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We introduce a mathematical framework describing static response of networks occurring in
molecular biology. This formalism has many similarities with the Laplace–Kirchhoff
equations for electrical networks. We introduce the concept of graph boundary and we
show how the response of the biological networks to external perturbations can be related to
the Dirichlet or Neumann problems for the corresponding equations on the interaction graph.
Solutions to these two problems are given in terms of path moduli (measuring path rigidity
with respect to the propagation of interaction along the graph). Path moduli are related to
loop products in the interaction graph via generalized Mason–Coates formulae. We apply our
results to two specific biological examples: the lactose operon and the genetic regulation of
lipogenesis. Our applications show consistency with experimental results and in the case of
lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting.
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1. INTRODUCTION

Network-based representations are widely used to
describe gene regulation or metabolic pathways at
cellular level; graph theoretical properties of these
biological networks, dynamical properties, as well as
their inference from experimental data, were the
subject of intensive studies (Wagner 2001; de Jong
2002; Kaminski & Friedman 2002; Kholodenko et al.
2002; de Jong et al. 2004; Thieffry & Sanchez 2004;
Yamanishi et al. 2004). However, network inference
techniques need huge amounts of data which are not
always available or often have poor accuracy. Similarly,
dynamical studies need accurate data.

In this paper, our goal is different. Instead of using
data and gene perturbations for building networks from
scratch, we develop mathematical techniques in order
to refine the analysis of incomplete models or to
compare models and data. Our mathematical results
connect network topology and the response to steady-
state shift experiments. Steady-state shift experiments
are useful tools in chemistry allowing in principle to
recover the reaction mechanisms (Chevalier et al.
1993). We argue that similar approaches are well
adapted to differential microarray experiments which
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compare gene expressions between two different states
(Kaminski & Friedman 2002).

A theory of steady-state shifts is, in fact, a theory of
static response, linear when the shifts are small and
nonlinear when the shifts are big. Theories of linear
response were developed in various contexts such as
condensed matter and in statistical physics (Kubo et al.
1998), electrical, physical and mechanical systems
(MacFarlane 1970), chemical and biochemical systems
(Oster et al. 1973; Perelson & Oster 1974), complex
fluids (Larson 1988), metabolic networks (Kacser &
Burns 1973; Heinrich & Rapoport 1974) and gene
networks (Kholodenko et al. 2002; Vlad et al. 2004).
The basic quantities in such theories are the susceptiv-
ities, representing derivatives (generically functional
derivatives) of outputs with respect to inputs. Suscep-
tivities (and also response in general) are obtained from
constitutive equations that must be compatible with
thermodynamics (Oster et al. 1973; Grmela 2001).
Nonlinear response theories that apply to large
perturbations are generally more difficult to handle
(Larson 1988; Grmela 2001). Vlad et al. (2004) showed
that under special ‘neutrality’ conditions the response
of reaction–diffusion systems to special perturbations
consisting in changing the abundance of some marked
individuals is linear even at large perturbations.

In the static case, structural stability (Smale 1980;
Ruelle 1989) suggests a simple approach to nonlinear
response. Like in classical thermodynamics (Callen
1985), finite static response can be obtained by
J. R. Soc. Interface (2006) 3, 185–196
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integrating the (state dependent) differential forms
whose coefficients are the susceptivities, provided that
the integration path does not contain singularities
(phase transitions).

