
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1250

STATE MERGING INFERENCE OF
FINITE STATE CLASSIFIERS

FRANÇOIS COSTE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

State Merging Inference ofFinite State Classi�ersFran�cois CosteTh�eme 3 | Interaction homme-machine,images, donn�ees, connaissancesProjet A��daPublication interne n�1250 | Mai 1999 | 24 pages
Abstract: In this report, we introduce the C-regular inference problem. It consists ininducing a set of C regular languages from samples of each language. An implicit repre-sentation of the search space for state merging inference methods is presented. This repre-sentation allows to study more precisely the languages interactions. A characterization ofdeterministic and unambiguous classi�ers in the search space is given and used to designa new state merging algorithm considering not only possible mergings but also impossibleones.Key-words: Regular Inference, Finite State Machine, Classi�cation, State mergingalgorithms.

(R�esum�e : tsvp)
Centre National de la Recherche Scientifique Institut National de Recherche en Informatique

(UPRESSA 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Inf�erence d'automates classi�eurs par fusions d'�etatR�esum�e : Nous introduisons dans ce rapport le probl�eme de l'inf�erence C-r�eguli�ere quiconsiste �a apprendre un ensemble de C langages r�eguliers �a partir d'exemples de chacundes langages. Nous proposons une repr�esentation implicite de l'espace de recherche pour lesalgorithmes par fusion d'�etat permettant l'�etude directe des interactions entre langages et,notamment, une caract�erisation par contraintes des automates classi�eurs d�eterministes etunivoques. Cette caract�erisation est utilis�ee pour proposer un nouveau sch�ema d'algorithmepar fusion consid�erant non seulement les fusions possibles mais �egalement les fusions impos-sibles.Mots cl�es : Inf�erence r�eguli�ere, machines �a �etats �nis, classi�cation, algorithmes parfusions d'�etats.

State Merging Inference of Finite State Classi�ers 3Ce rapport a �et�e soumis �a publication en d�ecembre 1998 au Machine Learning Journal,num�ero sp�ecial Inf�erence Grammaticale (V. Honavar and C. de la Higuera eds).1. IntroductionThe regular inference problem is that of inducing a regular language or its acceptor from a setof examples of the language. Many empirical algorithms using only a positive sample havebeen devised [12]. For the identi�cation of a target language, a negative sample is needed [11].Most of the inference algorithms from positive and negative samples proceed by generalizingthe positive sample under the control of the negative sample [22, 19, 14, 16, 8, 1, 20, 6, 15].For several applications in language processing, genetics, information retrieval, syntac-tic pattern recognition, system security and medical monitoring, generalizing the positivesample solely is not adequate. Alquezar and Sanfeliu propose in [4] to consider symmetri-cally the positive and the negative samples. In this case, the problem is not the inference ofan acceptor of the positive language but rather the inference of a sequence classi�er. Theclassi�cation of a sequence may then be positive, negative or unknown. This can be exten-ded from two languages to C languages: we call C-regular inference the problem of inferringsimultaneously C regular languages from samples of each language. The originality of C-regular inference is that interactions between languages may be taken into account duringthe inference process. The fundamental interaction studied in this article is the intersectionof languages. More precisely, we address the problem of inferring unambiguous set of lan-guages, in the sense that each sequence may be classi�ed in only one language.The chosen �nite state classi�er representation of a C-tuple of languages, called C-classes�nite state unbiased automata (C-FSA) [3], is introduced in section 2. Section 3 is devoted tothe study of the search space under the assumption that the sample is structurally completewith respect to the target machine. In this case, the search space is a lattice based on aparticular C-FSA MCA such that the elements of the lattice are obtained by merging statesof MCA. Since merging two states is the canonical operation for exploring the lattice, weintroduce a new implicit search space based on state pair mergings called state mergingspace. The study of this search space allows to characterize deterministic and unambiguousclassi�ers in the lattice. This characterization may be used by inference algorithms exploringintensively the search space. We present, in section 4, a new state merging algorithmconsidering not only the possible mergings but also the impossible ones for the inference ofdeterministic unambiguous classi�ers.2. Finite state classi�erBefore introducing C-FSA as a type of �nite state Moore machine in section 2.2, we recallsome de�nitions and properties of sequential machines.
PI n�1250

4 Fran�cois Coste2.1. Sequential machinesInformally, a sequential machine is an abstract device that reads a sequence of input symbolsand writes an associated sequence of output symbols under the control of a set of states. Inthis section, we introduce some notations and recall some de�nitions related to sequentialmachines presented in [5].De�nition 1. A sequential machine (Mealy machine) is characterized by the following:� A set Q of states.� A �nite alphabet of input symbols �i.� A �nite alphabet of output symbols �o.� A mapping � of Q��i into Q called the next-state function.� A mapping ! of Q��i into �o called the output function.We denote a particular machine by the 5-tuple hQ;�i;�o; �; !i. If the set of states Q is �niteand an initial state qs is chosen, the sequential machine is called a �nite state machine.The type of the output function may be simpli�ed or optimized according to the applica-tion properties. For instance, when the output function depends only on the next state, onecan de�ne the output mapping ! as restricted to a mapping of Q into �o. This machine isthen called a Moore machine. By considering the extension of the next-state function andthe output function to functions over sequences of symbols, other specialized machines canbe de�ned.In what follows, q, �, a and � denote respectively, a state in Q, a sequence in ��i , a symbolin �i and the empty word. The state sequence function �� : Q���i ! Q� is then recursivelyde�ned by ��(q; �) = q; ��(q; a�) = q:��(�(q; a); �):Similarly, the output sequence function !� : Q���i ! ��o can be de�ned as follows.Mealy machine: !�(q; a�) = !(q; a):!�(�(q; a); �)Moore machine: !�(q; �) = !(q); !�(q; a�) = !(q):!�(�(q; a); �).From these de�nitions, one can derive two important functions. The terminal state func-tion �̂ : Q � ��i ! Q indicating the state of the system after the input sequence has beenapplied and the last output function !̂ : Q � ��i ! �o describes the last output symbolproduced by the machine for the input sequence, are introduced:�̂(q; �) = q; �̂(q; �a) = �(�̂(q; �); a)
Irisa

