
Complementary experiments for the evaluation

of UFA inference algorithms

D. Fredouille

October 31, 2003

1 What is this text ?

This text is an complement to the paper [CF03] on the inference of unam-

biguous automata. It relates experiments completing the results obtained

on benchmarks used in the article. These experiments enable a better com-

parison of the evaluated algorithms. A discussion on the results is given.

De�nitions and notations are taken from the article [CF03].

2 Complementary experiments:

inferring DFAs with the hill-climbing heuris-

tic

2.1 Description

The article [CF03] gives an experimental comparison of di�erent greedy algo-

rithms. The �rst infers DFAs with the EDSM heuristic [LPP98], the second

UFAs with the hill-climbing heuristic, and the last algorithm is DLT2, infer-

ring RFSAs [DLT01].

The complementary experiment given here consisted in inferring DFAs

with the hill-climbing heuristic. This means that the deterministic merging

implying the most state-merging for determinisation is choosen at each step

of the inference algorithm. As for other algorithms, we used this heuristic

in two di�erent frameworks : the biased inference (or compatibility) and

1



Generator Regular expressions

size of S 50 100 150 200

MAJ 64.7 66.7 62.3 62.8

Dbedsm 83.7 85.5 91.8 92.1

Dedsm 79.5 81.7 89.7 93.1

Dbhc 80.4 89.4 93.9 93.8

Dhc 77.4 81.5 83.5 91.9

Ubhc 75.8 82.9 91.7 91.2

Uhc 76.0 81.5 88.8 91.0

DLT2 81.7 91.7 92.3 95.9

Figure 1: Recognition level of algorithms for the languages obtained by the

generator of regular expressions.

the unbiased inference (or functionality). The corresponding algorithms are

respectively denoted by Dbhc and Dhc.

2.2 Results

Arrays 1 to 8 give results obtained for the di�erent algorithms (with more

details than in the article). These results include runs of Dbhc and Dhc.

3 Discussion on the results

3.1 Concerning the EDSM and the hill-climbing heuris-

tics

The EDSM heuristic has been developed for DFAs inference and evaluated

on automata obtained by the Abbadingo DFAs generator. The experiments

show that this heuristic is very specialized. Indeed, EDSM seems a very

interesting heuristic (better than hill-climbing) when we infer DFAs and that

the target is a obtained by a DFA generator (matches d10 and d11).

However, when we consider other generators (regular expressions, NFA

or UFA), the EDSM heuristic gives less interesting results (matches e10, e11,

n10, n11, u10 and u11). Indeed, the hill-climbing heuristic seems to be (in

general) better than EDSM on these benchmarks.

2



Generator NFA

size of S 50 100 150 200

MAJ 69.0 66.2 65.7 67.8

Dbedsm 67.1 70.0 73.1 73.3

Dedsm 67.0 67.6 70.7 71.0

Dbhc 69.0 71.8 75.9 76.8

Dhc 66.3 67.4 71.8 72.9

Ubhc 70.4 70.8 74.0 73.1

Uhc 67.0 71.2 73.7 71.3

DLT2 69.8 74.8 77.1 79.4

Figure 2: Recognition level of algorithms for the languages obtained by the

generator of NFAs.

Generator UFA

size of S 50 100 150 200

MAJ 83.8 82.1 81.4 81.9

Dbedsm 89.2 91.1 94.3 93.2

Dedsm 79.1 81.0 89.6 90.2

Dbhc 91.2 92.0 94.7 94.1

Dhc 77.3 82.4 89.2 88.4

Ubhc 90.7 91.9 94.2 93.8

Uhc 89.7 89.8 92.5� 91.6

DLT2 88.6 90.4 91.9 92.7

Figure 3: Recognition level of algorithms for the languages obtained by the

generator of UFAs.

