transition, the two target states together and the two source
states together. PLMA merging can then be defined as merging its pairs of local alignments (see
example in figure 1). The pseudo-code of the PLMA merging generalization procedure is given in
algorithm 3. It proceeds by merging successively all the PLMA in the ordered list unless they are not
compatible with a previous merge. Of course, compatibility tests can be omitted if they have already
been performed in the characterization phase. One can choose between two kinds of compatibility
constraints: preservation constraints and inconsistency constraints. Preservation constraints (see fig-
ure 2 and section 2) aim at preserving the structure of previous merges: this can be done simply by
memorizing after each PLMA merge that the resulting states should not be merged together. Con-
sistency constraints are the classical constraints used in sequence alignment [23] and can be handled
efficiently using the GABIOS library [1]. Preservation constraints are weaker than consistency ones
(i.e. consistency implies preservation) but preservation constraints allow PLMA crossing whereas
consistency constraints do not.

Merging non representative positions.

After merging PLMAs, some positions

Algorithm 4 Merging non representative positions.

Require: Automata A, for each state s of A the number ns of states
of MCA merged on s, quorum q.
DETECT EXCEPTION PATHS(A)
Mergeable← {s ∈ A | ns < q and s 6∈ exception path }
for each s ∈Mergeable do

for each state t adjacent to s in A do
if t ∈Mergeable then

MERGE(A,s, t)

return A

may be involved in no merges. These lo-
calizations are clearly not representative
of the family. We propose to treat them
as “gaps”. The idea can be extended to
regions not involved in a sufficient num-
ber of sequences to be considered as be-
ing representative: if we introduce clas-
sically a quorum parameter, the general-
ization procedure could be stated as fol-
lows: if a state is used by fewer sequences

than specified by the quorum, it is merged with its neighbours. The purpose of this generalization is to
keep only the identified characteristic regions. Several variations around this merging scheme could
be implemented. Statistical information like the length or the amino acid composition of the gap could
also be considered and added to the model. We name characteristic path a set of adjacent states used
by at least as many sequences as specified by the quorum. The corresponding positions will be named
characteristic PLMA.



The problem with such a proce-

Figure 3. Exception example and result of algorithm 4.

dure is that characteristic paths may
be bypassed by merging an outlier pro-
tein. More generally, an exception path
is defined to be a path allowing to by-
pass a characteristic path (see figure
3). This kind of path should not be
treated as a gap but rather as an exception and should be kept as it is, or withdrawn from the au-
tomata. The pseudo-code for handling gaps is given in algorithm 4.

Identification of physico-chemical
properties.

The general substitution ma-

Algorithm 5 Identification of physico-chemical properties.

Require: Automata A, set of a.a. groups G, thresholds λG, λΣ .
for each (q1, q2) ∈ A do

P ← { a ∈ Σ | (q1, a, q2) ∈ A}
if P 6= ∅ then

G← SMALLEST({G ∈ G | P ⊆ G})
if LRG/P ≥ λG then

for each a ∈ G \ P do ADD(A, (q1, a, q2))

else if LRΣ/P ≥ λΣ then
for each a ∈ Σ \ P do ADD(A, (q1, a, q2))

return A

trices used so far for the defini-
tion of SFP are estimated from
large sets of close proteins and
thus reflect only average similar-
ity (over various contexts involv-
ing different physico-chemical prop-
erties of the amino acids). We pro-
pose here to use these localiza-
tions as contexts to recover the
important physico-chemical prop-
erties of the amino acids with re-
spect to the function or the structure of the family.

The approach takes as input a set G of eventually overlapping substitution groups representing
important physico-chemical properties (typically the groups proposed by Taylor see figure 1). The
sketch of a naive identification would be to test for each set of amino acids P aligned by the ap-
proach if it is equal to one of the given groups. This approach may be applied only to small groups
[25], or else it will require a large amount of training sequences to identify all the important groups
(consider for instance the probability of aligning all the 13 hydrophobic amino acids in a small set
of homologous proteins). We propose to use a statistical test to decide if the multi-set P has been
generated according to a physico-chemical group G or not (see algorithm 5). Given two states q1, q2

of the automata, let P be the set of all the amino acids allowing to reach q2 from q1 and let n be
the total number of sequences using these transitions. We decide to replace the current set of amino
acids P by the smallest physico-chemical group G including P based on the result of a likelihood
ratio test. To compute this ratio, we use the background probability pa of each amino acid a and we
estimate the probability pa|G of this amino acid given that it belongs to G by pa|G = cGpa where cG