State Merging Inference of Finite State Classi�ers 5Mealy machine: !̂(q; �a) = !(�̂(q; �); a)Moore machine: !̂(q; �) = !(�̂(q; �)).According to the output function type, several sequential machine sub-families can becharacterized. For example, �nite state automata are Moore machine with a two outputsymbol alphabet f0; 1g, such that each state is assigned output 1 if it is �nal and output 0else. The acceptance of a sequence is given by the last output function. In the next section,we introduce a sub-family of �nite state machines, using also the last output function butallowing more than two symbols.Two �nite state machines may be compared in terms of their input-output characteristics.When considering �nite state machines, the default state for a next-state or an outputfunction is the initial state qs. Thus, the equivalence of two �nite state machines is de�nedby:De�nition 2. Two �nite state machines M and M 0 are said to be equivalent if and onlyif for each input sequence in ��i both machines return the same outputs.One fundamental result related to �nite state machines is the existence of a minimizationalgorithm mapping each �nite state machine into an equivalent �nite state machine of thesame sub-family, with a minimal number of states. This machine is proven to be unique upto a renaming of the states [5].2.2. C-classes unbiased �nite state automataIn [4] the unbiased �nite state automata have been introduced to deal in a symmetricalmanner with positive and negative data. The author suggests in [3] that this conceptcould be generalized naturally to cope with C-classes recognition problems and introducessome basic de�nitions of an extended type of automata called C-classes unbiased �nitestate automata (C-FSA). For a better understanding of the links with other machines liketransducers, this section introduces C-FSA as a type of Moore machines, extended to non-deterministic next-state and output functions, such that the classi�cation of a sequence isgiven by the last output symbol function.De�nition 3. A C-classes unbiased �nite state automata (C-FSA) is a 6-tuple (Q; qs;�;�; �; !)where:� Q is a �nite set of states;� qs 2 Q is the initial state;� � is a �nite alphabet of input symbols;� � is a �nite alphabet of C output symbols;PI n�1250

6 Fran�cois Coste� � is the next-state function mapping Q�� to 2Q;� ! is the output function mapping Q�� to 2�.The last output function !̂ which maps Q��� to 2� allows to de�ne the C-tuple of regularlanguages L(M) accepted by a C-FSA M :L(M) = hLc(M)ic2� where 8c 2 �; Lc(M) = f� 2 ��jc 2 !̂(qs; �)g:The set of sequences over the input alphabet �� is called the domain of M . The scope ofM , denoted by LS(M), is the language:LS(M) = [c2�Lc(M)which contains all the sequences accepted by M . The sequences of the complementarylanguage LI(M) = �� � LS(M) are said to be ignored by M . LI(M) may be also de�nedas the set: LI(M) = f� 2 �� j �̂(qs; �) = ; _ !̂(qs; �) = ;gusing the convention that any unde�ned function for an input symbol returns the empty set.
qs

q1

a

q2

c1

q3

b

a b

c3

b
c3

c2

a

b

a

Figure 1. 3-DFA classifying sequences in classes c1, c2 and c3 respectively de�ned by: the sequence has aneven number of a and a even number of b (c1), an odd number of a and an odd number of b (c2) an oddnumber of a (c3).De�nition 4. A C-FSA is said to be ambiguous if a sequence of its domain can beclassi�ed in more than one class i.e. 9i; j 2 �; i 6= j; Li(M) \ Lj(M) 6= ;.
Irisa

State Merging Inference of Finite State Classi�ers 7De�nition 5. If for any state q in Q and any input symbol a in �, the next-state functionreturns at most one (respectively exactly one) state, the C-FSA is said to be deterministic(respectively complete). C-DFA and C-NFA denote respectively the deterministic and nondeterministic C-FSA.Theorem 1 For each C-FSA M , there exists a C-DFA MD accepting the same languages,i.e. such that L(M) = L(MD).Proof: The proof is given in [3]. It consists in adapting to C-DFA the NFA determinizationalgorithm [2].De�nition 6. Given a C-tuple of languages L, the canonical C-FSA of L, denoted byM(L), is the minimal C-DFA accepting exactly L.2.3. Derived C-FSADe�nition 7. For any set S, a partition � is a set of pairwise disjoint nonempty subsetsof S whose union is S. Let s denote an element of S and let B�(s) denote the unique blockof � containing s.De�nition 8. Given a C-FSA M = (Q; qs;�;�; �; !) and a partition � of the set of statesQ, the C-FSA derived from M with respect to � is M/� = (Q0; qs� ;�;�; �0; !0) de�ned asfollows:� Q0 = fB�(q)j q 2 Qg� 8B 2 Q0; !0(B) = Sq2B !(q)� 8B 2 Q0;8a 2 �; �0(B; a) = fB0 2 Q0j 9q 2 B; 9q0 2 B0; q0 2 �(q; a)g.the states of Q belonging to the same block B of the partition � are said to be mergedtogether.The operation of merging two states de�nes a partial order relation denoted by �. Thetransitive closure for this relation is denoted by �. M � M 0 means that M 0 is a C-FSAderived from M . The partially ordered set of C-FSA derived from M is a lattice that weshall denote by Lat(M).The language inclusion property for automata derivation [10] applied to each language ofa C-FSA leads to the following proposition.Proposition 1 Let M 0 be a C-FSA accepting the C-tuple of language hL0cic2� such thatM 0 is derived from a C-FSA M accepting hLcic2�, then 8c 2 �; Lc � L0c.
PI n�1250