Susceptivities depend on the network topology and,
therefore, can be used in reverse engineering. This
method is complementary to already well-developed
correlation analysis of gene and metabolic networks
(Kaminski & Friedman 2002; Yamanishi et al. 2004) or
of time-series in chemical reaction systems (Arkin &
Ross 1995). Vlad et al. (2004) showed that under the
neutrality condition the dynamical susceptivity of a
system of chemical reactions with respect to abundance
perturbations is the exponential of a connectivity
matrix, which contains information about the chemical
reaction mechanism. It is known (Chevalier et al. 1993)
that small concentration shifts measurements allow to
calculate the Jacobian of a chemical kinetics evolution
equations. Very related to this is the work of Sontag
(Kholodenko et al. 2002) and the older Kacser–Burns
connectivity property from metabolic networks
(Cornish-Bowden 1995), meaning that the matrix of
elasticities (the Jacobian) is the inverse of the matrix of
control coefficients (static susceptivities). The dynami-
cal Jacobian is also important in gene networks
dynamics. It defines the interaction graph (Soulé
2003), which is the natural mathematical candidate to
represent the biologist’s gene regulation graph (Thomas
1981). Systems of chemical reactions allow for other
graphical representations (the interested reader could
refer to the comprehensive reviews of Oster et al. 1973;
Perelson & Oster 1974).

In this paper we generalize Mason–Coates type
formulae from electrical circuits (Mason 1953; Coates
1959), providing graphical representations of static
susceptivities of gene networks.

We also exploit useful connections between the
static response of gene networks and the Dirichlet-to-
Neumann map (Curtis & Morrow 2000), which is a
relatively new field in graph theory. This field
originated from a problem by Calderon (Calderon
1980) who asked whether it is possible to reconstruct
the conductivity of a conducting plate from measure-
ments of injected currents and voltages on its bound-
ary. This problem gave rise to non-trivial developments
in graph theory. Our most important result is related to
the Dirichlet-to-Neumann map and consists in a
systematic use of the notion of boundary. Boundaries
serve to delimitate subgraphs or to couple subgraphs
one with another like in Kholodenko et al. (2002). We
define response of subgraphs as solutions of the
Dirichlet or the Neumann problems. The novelty of
our method is that boundaries delimitating analysed
subgraphs are chosen according to the missing piece of
information.

This paper is organized as follows. In §2, we present
the interaction graph, the subgraphs and their bound-
aries. In §3, we define linear response and discuss an
electrical network analogy. In §4, we construct Mason–
Coates solutions to the linear Dirichlet and Neumann
problems and we extend the applicability of the results
to nonlinear response. Finally, we give two biological
applications in §5.
J. R. Soc. Interface (2006)
2. STEADY-STATE SHIFTS, INTERACTION
GRAPH

The state of a biological network is given by a vector
X2R

n, whose components are concentrations of
various interacting actors, such as DNA regions coding
for genes, RNA transcripts, various produced and
regulating proteins, metabolites.

Here we consider a differential dynamics for X,
dX/dtZF(X, P), F : Rn!R

k/R
n, where P2R

k

stems for a set of parameters. This assumption is rather
general, because Boolean and piecewise deterministic
dynamics can be approximated by differential inclusions
(Gouzé & Sari 2003). Although not proven in full
generality but used in practice, dynamical systems
with delays can be approximated by differential systems
either by introducing extra variables (Belych 1998) or by
centre manifold techniques (Wang & Hu 2001). The
main restriction in our theory is that we consider non-
degenerate stable steady states, which are hyperbolic
fixed points of the dynamics. Steady states are solutions
of the nonlinear system of equations:

FðX ;PÞZ 0: ð2:1Þ
Changes in the control parameters P produce steady-

state shifts. If det½JðX0;P0Þ�s0, where JijZvFi=vXj is
the Jacobian calculated at a non-degenerate stable
steady-stateX0, then from the implicit function theorem
equation (2.1) defines X as a function of P locally, in a
neighbourhood of (X0, P0). This local dependence
represents the static linear response of the system. In
§4.4, we shall give a global existence theorem for such a
function.
2.1. Interaction graph

The Jacobian J calculated in a state X introduces in a
natural way a signed oriented graph, called the
interaction graph which is a triplet (I , E, s). The set
of nodes IZ{1,., n} consists of the interacting actors.
The set of oriented edges A3I!I is defined by (j, i)
2A, iff Jijs0. The edge sign is a function
s : A/fK1; 1g, sðj; iÞZsign½Jij �. An edge (j, i) is
called positive whenever s(j, i)O0 and negative when-
ever s(j, i)!0.