3



Generator DFA

size of S 50 100 150 200

MAJ 70.7 71.0 72.5 73.8

Dbedsm 69.1 73.3 74.8 76.3

Dedsm 65.7 68.3 70.4 74.7

Dbhc 65.6 69.8 70.5 74.5

Dhc 63.8 67.7 70.8 73.8

Ubhc 70.4 73.4 74.5 77.5

Uhc 71.1 72.9 75.9 77.8�

DLT2 61.9 65.1 68.3 70.7

Figure 4: Recognition level of algorithms for the languages obtained by the

generator of DFAs.

Generator Regular expressions

size of S 50 100 150 200

e1 Dedsm-Dbedsm 7,12,11 5,13,12 5,16,9 3,23,4

e2 Ubhc-Dbedsm 5,12,13 11,6,13 10,14,6 6,10,14

e3 Uhc-Dedsm 11,10,9 10,11,9 8,13,9 6,8,16

e4 Dbhc-Dhc 10,15,5 13,14,3 14,14,2 6,23,1

e5 Uhc-Ubhc 9,13,8 9,5,16 5,13,12 6,13,11

e6 DLT2-Ubhc 15,8,7 17,8,5 10,10,10 18,9,3

e7 DLT2-Dbedsm 11,11,8 17,8,5 7,13,10 8,20,2

e8 DLT2-Dbhc 11,11,8 12,11,7 8,13,9 6,21,3

e9 Dbhc-Ubhc 15,6,9 13,11,6 10,11,9 16,11,3

e10 Dbhc-Dbedsm 7,14,9 11,10,9 8,16,6 6,22,2

e11 Dhc-Dedsm 6,13,11 8,14,8 2,15,13 5,21,4

e12 Ubhc-Dbhc 9,6,15 6,11,13 9,11,10 3,11,16

e13 Uhc-Dbedsm 6,11,13 8,10,12 6,13,11 4,11,15

A triple represents the sequence "victories of algorithm 1, number of ties,

victories of algorithm 2".

Figure 5: Matches between algorithms for the languages obtained by the

generator of regular expressions.

4



Generator NFA

size of S 50 100 150 200

n1 Dedsm-Dbedsm 10,8,12 5,13,12 5,10,15 6,12,12

n2 Ubhc-Dbedsm 16,9,5 11,12,7 12,10,8 12,10,8

n3 Uhc-Dedsm 14,8,8 15,6,9 14,9,7 16,3,11

n4 Dbhc-Dhc 15,8,7 13,14,3 15,9,6 11,14,5

n5 Uhc-Ubhc 4,11,15 4,20,6 5,18,7 6,11,13

n6 DLT2-Ubhc 9,6,15 12,13,5 14,10,6 16,11,3

n7 DLT2-Dbedsm 14,8,8 17,8,5 13,15,2 17,11,2

n8 DLT2-Dbhc 12,12,6 11,12,7 8,14,8 13,12,5

n9 Dbhc-Ubhc 9,7,14 11,11,8 12,14,4 15,8,7

n10 Dbhc-Dbedsm 11,14,5 12,13,5 14,12,4 12,16,2

n11 Dhc-Dedsm 6,16,8 4,21,5 7,19,4 13,11,6

n12 Ubhc-Dbhc 14,7,9 8,11,11 4,14,12 7,8,15

n13 Uhc-Dbedsm 13,9,8 13,12,5 11,11,8 11,8,11

A triple represents the sequence "victories of algorithm 1, number of ties,

victories of algorithm 2".

Figure 6: Matches between algorithms on the benchmark obtained by the

NFA generator.