8 Fran�cois Coste3. Search spaceWe assume that a training sample S = hScic2� is given such that each Sc is a sample fromeach target language Lc(M), i.e. a subset of Lc(M). We denote f�c;1; : : : ; �c;jScjg the se-quences in Sc and fac;i;1; : : : ; ac;i;j�c;ijg the sequence of symbols in �c;i.To de�ne the search space, a classical assumption in regular inference is to suppose thatthe sample is structurally complete with respect to the target machine. This section isdevoted to the study of the search space under this assumption. In section 3.1, structuralcompleteness is introduced and the corresponding search space is introduced. An implicitrepresentation of this search space in terms of state pair mergings is presented in section3.2. Deterministic and unambiguous elements are respectively characterized in section 3.3and 3.4.3.1. Structural completenessDe�nition 9. A sample S is said to be structurally complete with respect to a C-FSA Mif there exists an acceptance of S such that:� Every transition of M is exercised;� Every state of M is used as an accepting state for each of its outputs i.e. 8q 2 Q;8c 2!(q); 9� 2 Sc; �̂(qs; �) = q.MCA(S) is the largest C-FSA with respect to which S is structurally complete. It is madeof one branch per sequence and the C-tuple of accepted languages is exactly S. MCA(S)is generally a C-NFA, where the only possible non-deterministic transitions come from thestart state qs. Formally, we get:De�nition 10. The maximal canonical C-FSA with respect to S is the C-FSA denotedby MCA(S) = (Q; qs;�;�; �; !) constructed as follows:� � is the alphabet on which S is de�ned;� � is the alphabet of the C classes de�ned by S ;� Q = fqc;i;j jc 2 �; i 2 [1; jScj]; j 2 [1; j�c;ij]g [fqsg ;� 8c 2 �;8i 2 [1; jScj]; !(qc;i;j�c;ij) = c ;� 8a 2 �; �(qs; a) = fqc;i;1jac;i;1 = a; c 2 �; i 2 [1; jScj]g ;� 8c 2 �;8i 2 [1; jScj];8j 2 [1; j�c;ij � 1]; �(qc;i;j ; ac;i;j+1) = fqc;i;j+1g ;
Irisa

State Merging Inference of Finite State Classi�ers 9UA(S) is the C-FSA obtained by merging all the states of MCA(S). For each non emptysample Sc, it accepts the language Lc = ��, such that � is the alphabet on which is de�nedS. For each empty sample Sc0 , the accepted language is the empty language Lc0 = ;.
q0

q1

a

q2a

q3

a

q4

b

q5b

q6b

q7
b

q8
a

q9a c3

q10a
q12

a c2

c3

q11
b

q13
a c1

q0

a,b c3

c2

c1

Figure 2. MCA(S) and UA(S) when S = hSc1; Sc2; Sc3i = hfbabag; fabaag; fab; abagi.Theorem 2 Let S be a sample from a set of regular languages L and let M be a C-FSA ac-cepting L. If S is structurally complete with respect to M , then M belongs to Lat(MCA(S)).Proof: This is an extension of the proof proposed in [3] based on [9].Let MCA(S) = (Q; qs;�;�; �; !) and let M = (Q0; q0s;�;�; �0; !0).A partition � will be de�ned such that M is isomorphic to MCA(S)=�.Firstly, let us de�ne �c2�jScj sequences of states from the acceptance of S byM as follows:for each sequence �c;i a sequence (q0i;0; : : : ; q0i;j�c;ij) of j�c;ij + 1 states is de�ned, whereq0i;0 = q0s and 8j 2 [0; j�c;ij]; q0i;j+1 2 �0(q0i;j ; ac;i;j). Furthermore, 8c 2 �; c 2 !(q0i; j�c;ij).Next a function � : Q�Q0 is de�ned as1. �(qs) = q0s2. 8i 2 [1;�c2�jScj];8j 2 [1; j�c;ij]; �(qi;j) = q0, whenever q0 = q0i;j .Let the partition � be given by 8qk; ql 2 Q;B�(qk) = B�(ql) , �(qk) = �(ql). Then M isisomorphic to MCA(S)=�, since the structural completeness of S with respect toM impliesthe two following properties:1. The next-state function of MCA(S)=� exactly corresponds to �0 (since all transitions in�0 are exercised);2. The output function ofMCA(S)=� exactly corresponds to !0 (since 8c 2 �;8q0 2 Q0; c 2!0(q0) 9i 2 [1; jScj] such that q0i;j�c;ij).Hence M belongs to Lat(MCA(S)).In the sequel of the article, we'll assume that the sample is structurally complete withrespect to the target C-FSA. In this case, the hypothesis space considered is the latticePI n�1250

10 Fran�cois Costeof C-FSA whose null and universal elements are respectively MCA(S) and UA(S). Sinceeach element Mi in the lattice may be represented as a C-FSA derived from MCA(S) withrespect to a partition �i, an implicit representation of the hypothesis space may be composedof MCA(S) and the set of partitions on its states (the partition lattice constructed for afour state MCA(S) is depicted in �gure 3). We call this implicit representation a partitionspace of MCA(S).
{ {1},{2},{3},{4} }

{ {1,2},{3},{4} }

1=2

{ {1,3},{2},{4} }

1=3

{ {1,4},{2},{3} }

1=4

{ {1},{2,3},{4} }

2=3

{ {1},{2,4},{3} }

2=4

{ {1},{2},{3,4} }

3=4

{ {1,2,3},{4} }

1=3 1=21=2

{ {1,2,4},{3} }

1=4 1=2 1=2

{ {1,3,4},{2} }

1=41=3 1=3

{ {2,3,4},{1} }

2=4 2=32=3

{ {1,2},{3,4} }

3=4 1=2

{ {1,3},{2,4} }

2=41=3

{ {1,4},{2,3} }

2=3 1=4

{ {1,2,3,4} }

1=41=3 1=2 1=22=3 1=21=2

Figure 3. Partition space lattice for a 4 states MCA(S).3.2. State merging spaceIn the lattice, each partition may be reached by a succession of pair of states mergings. Bychanging the merging order or by considering di�erent equivalent pairs in the blocks, severalpaths may exist. The particular study of the e�ects of merging two states motivates theintroduction of a �ner equational representation of the search space. We call state mergingspace of MCA(S) the set of its state pairs considered as attributes with two possible values:= if states should be merged in the derived C-FSA and 6= if states should be in di�erentblocks of the partition. This representation enables to work on incomplete assignments suchthat some values are not set for some pairs of states. This can be useful, for example, tospecify implicitly a set of C-FSA in the lattice. On the contrary, if values has been assignedto all the pairs of states, the assignment is said to be complete. If in addition transitivityis satis�ed, a complete assignment de�nes a partition and therefore represents an uniqueC-FSA in the lattice:Proposition 2 A complete assignment on Q de�nes a partition if and only if:8q1; q2; q3 2 Q; q1 = q2 ^ q2 = q3) q1 = q3
Irisa