From a biological point of view there is an arc from
j to i if the actor j has a direct influence on the
dynamics of i. This influence can be positive (acti-
vation) or negative (repression). Many examples can
be considered. For instance, j may be a transcription
factor regulating the expression of i, or a protein
involved in the phosphorylation or methylation of i,
or an enzyme involved in the production of i, etc.

When F is nonlinear, the signs of its partial
derivatives may change, therefore the interaction
graph generally depends on the state X where it is
calculated. This is a weakness of the interaction graph
compared with other more complex graphical represen-
tations such as ‘bond graphs’ (Oster et al. 1973;
Perelson & Oster 1974). Nonetheless, this weakness is
largely compensated by the fact that many qualitative
properties of the dynamics and of steady states depend
on topological conditions on the interaction graph
(Thomas 1981; Gouzé 1998; Snoussi 1998; Soulé 2003).
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2.2. Boundary

Boundary is a key concept of any modular approach
trying to reduce the overwhelming complexity of large
networks to understandable behaviour of simpler
subsystems. Furthermore, data in molecular biology
can be extensive, but it is rarely complete. Our modular
approach to data analysis can be used to fill in missing
information, to check existing data, or to correct
eventual errors.

Because there is no precise criterion to fix the
boundary between the actors that we consider and
those that we forget, we shall allow a free choice of the
boundary. We shall see that instead of becoming a
handicap, this freedom of choice becomes a handy tool.

The construction by which we freely choose a
boundary in an interaction graph is as follows. Let G
be the set of nodes that we isolate in the larger set I .
The entrance boundary of G, denoted by c

inG is the set
of nodes ofG that have incoming arcs from the exterior,
i.e. from nodes of I which are not nodes of G. The other
nodes of G that are not directly influenced by the
exterior are in the interior of G which is denoted
�GZGncinG.
2.3. Paths, loops, loop partitions

A path cZi,j is a sequence of nodes (i1Zi, i 2, .,
ipZj) such that (ik, ikC1) is an edge of the graph and
such that all the nodes in the sequence are visited just
once. Note that such a path exists in the interaction
graph if Ji2is0;.; JjipK1

s0. A path i,j in the
interaction graph is called positive if the path product
of the Jacobian elements aijZ

QpK1
kZ1 JikC1ik is positive

(negative).
A loop lZi,i is a sequence of nodes (i1Zi, i2, .,

ipZi) such that (ik, ikC1) is an edge of the graph and
such that all the nodes in the sequence are visited just
once with the exception of the two terminals that
coincide. A loop is called positive (negative) if the
product of the Jacobian elements along it is positive
(negative). Self-interaction loops (i, i) contain only one
node and correspond to diagonal elements of the
Jacobian Jii.

A loop partition of a graph is a partition of the nodes
into disjoint loops (including self-interaction loops).
The set of loop partitions of a subgraph G is denoted
L(G). For L2L(G), jLj denotes the number of loops in
L. For instance, if GZ{1, 2, 3} and the oriented edges
are {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}, L(G) consists of
two loop partitions L1Z{(1, 1), (2, 2), (3, 3)}, jL1jZ3
and L2Z{(1, 2, 3)}, jL2jZ1.
3. LINEAR RESPONSE OF A NETWORK TO
INFLUENCES FROM THE EXTERIOR

3.1. Electrical networks, flowgraphs,
Markov chains

Classical examples of linear networks are the linear
electrical networks. Let us consider an electrical network
withnnodes.Nodes i and j are connected bywires having
admittancesYijZYji. Injecting currents Ii in some or all
of the nodes we produce the steady-state potentials Vi.
J. R. Soc. Interface (2006)
ApplyingOhm’s law andKirchhoff’s first law to the node
i it follows that

P
jsiYjiðVjKViÞCIiZ0. In matrix

form, the linear relation between node voltages and node
current sources reads

~YV Z I : ð3:1Þ
~Y is the node admittance matrix and is obtained from
the edge admittances

~Y ij Z
KYij ; if isj;P

jsiYij ; if iZ j:

(
ð3:2Þ

In order to express the voltages for a given current
configuration we need to solve the system of Kirchhoff–
Laplace equation (3.2).