5



Generator UFA

size of S 50 100 150 200

u1 Dedsm-Dbedsm 1,4,25 1,6,23 2,13,15 6,6,18

u2 Ubhc-Dbedsm 17,6,7 13,14,3 7,15,8 13,9,8

u3 Uhc-Dedsm 21,3,6 22,6,2 14�,8,7 12,6,12

u4 Dbhc-Dhc 25,4,1 23,6,1 17,11,2 23,6,1

u5 Uhc-Ubhc 5,15,10 4,14,12 �3,15,11 3,12,15

u6 DLT2-Ubhc 6,11,13 4,14,12 3,13,14 6,13,11

u7 DLT2-Dbedsm 8,13,9 6,14,10 1,14,15 8,10,12

u8 DLT2-Dbhc 4,13,13 4,13,13 0,11,19 7,10,13

u9 Dbhc-Ubhc 11,7,12 6,19,5 13,11,6 10,11,9

u10 Dbhc-Dbedsm 10,17,3 7,22,1 8,18,4 7,21,2

u11 Dhc-Dedsm 12,7,11 13,8,9 10,10,10 6,13,11

u12 Ubhc-Dbhc 12,7,11 5,19,6 6,11,13 9,11,10

u13 Uhc-Dbedsm 11,9,10 9,10,11 4�,12,13 4,15,11

A triple represents the sequence "victories of algorithm 1, number of ties,

victories of algorithm 2".

Figure 7: Matches between algorithms on the benchmark obtained by the

UFA generator.

6



Generator DFA

size of S 50 100 150 200

d1 Dedsm-Dbedsm 4,10,16 2,7,21 2,12,16 7,10,13

d2 Ubhc-Dbedsm 13,13,4 11,14,5 8,16,6 15,11,4

d3 Uhc-Dedsm 19,10,1 19,8,3 24,5,1 19�,6,4

d4 Dbhc-Dhc 8,19,3 14,13,3 6,18,6 9,16,5

d5 Uhc-Ubhc 8,16,6 4,21,5 10,18,2 10�,16,3

d6 DLT2-Ubhc 1,7,22 1,2,27 2,6,22 2,5,23

d7 DLT2-Dbedsm 1,7,22 3,4,23 0,10,20 2,10,18

d8 DLT2-Dbhc 2,11,17 1,12,17 2,17,11 1,16,13

d9 Dbhc-Ubhc 1,12,17 2,8,20 0,10,20 4,9,17

d10 Dbhc-Dbedsm 3,12,15 2,12,16 1,14,15 3,18,9

d11 Dhc-Dedsm 4,15,11 6,14,10 7,17,6 4,18,8

d12 Ubhc-Dbhc 17,12,1 20,8,2 20,10,0 17,9,4

d13 Uhc-Dbedsm 14,12,4 10,15,5 16,9,5 16�,10,3

A triple represents the sequence "victories of algorithm 1, number of ties,

victories of algorithm 2".

Figure 8: Matches between algorithms on the benchmark obtained by the

DFA generator.

7



3.2 The choice between biased inference (compatibili-

ty) and unbiased inference (functionality).

3.2.1 Results

Algorithms using compatibility are much better, on benchmarks created such

that L and �

�

r L are not \symmetrical" (NFAs, regular expressions and

UFAs), than algorithms using functionality (all together, in matches e5, n5

and u5, Ubhc won 135 times against 63 for Uhc, in matches e1, n1 and u1

Dbedsm won 168 times against 56 for Dedsm, in matches e4, n4 and u4 Dbhc

won 175 times against 37 for Dhc).

The use of compatibility improving inference results on benchmarks, we

can remark that the comparison provided between EDSM and DLT2 in

[DLT01] has to be updated. The use of compatibility (with the EDSM heuris-

tic or with the hill-climbing heuristic) implied that Dbedsm and Dbhc are

not completely irrelevant when the target is obtained by the NFA genera-

tor or the regular expression generator. Indeed, the performance of these

algorithms are closer (than we previously thought) to DLT2 on the NFAs

benchmark; on the regular expressions benchmark they are even better in

some cases.

3.2.2 Discussion on the results

The choice of using compatibility or functionality does inuence the results.

Even if this conclusion can seem very logical a posteriori, matches between

Uhc-Ubhc between Dhc-Dbhc and between Dedsm-Dbedsm show that this

inuence is strong.

This can be explained because these two way of stopping generalization

have not exactly the same goal. Compatibility aims at inferring a language

while given counter-examples and functionality aims at discriminating pos-

itive and negative languages. In this latter framework, counter-examples

should have a meaning, which is not the case in the former.

This can explain why compatibility is much better than functionality on

the considered benchmarks. However, on the benchmark of DFAs which is

generated in a symmetrical manner, the choice of compatibility is also better

than the choice of functionality when inferring DFAs (matches d1 and d4).