State Merging Inference of Finite State Classi�ers 11Proof: To de�ne a partition, the relation = has to be an equivalence relation. The =relation is already re
exive and symmetrical. It has to be also transitive. This is what isstated in the proposition relation.q1 q2 q3 q4q1 = 6= = ?q2 = 6= 6=q3 = ?q4 = (a) q1 q2 q3 q4q1 = 6= = 6=q2 = 6= 6=q3 = =q4 = (b) q1 q2 q3 q4q1 = 6= = =q2 = 6= 6=q3 = =q4 = (c)Figure 4. Incomplete (a), complete (b), and transitive complete (c) assignment.In the state merging space, we denote B=(q) the set of states q0 such that q = q0 and �=,!= the extensions, by the relation =, of respectively the next-state and the output functionsde�ned by: �=(q; a) = fB=(q0) j 9qe 2 B=(q); q0 2 �(qe; a)g!=(q) = [q02B=(q)!(q0)Proposition 3 If the assignment de�nes a partition � , �= and != de�ne the next-statefunction �0 and the output function !0 of the C-FSA derived fromMCA(S) = (Q; qs;�;�; �; !)with respect to �: 8B 2 �;8q 2 B;8a 2 �; �0(B; a) = �=(q; a);8B 2 �;8q 2 B; !0(B) = !=(q)Proof: First, let us remark that if the assignment de�nes a partition �, transitivity of =is satis�ed, therefore B=(q) contains all the states of the block of q and thus equals B�(q).Then, the proposition results from the de�nition of a derived C-FSA and the de�nition of�= and != which have been constructed to this end.8B 2 �;8a 2 �; �0(B; a) = fB0 2 � j 9q 2 B; 9q0 2 B0; q0 2 �(q; a)g= fB=(q0) j 9q 2 B; 9qe 2 B=(q); q0 2 �(qe; a)g= f�=(q; a) j 9q 2 BgNow the assignment de�nes a partition, therefore 8q1; q2 2 B; �=(q1; a) = �=(q2; a), so:8B 2 �;8q 2 B;8a 2 �; �0(B; a) = �=(q; a).Similarly:8B 2 �; !0(B) = Sq2B !(q), 8B 2 �;8q 2 B;!0(B) = Sqe2B=(q) !(qe) = !=(q)The extension to terminal state and last output functions is done accordingly:�̂=(q; �) = B=(q); �̂=(q;ma) = f�=(q0; a) j q0 2 �̂=(q;m)gPI n�1250

12 Fran�cois Coste
q1’

c1
q1

m

q2 q2’m

q3
c3

=

=

Figure 5. Example for �= and !=.In this con�guration (q1 = q2 and q02 = q3), �=(q1;m) = fq01; q02; q3g and !=(q02) = fc3g.!̂=(q;m) = f!=(q0) j q0 2 �̂=(q;m)gAccording to proposition 3, a property is satis�ed for a next-state or an output functionof a C-FSA in Lat(MCA(S)) only if this property is satis�ed for the counterpart of thefunction in the merging state space. We focus now on two properties, determinism (section3.3) and unambiguousness (section 3.4). For each of these properties, we proceed similarly.We �rst introduce an extension to C-FSA of results of regular inference on the search spacepresented by Dupont, Miclet and Vidal in [9]. Then, we propose a characterization of suchproperties in the state merging space in terms of constraints between pairs of states.3.3. DeterminismTo explore the MCA(S) lattice, moving to a more general C-FSA is achieved by mergingtwo states of the current C-FSA. To consider only deterministic C-FSA, the deterministicmerge operation used in RPNI [19] may be used. This operation consists in merging thestates giving rise to non determinism. It allows to obtain the lowest deterministic upperbound of the current C-FSA in the lattice which is eventually more general. This operationshould not be confused with the classical determinization process [2] which produces anequivalent deterministic machine, but eventually outside the lattice.De�nition 11. LetM = (Q; qs;�;�; �; !) be a C-FSA. The deterministic merge operationmay be stated as follows:while (9q 2 Q; 9a 2 �; 9q1; q2 2 �(q; a); q1 6= q2) merge(M, q1, q2)The result of this operation on MCA(S) is a C-FSA called pre�x tree acceptor.
Irisa

State Merging Inference of Finite State Classi�ers 13
q

q1a

q2
a) q q1,q2

aFigure 6. Deterministic merge operation.De�nition 12. The pre�x tree acceptor of S, denoted PTA(S), is the C-FSA derivedfrom MCA(S)=� such that the partition � is de�ned to merge the states reached by thesame pre�x: B�(q) = B�(q0), Pr(q) = Pr(q0)where Pr(q) denotes the set of pre�xes of a state q: Pr(q) = fu 2 ��j�̂(qs; u) = qg.
q0

q1, q2, q3a

q4

b

q5, q6, q7b

q9, q10
a

c3

q12a

c3

q8
a

c2

q11
b

q13
a c1Figure 7. PTA(S) (same training sample than in �gure 2 for MCA(S)).The pre�x tree acceptor is by construction deterministic and accepts exactly S. SincePTA(S) belongs to Lat(MCA(S)), we have the following property:Lat(PTA(S)) � Lat(MCA(S)):Another interesting property is that all the deterministic C-FSA in Lat(MCA(S)) are in-cluded in Lat(PTA(S)). Therefore, if the search is only concerned by deterministic C-FSA,PTA(S) may be used as the null element of the lattice and the search may be restricted tothis lattice. Moreover, we obtain the following theorem:Theorem 3 Let S be a sample from a C-tuple of regular languages L and let M(L) be thecanonical C-DFA of L. If S is structurally complete with respect to M(L), then M belongsto Lat(PTA(S)).Proof: The same argument than in the theorem 2 holds, except that, now, since M isdeterministic, there is a unique acceptance of S from which a tree of states can be built thathas the same structure than PTA(S).