Note that the matrix ~Y is singular: ð1;.; 1Þ2
Kerð ~Y Þ. This comes from a special symmetry of
electrical networks meaning that voltages are deter-
mined up to a constant and that the only measurable
quantities are voltage differences.

There are many other examples coming from
different fields of science where linear equations are
interpreted as graphs.

Markov or semi-Markov processes on multistate
stochastic networks occur frequently in biology and
physics and can be used for data analysis. For instance,
the evolution of a disease can be treated as a series of
stochastic transitions between various grades of disease
(Yau & Huzurbazar 2002). The possible transitions and
transition probabilities can be gathered on a flowgraph.
A flowgraph is a weighted oriented graph. Each edge is
labelled by a transition rate (or transmittance, or gain)
which is the probability pji to perform the jump from
the state j to the state i divided by the mean waiting
time tji from a state j to i: tjiZpji/tji. The probabilities
pi of being in a state i satisfy the equilibrium equationP

kpktkiZ
P

ktkið Þpi which is same as equation (3.1)
with zero currents IZ0.
3.2. Analogy between steady-state shifts
and electrical networks

In order to obtain an analogy between linear response of
electrical and biological networks, let us consider that
there is a non-degenerated stable state X0 satisfying
equation (2.1) for parameters P0. Supposing that
dynamics is structurally stable, the theorem on
persistence of hyperbolic sets (Smale 1980; Ruelle
1989) implies that small variations of the parameters
in equation (2.1) produce shifts of this state without
loss of stability. Differentiating the equilibrium
equations for the nodes in a subgraph G (including
the boundary nodes) we obtain

ci2G;
X
j2G

vFi

vXj

dXj C
X

k2InG

vFi

vXk

dXk C
vFi

vP
dP Z 0:

ð3:3Þ
Let us also consider that all the exterior influences on

G are transmitted via its boundary. This means that

vFi

vP
Z 0; ci2G: ð3:4Þ

The condition in equation (3.4) is a modelling
assumption, that can be lifted with minor changes.
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From a statical point of view the parameters P play the
same role as the other variables. If the modeller judges
that equation (3.4) is not reasonable, it is better to
consider P as a variable and to connect it to the other
variables.

Noting that for all k2I\G and i2�G , it follows that

ci2G;
X
j2G

vFi

vXj

dXj ZKdX f
i ; ð3:5Þ

where dX f
i denote the ‘forcing variations’ which are

non-vanishing only on the boundary, and are defined by

dX f
i Z

P
k2InG

vFi

vXk

dXk ; if i2c
inG;

0; if i2�G :

8><
>: ð3:6Þ

In matrix form, equation (3.5) reads

ðKJGÞdX Z dX f : ð3:7Þ
Equations (3.1) and (3.7) are analogous. They

represent the linear response of a network to influence
from the exterior:

(i) the opposite Jacobian KJG restricted to G and
calculated at a non-degenerated stable steady
state is analogous to the node admittance
matrix ~Y ,

(ii) the concentration variations dX are analogous to
the voltages V,

(iii) the forcing variations dX f are analogous to the
injected currents I.

Equation (3.4) implies that the forcing variations are
vanishing in the interior and are non-zero on the
boundary of the subgraph G. For electrical networks
this means that the influence of the exterior on a
subnetwork can be represented by current sources on
its boundary.

Electrical networks are different from biological
networks because they have much more symmetries,
such as the following.

(i) The matrix KJG is not necessarily symmetric,
while the matrix ~Y is always symmetric. The
interaction graph is intrinsically oriented, while
an electrical network is not oriented (a wire
conducts in both directions).