is a proportional redistribution factor of the missing amino acids: cG = 1
P

a∈G pa
. In that setting, we

can compare the likelihood LG of G when n amino acids are drawn from G to its likelihood when

the amino acids are drawn from P by the ratio: LRG/P = LG
LP

=
(P

a∈P pa
P

a∈G pa

)n
. Given a threshold λG,

we test the expansion of P to G and reject it when LRG/P < λG. If the expansion to G is rejected,
there is no evidence of a physico-chemical property in the set of amino acids P . In such cases, one
may wonder whether the amino acids in P have been generated randomly and then replace the set by
the whole alphabet Σ, or whether the composition of the set is important and should be kept as it is.
By replacing G by Σ and introducing the threshold λΣ , we test in a similar way the expansion of P

to Σ by rejecting it when LRΣ/P = LG
LP

= (
∑

a∈S pa)
n < λΣ .



4 Experiments

In this section we present a first validation of the approach on proteins. Our approach has been
implemented in a program named Protomata-Learner. In the following, Protomata-PL will refer to
the version using the similar fragment pair characterization while Protomata-CL will refer to the
clique characterization. We used DIALIGN2 with the options -nta -thr 5 -afc for Protomata-
PL and -nta -thr 0 -afc for Protomata-CL (the restriction to cliques allows to consider all
the significant SFPs). Identification of physico-chemical properties were performed with the sets of
physico-chemical properties proposed in figure 5 of [34], except the “unions” group1 , and λG = 10−7,
λΣ = 10−19. Even with our unoptimized code, the execution never exceeded 10 minutes on a 3GHz
desktop station.

4.1 MIP Family.

The Major Intrinsic Protein (MIP) family [12] is a family with a high level of similarity defined
according to functional and structural properties. MIPs are transmembrane channels, well-known to
be important for water, alcohol and small molecules transport across cell membranes thanks to P.
Agre (Nobel Prize in Chemistry “for the discovery of water channels”, 2003). The protein sequence
database UNIPROT, contains 911 proteins annotated as being members of the MIP family. Of these
911, 159 protein sequences (denoted hereafter by the set T) are in SWISSPROT which is the annotated
public reference database used by Prosite. Out of this set, a biology expert has identified only 79
sequences with a real biological experiment-based annotation (a lot of proteins being annotated “by
similarity”). By filtering out the sequences with more than 90% of identity [2], this set was then
reduced to 44 sequences (set M). Out these, the expert has identified 24 water-specific sequences (set
W+) and 16 glycerol or small molecule facilitator sequences (set W-). Let us notice the difficulty of
the discrimination task between these MIPs, some sequences of W+ being closer to some sequences of
W- than to the other sequences of W+. We have established also a control set composed of sequences
close to MIP sequences (first Blast hits) and identified by the expert as being outside the family (set
C).

First Common Fragment Characterization. For this first set of experiments, in order to be able
to compare our approach with Pratt [17] and Teiresias [28] methods and Prosite hand-made pattern,
we restricted Protomata-PL to return only the first common fragment shared by all sequences, using
support index. Pratt and Teiresias were used with their default parameters, except the parameter W
(maximum length) of Teiresias that was set to 50 to allow longer patterns to be discovered. The
patterns were learned from the set M and parsed on the sequences of the set T.
A scan of the Prosite’s pattern on SWISSPROT database returns false positive as well as false negative
sequences with respect to T (while T was used to define Prosite’s pattern).

Table 1 summarizes the results of such scans for the
Method Precision Recall F-meas.
Prosite (reference) 0.95 0.91 0.93
Pratt 0.90 0.78 0.83
Teiresias 0.23 0.89 0.37
Protomata-PL 1 0.87 0.93

Table 1. Precision, recall and F-measure
on T for 4 MIP patterns.

three patterns. The recall is the ratio of the number of
relevant records retrieved to the total number of relevant
records. The precision is the ratio of the number of relevant
records to all the documents retrieved. The traditional F-
measure is 2×Precision×Recall

(Precision+recall) . The recall of our approach
is close to Prosite’s pattern recall while our precision re-
mains at 1. Let us notice that in our false negatives, one

was not a full sequence and 16 were annotated as MIP only by similarity. When comparing our ap-
proach to Pratt and Teiresias pattern discovery tools, the comparison is clearly in favor of Protomata-
PL with respect to both the precision and the recall. Let us note that the three patterns focus on the

1 Identifying two alternative properties were not likely to be interesting here.



same site, the so-called NPA box. Our pattern is much longer than the other patterns. It contains
also some positions of alpha helices turned to the channel which are likely to be important for the
structure and function of this family. In the next paragraph we focused on a more precise character-
ization (combining several characteristic regions) of a subclass of the MIP family with the help of
counter-examples.