PI n�1250

14 Fran�cois CosteThough all C-DFA are included in Lat(PTA(S)), some C-NFA are also included in thislattice. The deterministic merge operation can still be used to explore the space of C-DFA,but this operation can be avoided by choosing the two states to be merged:Proposition 4 Let S be a sample from a set of regular languages L and let M(L) be thecanonical C-DFA of L. If S is structurally complete with respect to M(L), then a sequenceof C-DFA exists such that: PTA(S) = PTA(S)=�0 � PTA(S)=�1 � : : : � PTA(S)=�n =M(L) with n � jQPTA(S)j � 1.this proposition implies the following corollary:Corollary 1 Each C-DFA M 2 Lat(PTA(S)) may be reached by a succession of twostates merging such that the corresponding sequence of derived C-FSA in Lat(PTA(S)) ismade of C-DFA.Proof: The proof of this proposition and its corollary for automata [8] is independent fromacceptance or �nal state concepts, except the use of theorem 3. Thus, these results are alsovalid for C-DFA.In the state merging space, the determinism may be handled by the following theoremrelated to the determinism of �= and therefore to the determinism of an eventually derivedC-FSA.Theorem 4 The function �= in the state merging space based onMCA(S) = (Q; qs;�;�; �; !)is deterministic if and only if:8q; q1; q2 2 Q;8a 2 �;8q01 2 �(q1; a);8q02 2 �(q2; a) : q1; q2 2 B=(q)) q01 = q02Proof: This relation is a translation in the state merging space of the deterministic mergeoperation. �= is deterministic: 8q 2 Q;8a 2 �; j �=(q; a) j � 1, 8q 2 Q;8a 2 �; j fB=(q0)j9qe 2 B=(q); q0 2 �(qe; a)g j � 1, 8q 2 Q;8a 2 �;8q1; q2 2 Q; q1 = q; q2 = q;8q01 2 �(q1; a);8q02 2 �(q2; a); q01 = q02, 8q 2 Q;8a 2 �;8q1; q2 2 B=(q);8q01 2 �(q1; a);8q02 2 �(q2; a); q01 = q02If MCA(S) is non deterministic, the application of this system yields a set of equalitybetween pairs of states such that the corresponding set of potential C-FSA is Lat(PTA(S)).To reduce the search space size and save computer resources, the state merging space mayalso be based, according to theorem 3, on PTA(S) instead of MCA(S). In this case thetheorem 4, in which MCA(S) is replaced by PTA(S), still holds.In this context, we may reconsider the two exploration strategies of the deterministic partof the search space. The �rst one, using deterministic merge operation, corresponds to aforward propagation of equality constraints of theorem 4. The second strategy, consideringonly two state mergings such that the resulting C-FSA is deterministic, amounts to avoid
Irisa

State Merging Inference of Finite State Classi�ers 15such states merging implying forward propagation. It corresponds to a partial ordering ofpairs of states such that a pair of state p1 greater than a pair p2 should not be mergedbefore p2. On the other hand, if the attribute of p2 is assigned the value 6=, a backwardpropagation using modus-ponens may be investigated (�gure 8).
qs

q1
c1

q3
c2

a

q2

b

aFigure 8. Partial ordering on pairs of states for cautious strategy.For the considered PTA, determinism states that qs = q2) q1 = q3. Therefore, to avoid intermediateC-NFA, q1 and q3 merging has to be considered before qs and q2 merging. If q1 and q3 are merged (q1 = q3), the determinism relation is always satis�ed. On the contrary, if these two states are separated (q1 6= q3),then by propagation qs 6= q2, so qs and q2 should never be merged to ensure determinism.3.4. UnambiguousnessProposition 5 Let M and M 0 be two C-FSA such that M �M 0� If M 0 is unambiguous then M is unambiguous.� if M is ambiguous then M 0 is ambiguous.Proof: These properties follow from language inclusion stated in prop 1.As a consequence, unambiguous elements in a C-FSA lattice may be delimited by a borderset, denoted by BS, [16] such that each C-FSA which can be derived in one element of BSis unambiguous. We introduce �rst the de�nition of an anti-string before giving the BSde�nition.De�nition 13. An anti-string AS in a lattice is a set of elements in the lattice such thatany element of AS is not related by � to any other element of AS.De�nition 14. Let M be a C-FSA and Lat(M) the associated lattice.The border set BSM is the anti-string composed of unambiguous C-FSA such that eachC-FSA derived from one element of BSM is ambiguous.When the considered lattice is Lat(MCA(S)), the border set BSMCA(S) sets the limit ofgeneralization of unambiguous C-FSA. Thus, following the version space terminology [17],BSMCA(S) is the set G of maximally general solutions. In our case, the set S of maximally
PI n�1250

16 Fran�cois Coste
unambiguous C-FSA

 = Maximally specific solutions

ambiguous C-FSA

BS = Maximally general solutionsMCA(S)

MCA(S)

UA(S)

Figure 9. Unambiguous C-FSA search space.speci�c solutions is reduced to MCA(S). The set of unambiguous C-FSA with respect towhich the sample is structurally complete is therefore characterized implicitly by BSMCA(S)(�gure 9).In the state merging space, the ambiguousness of the derived C-FSA is stated by thefollowing theorem in which the !=(q01) � !=(q02) notation has been introduced. This notationis equivalent to !=(q01) = !=(q02) _ !=(q01) = ; _ !=(q02) = ;, which means that the outputof q01 is compatible with the output of q02.Theorem 5 !̂= is unambiguous if and only if:� 8q 2 Q; 9c 2 �; !=(q) = fcg _ !=(q) = ;8q 2 Q;8� 2 ��;8q01; q02 2 �̂=(q; �); !=(q01) � !=(q02)Proof:!̂= is unambiguous , 8q 2 Q;8� 2 �� : j!̂=(q; �) j � 1, 8q 2 Q;8� 2 ��; 9c 2 �; !̂=(q; �) = fcg _ !̂=(q; �) = ;, 8q 2 Q;8� 2 ��; 9c 2 �;8q0 2 �̂=(q; �); !=(q0) = fcg _ !=(q0) = ;Which can be split into two constraints: a unique classi�cation for each reached states onthe one hand, and, on the other hand, an identical classi�cation for each state reached bythe same sequence.� 8q 2 Q;8� 2 ��;8q0 2 �̂=(q; �); 9c 2 �; !=(q0) = fcg _ !=(q0) = ;8q 2 Q;8� 2 ��;8q01; q02 2 �̂=(q; �); !=(q01) = !=(q02) _ !=(q01) = ; _ !=(q02) = ;By construction, each state of MCA(S) or PTA(S) can be reached, therefore the �rstrelation has to be true for each state of Q; it can thus be rewritten as 8q 2 Q; 9c 2�; !=(q) = fcg _ !=(q) = ;.
Irisa