(ii) Thediagonal elements of thematrix ~Y are obtained
from the non-diagonal ones: ~Y iiZK

P
jsi

~Y ij . The
diagonal elements of thematrix JG are independent
of the non-diagonal ones.
4. TOPOLOGICAL EXPRESSIONS FOR THE
LINEAR RESPONSE OF NETWORKS

Throughout this section we consider that the Jacobian
JG is calculated at a non-degenerate steady state
(stability can be imposed, but it is not compulsory).
For subgraphs, steady states are constrained by
imposed boundary variations or forcings. To simplify
notation we drop the index G in the Jacobian; it will be
J. R. Soc. Interface (2006)
supposed that the J is restricted to a subset G, unless
otherwise stated. Supposing that J is invertible,
solutions of equation (3.7) can be obtained from
the inverse matrix JK1. In this section, the elements
of JK1 are connected to the topology of the interaction
graph.
4.1. Moduli and loops

We start with the following well-known relation (Bloom
1979)

JK1
ij Z ðK1ÞiCj Dji

D
; ð4:1Þ

where Dji is the minor obtained by deleting row j and
column i in J, and DZdet(J ).

Next, we develop the minor Dji into a sum of
principal minors (Bloom 1979)

Dji Z
ðK1ÞiCjP

j,iðK1Þlj,i aj,iDj,i; if isj;

Dj ; if iZ j;

(
ð4:2Þ

where j,i is any path in the subgraph G leading from j
to i, lj,i is the number of edges in the path, aj,i is the
product of elements of J along this path, Dj,i is the
principal minor obtained by deleting all the rows and
columns whose indices are included in the path,Dj is the
principal minor obtained by deleting the line and the
column j. Finally, principal minors of the Jacobian can
be related to loops in the subgraph G

Dj,i Z
X

L2LðGj,iÞ
ðK1ÞdimðDj,iÞKjLjlpðLÞ; ð4:3Þ

Di Z
X

L2LðGiÞ
ðK1ÞdimðDiÞKjLjlpðLÞ; ð4:4Þ

DZ
X

L2LðGÞ
ðK1ÞdimðDÞKjLjlpðLÞ; ð4:5Þ

where lp(L) is the loop product defined as the product of
elements of J along the loops of L. Gj,i is the subgraph
obtained by deleting from G all nodes in the path j,i,
while Gi is obtained by deleting node i. dim denotes the
dimension of the minor.

We now introduce a quantity later referred to as
modulus which measures rigidity of the network and
can be seen as the inverse of sensibility, as shown later.

Definition 4.1. Let G be a subgraph of I , let D, Di, Dj,i

be minors of the Jacobian restricted to G and defined as
above. The modulus of a path j,i is

Cj,i Z ðK1Þlj,iC1 D

Dj,i

Z

P
L2LðGÞðK1ÞjLjlpðLÞP

L2LðGj,iÞðK1ÞjLjlpðLÞ
:

ð4:6Þ

The modulus of a node i is

Ci ZK
D

Di

Z

P
L2LðGÞðK1ÞjLjlpðLÞP
L2LðGiÞðK1ÞjLjlpðLÞ

: ð4:7Þ

We shall usually consider non-degenerate steady
states and Ds0, therefore moduli never vanish; they
can instead diverge when minors of J vanish.
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4.2. Neumann and Dirichlet problems

In electrical networks, fulfilment of Kirchhoff–Laplace
equation (3.1) implies a unique set of interior voltages
(up to a constant) due to imposed boundary voltages
(Dirichlet problem) or a unique set of voltages (up to a
constant) everywhere due to imposed boundary cur-
rents (Neumann problem). For biological networks, the
Neumann and the Dirichlet problems have the
following equivalents.