Sub-Families Discrimination.

In this second set of exper-

Figure 4. Distance of each test sequence for acceptation by au-
tomata when using the implication index. The set to characterize
was the Water-Specific W+ set with W- as counter-example set.
Set C was a non-MIP control set, only the smallest distance was
reported on the plot for C.

imentations, we focused on the
characterization of the water-specific
MIP subfamily set W+, using the
set W- as counter-example. This
discrimination task is motivated
by a better understanding of the
transport of these molecules. We
used it to study the quality of the
characterization on closely related
sets of sequences at increasing speci-
ficity levels. Due to the small num-
ber of available sequences, a leave-
one-out cross-validation scheme
was used to evaluate our approach.
For each pair of positive and neg-
ative sequences (w+, w−), the
training was achieved using the
remaining sequences of W+ and W-. For each leave-one-out datasets, several automata – ranging
from short automata (like in the previous paragraph) to larger automata characterizing almost all the
length of the MIP topology – were obtained by using an increasing number of PLMA. Each automa-
ton was then evaluated according to the distance for acceptation of the positive sequence left out
w+, the negative sequence left out w−, and also of the closest sequence c in the control set C. The
distance for acceptation (or error correcting cost) is defined as the minimal cost of amino acid sub-
stitutions needed in the sequence for its acceptation by the automaton (the cost of each amino acid
substitution being given by the classical substitution matrix Blosum62 [13]). Figure 4 presents the
results of all these experiments when using the implication index and a quorum of 100%. On the size
axis, we highlighted 4 attraction points which are related to the progressive emergence of common
sub-patterns, the first one corresponding to the first common fragment. The separation of the different
sets of sequences is manifest2 and grows along the automata size axis until an inflexion point near 100
states. Behind this inflexion point, the merged SFPs do not contribute anymore to the discrimination
but only to a more precise characterization of the MIP family without showing over-generalization
evidence.

Table 2 sums up the results of the automata at the
Automata Strict Parsing Threshold Parsing

Size Prec. Recall F-meas. Prec. Recall F-meas.
10 1 0.92 0.96 1 0.96 0.98
40 1 0.71 0.83 1 1 1

100 1 0.54 0.70 1 1 1
130 1 0.42 0.59 1 0.96 0.98

Table 2. Performance on classification task (W+ vs W-).

attraction points for the classification task between
W+ and W-, with strict parsing acceptation and with
a distance threshold acceptation. In the latter case,
the distance to the automata of the closest counter-
example in the training set, was taken as the thresh-
old distance for acceptation. The approach was then
able to raise 100% of precision and 100% of recall
for automata sizes ranging from 40 to 100 states.

2 Only one sequence from set W+, which is called Bib Drome is sometimes plotted at the level of the usual distance of W-
sequences. Bib Drome is known to be divergent from the other MIPs and it is not surprising if more substitutions were
needed to parse this sequence when no other representative of this family were available in the training set. Nevertheless,
this distance needed to parse this sequence was always smaller than the one needed to parse sequences outside the family
(from W- or C).



4.2 TNF Family.

The Tumour-Necrosis Factor (TNF) family [3] is included in the cytokine super-family. Playing the
role of ligands in the signal network of apoptosis, these proteins are studied in particular for their
implication in cancer diseases. Each TNF protein is a combination of beta-sheets. Contrary to MIPs,
the sequence divergence in the family is very high. The positive set is made of the 18 human sequences
which are the most representative sequences of this partially known family. The average percentage of
identity [2] in the positive set is 33,6% with a minimum of 0% and a maximum of 71%. The negative
test set contains the 4 false positive hits of the Prosite pattern plus 16 cytokines members known
to be outside of the TNF family. The average percentage of identity between positive and negative
sequences is 28,56% with a minimum of 0% and a maximum of 81%.