State Merging Inference of Finite State Classi�ers 17Let us notice that if the sample S is ambiguous, all the elements of the lattice based onMCA(S) or PTA(S) are ambiguous and the search of unambiguous C-FSA stops trivially.From here onwards, we assume for the search of unambiguous C-FSA that the sample isunambiguous. In this case MCA(S) or PTA(S) are unambiguous. Moreover, if we denoteby Q the set of states of MCA(S) or PTA(S), then for each state q of Q, the classi�cationis unique: 9c 2 �; !(q) = fcg_!(q) = ;. Therefore the relation 8q1; q2 2 Q; q1 = q2; !(q1) �!(q2) implies the �rst relation in the system for unambiguousness. Since this relation isincluded in the second one where � is the empty sequence, the system for unambiguousnessmay be reduced to the second relation. We have therefore the following corollary:Corollary 2 If the sample S is unambiguous, !̂= is unambiguous if and only if:8q 2 Q;8� 2 ��;8q01; q02 2 �̂=(q; �); !=(q01) � !=(q02)This relation allows to de�ne the incompatible mergings set, i.e. the set of pairs of statessuch that merging one of these pairs implies that the corresponding derived C-FSA areambiguous:ffq1; q2g j q1 = q2) 9m 2 ��; 9q01 2 �̂=(q1;m); q02 2 �̂=(q2;m); !=(q01) 6� !=(q02)gThe computation of this set requires to merge each pair of states in order to know if the pairis incompatible. An approximation of the set of incompatible mergings may be obtainedwithout merging the states beforehand. We denote A 6= the subset of incompatible mergingsde�ned by:A6= = ffq1; q2g j 9m 2 ��; 9q01 2 �̂=(q1;m); 9q02 2 �̂=(q2;m); !=(q01) 6� !=(q02)gA6= is a good approximation in practice of the set of incompatible state merging. We proposehere an algorithm (algorithm 1) to compute the initial A 6= set before any pair of stateattribute has been assigned. The algorithm takes advantage of the property that MCA(S)and PTA(S) are tree structured and therefore, there exists only one in-going transitionfor each state q0. The functions returning respectively the symbol and the source state ofin-going transition of q0 are denoted by In Symbol(q0) and Pred(q0).Algorithm 1 Initialization of A 6=1. Initialization (A 6=, M0 = (Q; qs;�;�; �; !)):2. require M0 = MCA(S) or PTA(S)3. A 6= ;4. for all qi in Q do5. for all qj > qi in Q do6. if !(qi) 6� !(qj) then7. Separate and Propagate(qi,qj)8. end ifPI n�1250

18 Fran�cois Coste9. end for10. end for11. end function12. Separate and Propagate(qi,qj):13. if fqi 6=qjg 62A 6= then14. /* Update A 6= */15. A 6= A 6= [f qi 6=qjg16. /* Propagation */17. if In Symbol(qi) = In Symbol(qj) then18. Separate and Propagate(Pred(qi),Pred(qj))19. end if20. end if21. end functionFor each pair of states, the Separate and Propagate() procedure may be called only once,so the complexity of the A 6= initialization algorithm in terms of the number n of states ofMCA(S) or PTA(S) is O(n2).After initialization, values choices for some pairs of states may induce new incompatiblestate mergings. We sketch here how A 6= may be updated according to the theorem 2 afterthe choice of an equality value for a pair fq1; q2g. q1 = q2 implies that for each sequence �in ��, for each state q01 and q02 reached by � from q1 and q2, a new compatibility constraints!=(q01) � !=(q02) may be added. Furthermore, for each of these new compatibility constraint,if the output of state q01 is nonempty when the output of q02 is empty, then, for each state q3incompatible with q01 (the output of q3 is de�ned and di�erent from q01 output), q02 and q3should not be merged together and this pair may be added to A 6=.
q1

q1’

m

q2’q2
m

c1

q3
c3

=
~

=Figure 10. Consequence of choice q1 = q2 (q1 = q2) !=(q01) � !=(q02)) q02 6= q3)
Irisa

State Merging Inference of Finite State Classi�ers 194. Unambiguous C-DFA4.1. Constraint systemThe relations of the previous section theorems may be merged to de�ne the set of unambi-guous C-DFA. The corresponding system is composed of three relations and may be sim-pli�ed because the deterministic merge procedure q1 = q2) q01 = q02 implies the equality ofthe output function !=(q01) = !=(q02) when transitivity is assumed.Thus, the set of unambiguous C-DFA may be implicitly characterized by a system ofequality constraints between pairs of states expressed only in terms of the next-state andoutput functions of PTA(S):Theorem 6 Let S be a sample from a set of regular languages L. The set of unambiguousC-DFA M , with respect to which S is structurally complete, is the set of C-FSA derivedfrom PTA(S) according to complete assignments satisfying the following system:8<: 8q1; q2; q3 2 Q : q1 = q2 ^ q2 = q3) q1 = q38q1; q2 2 Q : q1 = q2) !(q1) � !(q2)8q1; q2; q01; q02 2 Q;8a 2 �; q01 2 �(q1; a); q02 2 �(q2; a) : q1 = q2) q01 = q02where PTA(S) = (Q; qs;�;�; �; !)Proof: According to proposition 3, the assignments de�ning unambiguous C-DFA arethose de�ning a partition such that �̂= is deterministic and !̂= is unambiguous. Since �̂=is deterministic i� �= is deterministic, the relations to satisfy according to proposition 2,theorem 4 and corollary 2 are respectively:8q1; q2; q3 2 Q; q1 = q2 ^ q2 = q3) q1 = q3 (1)8q; q1; q2 2 Q;8a 2 �;8q01 2 �(q1; a);8q02 2 �(q2; a); q1; q2 2 B=(q)) q01 = q02 (2)8q 2 Q;8� 2 ��;8q01; q02 2 �̂=(q; �); !=(q01) � !=(q02) (3)Assume that relation (1), i.e. transitivity is satis�ed. In this case 8q 2 Q; q1; q2 2 B=(q) isequivalent to 8q1; q2 2 Q; q1 = q2. Therefore, relation (2) may be simpli�ed:8q1; q2 2 Q;8a 2 �;8q01 2 �(q1; a);8q02 2 �(q2; a); q1 = q2) q01 = q02 (2a)Now, if we assume that relation (1) and (2a) are satis�ed, then �= is deterministic, therefore:8q 2 Q;8� 2 ��; q01; q02 2 �̂=(q; �)) q01 = q02:Conversely,8q01; q02 2 Q; q1 = q2) q01; q02 2 �̂=(q01; �)) 9q 2 Q; 9� 2 ��; q01; q02 2 �̂=(q; �):
PI n�1250