On the same part of benchmarks, the choice of functionality is better when

inferring UFAs (match d5, Uhc being the best algorithm on this benchmark).

8



Then it seems that some - actually unknown - parameters enabling to choose

between compatibility and functionality have to be taken into account.

3.3 Algorithms best suited to benchmarks

3.3.1 Results

Each algorithm seems to be better adapted to di�erent subparts of the bench-

marks. When considering the NFAs generator, DLT2 seems to be the best

(table 2), for the UFAs generator, Dbhc is better adapted (very close to

Ubhc, see table 3), for the DFAs generator, Uhc has the best recognition

levels (table 4). For regular expressions, DLT2 has the best recognition level

but algorithms for DFAs inference have very close scores (depending on the

case Dbedsm or Dbhc).

More surprisingly, we can see that this is a UFA inference algorithm which

is the best on the DFAs benchmark, and an algorithm for DFAs inference

which is the best on the UFAs benchmarks.

3.3.2 Discussion on the results

As already remarked by [DLT01], the generation mode of languages has a

huge inuence on the results of the algorithms. This can be interpreted by

considering that each algorithm is looking for some particular \structures"

in the languages. If these structures are close to the one obtained by a given

generator, then the algorithm has an advantage on the languages obtained

by this generator. From this interpretation, it seems strange that the UFA

inference algorithm Uhc is the best on the DFAs benchmark, and that the

DFAs inference algorithm Dbhc is the best on the UFAs benchmark.

We propose in the following a discussion of these results.

� Is Dbhc really the best forUFAs inference ?

If we detail the di�erence between Ubhc and Dbhc for the inference

on the UFAs benchmark, we can see that on match u12 Dbhc is the

winner 40 times against 32 for Ubhc with 48 ties. The two algorithms

have in fact nearly the same results on this benchmark. However, it

is strange that Ubhc did not have the advantage. It is possible that

this problem is linked with the lack of canonical form for UFAs. The

algorithm has no way to choose between two equivalent automata with

9



the same language. It therefore returns an intermediate solution of the

di�erent possible automata.

� Why Uhc is the best for DFAs inference ?

First, let us remark that the di�erence obtained between algorithms

for UFAs and DFAs inference is more important than in the previous

case. On this benchmark, the best algorithm after Uhc is Dbedsm.

The match d13 between Uhc and Dbedsm gives to the �rst 56 victories

against 17 for the second (with 46 ties).

We can explain this result by the conjunction of two phenomena. The

�rst is that the drawback of UFAs inference algorithms (explained in

the previous paragraph and due to the lack of canonical form) is here

less important. Indeed, the target languages being generated as DFAs,

we can think that there are no UFAs (for the same language) of size

inferior or equal to the size of the generated automata. Therefore, the

algorithm does not has to choose between di�erent automata with the

same language, and the target can be more easily reached. Moreover,

the fact that algorithm Uhc is better than algorithm Dhc or Dbhc,

is probably due to a more cautious state-merging strategy. Indeed,

choosing a wrong unambiguous state-merging at a step of the algorithm

creates less constraints on following state-mergings than choosing a

wrong deterministic state-merging. A wrong unambiguous merging can

therefore be partly corrected by the following unambiguous mergings.

References

[CF03] Coste (F.) et Fredouille (D.). { Unambiguous automata inference by

means of state-merging methods. European Conference on Machine

Learning, 2003, pp. 60{71.

[DLT01] Denis (F.), Lemay (A.) et Terlutte (A.). { Learning regular lan-

guages using RFSA. In : Proceedings of the 12th International

Conference on Algorithmic Learning Theory, ALT'01, pp. 348{363.

{ 2001.

[LPP98] Lang (K. J.), Pearlmutter (B. A.) et Price (R. A.). { Results of

the abbadingo one DFA learning competition and a new evidence-

10



driven state merging algorithm. Lecture Notes in Computer Science,

vol. 1433, 1998, pp. 1{12.

11