Table 3 reports the results of each method for leave-
Method Precision Recall F-measure

Strict Parsing
MCA 0 0 0
Prosite 0.75 0.67 0.71
Teiresias 0 1 0
Pratt 0.85 0.94 0.89
Protomata-PL Q=17 0.88 0.89 0.88

Threshold Parsing
Pratt 0.86 1 0.92
Protomata-CL Q=7 0.96 0.94 0.95
Protomata-CL Q=6 1 1 1
Protomata-CL Q=5 1 0.94 0.97

Table 3. Comparison of Protomata-CL to other
methods on the TNF family using a leave-one-out
test. Q is the minimum value of the quorum.

one-out experiments on these sets. As expected, the Max-
imal Canonical Automaton (corresponding to rote learn-
ing) showed bad results. We ran Teiresias, but it always
got a poor overgeneralized motif. Pratt and Protomata-
PL (with 100% quorum) obtained both a good F-measure
by being able to characterize the same localization than
Prosite’s hand-made motif. But this localization did not
allow to reject the false positive sequences of Prosite.
The best results were obtained by Protomata-CL with
a quorum of 6 and by using threshold acceptation. For
each step of the leave-one-out, we computed the error
correcting distance of the positive test sequence and the
negative test sequences to the automaton. We fixed the

threshold acceptation to be 3/4 of the distance to a reference counter-example sequence (SWISSPROT
ID Q92838) 3.

Figure 5 shows a more detailed view of the

Figure 5. Impact of quorum on F-measure for
Protomata-CL on TNFs.

precision, recall and F-measure according to the
quorum for Protomata-CL. The largest cliques
found by Protomata-CL were of size 12. The
automata built with these first cliques were not
perfect; in fact the recall was good but the pre-
cision was not so good. But, while the quorum
decreased from 12 to 6, the precision increased.
It can be explained by the fact that more in-
formative positions that characterize subparts of
the family were discovered and were taken into
account in the automata. The recall decreased
rapidly for a quorum under 5, this indicates that
the fragments used to build the automata were
no more representative of the family. Before the

quorum of 7, automata were overgeneralized, and after the quorum of 5 they were over-specified. We
can see a perfect point at the quorum of 6 with 100% of recall and 100% of precision.

3 This sequence was chosen by picking up the the most representative TNF member (SWISSPROT ID P57369) and by
selecting its closest sequence (using blast on NCBI server) with clear annotation allowing to conclude that the sequence
was not a TNF.



5 Conclusion

This study shows that good automata can be learned successfully on proteins. Our approach is in-
spired by grammatical inference and multiple alignment techniques. It relies on fragment similarity
to identify locally conserved regions and then refine eventually the characterization by identifying
informative positions. This fragment-based sequence-driven approach allows to identify either con-
served fragments without strong amino acids conservation (for instance structural elements of the
protein like helix or regions with particular physico-chemical bias) or important positions (for in-
stance one position involved in an active site) under the assumption that their neighborhood shows
also some conservation (for instance to ensure the correct 3D localization of the important position).
By introducing preservation or consistency constraints, we are able to build explicit models (automata
in this study) of the family linking and generalizing the identified representative conserved regions,
with good prediction accuracy asserted by leave-one-out cross-validation.
Many improvements can still be introduced in the approach. Many alternative PLMAs character-
ization schemes may be developed (see for instance Gemoda [16], a generic interesting tool but
with many parameters) and their advantages should be compared. The procedure for merging non-
representative positions that we have presented is the simplest and should be elaborated. We have
also ideas to raise prediction accuracy by developing distances taking into account the weights of
the amino acids at each position with respect to the training sequences. An alternative way to han-
dle unpredictable family variation would be to use the learned automata as the underlying structure
of probabilistic automata, or hidden Markov models, and estimate their stochastic parameters by the
classical well-studied training methods; but the advantage of the distance approach is that these varia-
tions are treated outside the model by measuring the distance to it, allowing the models to focus only
on an explicit characterization of the important properties of the training sequences.
An interesting feature of learning syntactical model is that this kind of models allow to parse the
sequences. A less expected application of our approach is that specific automata that we are able to
learn can be used to align proteins as recently introduced in [21,5,27]. Differences and synergies be-
tween all these approaches converging from pattern discovery, multiple alignment and grammatical
inference to learn explicit models on proteins are still to be studied but they constitute an emerging
exciting area of research.
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