20 Fran�cois CosteThe two sets of states are therefore identical, relation (3) may be simpli�ed:8q01; q02 2 Q; q01 = q02) !=(q01) � !=(q02) (3a)which is equivalent, under transitivity to:8q1; q2 2 Q; q1 = q2) !(q1) � !(q2) (3b)Relations (1), (2a) and (3b) compose the system of the theorem.The system is stated as equality constraints between pairs of states which can be reversedby contraposition:8<: 8q1; q2; q3 2 Q : q1 6= q3) q1 6= q2 _ q2 6= q38q1; q2 2 Q : !(q1) 6� !(q2)) q1 6= q28q1; q2; q01; q02 2 Q;8a 2 �; q01 2 �(q1; a); q02 2 �(q2; a) : q01 6= q02) q1 6= q2Before assigning a value to any pair of states, a set of inequalities for each pair of stateswhose output functions are incompatible comes from second relation. Then if the propaga-tion by modus-ponens of inequalities according to the third relation is considered, a new setof inequalities have to be added . This set of inequalities corresponds to the initial set A 6=of incompatible mergings leading to ambiguous C-FSA de�ned at the end of section 3.4 andcan be computed by algorithm 1.4.2. Extended State Merging AlgorithmThe constraint system in theorem 6 enables to characterize the set of unambiguous C-DFAin the lattice. It can be used as an implicit representation of this set, for example in an in-cremental process. But generally, the goal is to extract a set of unambiguous C-DFA with agiven property or optimizing an evaluation function. We propose here a generic branch andbound algorithm (algorithm 2) to explore the search space and produce all the deterministicand unambiguous solutions of a minimization problem. Since each pair of states is assigneda value at each step and that \inequality" of states is taken into account, the ESMA algo-rithm ensure to visit only twice each element of the inference search space. The propagationof the constraints allows look-ahead and look-back techniques and, more generally, supplyinformations on the search space con�guration.The adaptation to a given problem may be done by acting on several tuning points. First,the completeness of the search ensured by the algorithm may be tuned. Since the problemmay be NP-complete, the search may be limited to good solutions. The proposed algorithmallows to continue the search after each solution proposal, for example, if the user is notsatis�ed with it. Another way of limiting the search may be to stop the search when a givengoal is reached. For example, the variable best min may be initialized with a target value
Irisa

State Merging Inference of Finite State Classi�ers 21Algorithm 2 Extended State Merging Algorithm1. ESMA(A):2. if Consistent(A) then3. if Complete(A) then4. /* A is solution ? */5. if Eval(A) < best min then6. sol A7. best min Eval(A)8. else if Eval(A) = best min then9. sol sol [A10. end if11. else if Partial Eval(A) � best min then12. /* A is incomplete: set a new attribute value */13. (q1,q2) Choose Pair of State(Q)14. A' A [q1 = q2 [Propagation(q1 = q2)15. ESMA(A')16. A' A [q1 6= q2 [Propagation(q1 6= q2)17. ESMA(A')18. end if19. end if20. end function21. main22. A Initialization(PTA(S))23. best min min upper bound()24. ESMA(A)25. endand the search may be stopped at the �rst found solution.A more di�cult point is the compromise to �nd between the propagation of the constraints-done in the functions Propagation(q1 = q2) and Propagation(q1 6= q2)- and the consistencychecking -made by the function Consistent(A)-. This is the traditional dilemma betweenlook-ahead and look-back strategies. Our experience aims at showing that maintaining tran-sitivity and the set of incompatible mergings A 6= de�ned in section 3.4 is e�cient for exactsearches of set of solutions. Maintaining transitivity allows also to save space by pointing
PI n�1250

22 Fran�cois Costeout a representative of each block being constructed. It seems to be good compromise closerfrom the partition search space.Another important point is the choice of the pairs of states to be considered with theChoose Pair of State(Q) function. For heuristic search, the order in which the space is ex-plored is obviously important, since the search space is not wholly explored. Heuristicsrelated to the researched properties may be used, inductive biases proposed in [4] may alsobe considered to guide the inference. For exact searches, a good ordering enables to obtainquickly a good estimation of best min and then allows more pruning. But the relation bet-ween the choice of the states and its propagation e�ects should also be carefully analyzed;good ordering should also decrease the search tree size. From this point of view, saturationtechniques or entropy based techniques may be more adapted [7]. A mixed strategy may beemployed: a �rst greedy strategy to obtain a good upper bound for best min and then thesecond type of ordering to explore a smaller search tree.The functions Eval(), which returns the solution evaluation to minimize, and Partial Eval(),which returns a lower bound of this evaluation for an incomplete assignement, are both do-main dependent. If the search aims at �nding the minimal unambiguous C-DFA, the Eval(A)function returns the number of states induced by the assignement A. Concerning the Par-tial Eval() function, maintaining a set of incompatible mergings, i.e. pair of states with an6= attribute value, is very useful. Then, a set of states that would never be merged togethermay be computed. This set of states is a clique (set of mutually adjacent states) such thatadjacency between pair of states is true if the attribute value of the pair is 6=. A lower boundof the number of states for an incomplete assignement is thus given by the size of the biggestclique. This value can then be the value returned by the Partial Eval() function. But, asthis search has also been shown NP-complete, it may be more reasonable to return only anestimation of the biggest clique.
q1

q1’
m

q2’

c1

q3
c3

q2
mFigure 11. Clique of incompatible mergings.As q1 6= q01 , q1 6= q3 and q01 6= q3, at least 3 states can not be merged with each other. Thus, for thisassignment, the expected number of states of the derived C-FSA is greater or equal to 3.

Irisa

State Merging Inference of Finite State Classi�ers 235. Further researchWe have introduced C-regular inference and studied the search space for the inference ofdeterministic and unambiguous classi�ers. Considering both compatible and incompatiblestate merging allows to better understand the dynamic of the search space. The implicitrepresentation of the search space and the characterization of the constraint propagationenables to build more e�cient algorithms for an intensive exploration of the search space.The extension of this work to other �nite state machine like transducers is an interestingchallenge. For example, p-subsequential transducers [21], which are machines with statesoutput but also transition output used in natural language processing [18] are indeed theclosest �nite state extension of C-FSA. They may be considered as belonging to the �nitestate classi�cation framework (�nal output on accepting states) but the di�culty is thatthey also belong to the \interpretation" [13] framework (transition output).Several algorithmic issues have also to be studied. E�ciency of di�erent propagationstrategies should be examined. Dependence between the choice of pair, its attribute value,the propagation of constraints and the pruning of the search is also an important �eld ofinvestigation. This work may be done for the classical minimal machine search, but otheroptimization goals, such as classi�cation criteria, may also be considered. For example,the search of machines separating, according to a distance between sequences, at most thegiven sample or the search of an unambiguous machine minimizing the number of ignoredsequences could be studied, as well as the corresponding heuristics.The implicit representation of the search space may be useful for other type of algorithms.Notably, meta-heuristic type of algorithms (Tabu search, Simulated Annealing, GeneticAlgorithms) may take advantage from the simple de�nition of neighborhood and the possi-bility of building �tness functions according to the number of unsatis�ed constraints. Theversatility of the space may also be used with incomplete assignement representing set ofC-FSA.References1. C. Higuera (de la), J. Oncina, and E. Vidal. Identi�cation of dfa : data-dependent versus data-independant algorithms. Grammatical inference Learning Syntax from Sentences, ICGI'96, pages311{325, 1996. Springer Verlag.2. A. Aho and J. Ullman. The Theory of Parsing, Translation and compiling, Vol 1 : Parsing. EnglewoodCli�s, Prentice-Hall, 1972.3. R. Alqu�ezar. Symbolic and connectionist learning techniques for grammatical inference. PhD thesis,Universitat Politecnica de Catalunya, March 1997.4. R. Alqu�ezar and A. Sanfeliu. Incremental grammatical inference from positive and negative data usingunbiased �nite state automata. In Shape, Structure and Pattern Recognition, Proc. Int. Workshop onStructural and Syntactic Pattern Recognition, SSPR'94, Nahariya (Israel), pages 291{300, 1995.5. T. L. Booth. Sequential Machines and Automata Theory. John Wiley and Sons, New York, 3 edition,1976.
PI n�1250

24 Fran�cois Coste6. F. Coste and J. Nicolas. Regular inference as a graph coloring problem. In Workshop on GrammarInference, Automata Induction, and Language Acquisition (ICML' 97), Nashville, TN., 1997.7. F. Coste and J. Nicolas. How considering incompatible state mergings may reduce the dfa inductionsearch tree. In Vasant Honavar and Giora Slutzki, editors, Fourth International Colloquium on Gram-matical Inference (ICGI-98), Ames, Iowa, USA, volume 1433 of LNAI, pages 199{210, Berlin, July1998. Springer Verlag.8. P. Dupont. Utilisation et apprentissage de mod�eles de langages pour la reconnaissance de la parolecontinue. PhD thesis, Ecole Nationale Sup�erieure des T�el�ecommunications, 1996.9. P. Dupont, L. Miclet, and E.Vidal. What is the search space of the regular inference ? ICGI'94,Grammatical inference and Applications, pages 25{37, 1994. Springer Verlag.10. K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey | part I and II. IEEE-Transactions on Systems, Man and Cybernetics, 5:95{111 and 409{423, 1975.11. E. M. Gold. Langage indenti�cation in the limit. Information and control, 10(5):447 { 474, 1967.12. J. Gregor. Data-driven inductive inference of �nite-state automata. Intenationnal Journal of PatternRecognition and Arti�cial Intelligence, 8(1):305 { 322, 1994.13. E. Vidal J. Oncina, P. Garc��a. Learning subsequential transducers for pattern recognition interpretationtasks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15:448 { 458, 1993.14. K. J. Lang. Random dfa's can be approximately learned from sparse uniform examples. 5th ACMworkshop on Computation Learning Theorie, pages 45 { 52, 1992.15. K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one DFA learning competitionand a new evidence-driven state merging algorithm. Lecture Notes in Computer Science, 1433:1{12,1998.16. L. Miclet and C. de Gentille. Inf�erence grammaticale �a partir d'exemples et de contre-exemples : deuxalgorithmes optimaux : (big et rig) et une version heuristique (brig). JAVA94, Journ�ees Acquisition,Validation, Apprentissage, pages F1{F13, 1994. Strasbourg France.17. T. Mitchell. Version Spaces : an approach to concept learning. PhD thesis, Standford University, dec1978.18. Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,23(4), 1997.19. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. Pattern Recognitionand Image Analysis, pages 49 { 61, 1992.20. R. Parekh and V. Honavar. An incremental interactive algorithm for regular grammar inference. InL. Miclet and C. de la Higueira, editors, ICGI96, Grammatical Inference: Learning Syntax fromSentences, volume 1147 of Lecture Notes in Arti�cial Intelligence, pages 238{249. Springer Verlag,September 1996.21. M. P. Sch�utzenberger. Sur une variante des fonctions sequentielles. Theoretical Computer Science,4(1):47{57, February 1977.22. B. Trakhenbrot and Ya. Barzdin. Finite automata : Behavior and synthesis. Amsterdam, North HollandPub. Comp, 1973.

Irisa