(i) Linear Dirichlet problem: determine the vari-
ations dXi, i2�G of the interior nodes, when the
values of the variations are imposed (or known)
on the boundary dXi, i2c

inG. For biological
networks the Dirichlet problem shows its utility
when one possesses only a partial knowledge of
the system (Kuipers 1994; Siegel et al. in press).
We can define the corresponding Dirichlet static
susceptivities

cD
ij Z

vXi

vXj

; i2�G ; j2c
inG: ð4:8Þ

(ii) LinearNeumannproblem: determine thevariations
dXi, i2G everywhere, when the forced variations
are imposed on the boundary dX f

i , i2c
inG. Unlike

injected currents forced variations (defined by
equations (3.6)) cannot be measured directly. In
electrical networks, currents can be measured as
voltages across calibrated resistors of apparatuses
coupled to the network.We cannot see what can be
a calibrated molecular apparatus for biological
networks. In spite of this drawback, the Neumann
problem is important in theory of control of
biological networks: it describes shifts of equilibria
under constraints imposed by the change of
external conditions. The corresponding static
susceptivities are defined as

cN
ij Z

vXi

vX f
j

; i2G; j2c
inG: ð4:9Þ

The following theorem states the existence and gives a
solution to the Neumann problem.

Theorem 4.2. Let G be a subgraph of I . Let J be the
restriction of the Jacobian of F to G, calculated at a non-
degenerated, Neumann constrained (given forcings)
steady state: JijZvFi=vXj, i, j2G. Let PG denote the
set of paths included in G. If det(J )s0 and if there is no
direct influence of the parameters on the nodes of G, i.e.
vXi=vPkZ0,ci2G, then the response of i2G to small
changes of the exterior of G satisfies

if i2�G ; dXi Z
X

j2cinG

X
j,i2PG

aj,i

Cj,i

dX f
j ; ð4:10Þ

if i2c
inG;dXiZ

dX f
i

Ci

C
X

j2c
inG;

jsi

X
j,i2PG

aj,i

Cj,i

dX f
j : ð4:11Þ

Remark 4.3. We have supposed that DZdet(J )s0.
According to equations (4.6) and (4.7), we can
supplement equations (4.10) and (4.11) with the
J. R. Soc. Interface (2006)
following formal rule coping with diverging moduli:
1/NZ0.

Remark 4.4. Using a language coming half from
mechanics, half from flowgraphs we can say that a
‘force’ aj,idX

f
j propagates from the boundary node j

along the path j,i. This force is bigger when the
product of interaction coefficients vFikC1

=vXik along the
path is bigger. Cj,i is the ratio force/response and,
therefore, can be called ‘path modulus’. A large path
modulus implies a small response at the end of the path,
even if the force is big. Therefore, the modulus is the
inverse of sensitivity.

Equation (4.10) expresses interior dXi as functions of
the boundary forcings dX f

j . Equation (4.11) gives the
relation between forcings and variations on the bound-
ary. The corresponding linear mapping LND : Rm/R

m

(mZ#c
inG, LND

ij Z
P

j,i2PG
ðaj,i=Cj,iÞCð1=CiÞdij) is

the equivalent of the Neumann-to-Dirichlet map for
electrical networks (Curtis&Morrow1991).The inverse
(if it exists) of thismapping is theDirichlet-to-Neumann
map (Curtis & Morrow 1991).

Theorem 4.2 implies the following.

Corollary 4.5. If there are no paths in PG connecting
two different nodes on the boundary (boundary is not
necessarily disconnected, because connections passing
through the exterior are allowed), and if for all nodes
i2c

inG, moduli Ci are finite and non-vanishing, then
the Neumann-to-Dirichlet mapping is diagonal and its
inverse exists. In this case, the forcings are proportional
to the variations on the boundary

dX f
i ZCidXi; i2c

inG: ð4:12Þ

By using the Dirichlet-to-Neumann map we can
associate to any solution of the Neumann problem, a
solution of the Dirichlet problem. We can thus obtain
formulae for the solutions of the Dirichlet problem. In
Siegel et al. (in press), we have used a direct method to
obtain solutions to the Dirichlet problem. Briefly, we
have used equilibrium equations for the interior nodes
in the same way as in theorem 4.2 (which uses
equilibrium equations for all the nodes including the
boundary). Let us state the result.

Theorem 4.6. Let G be a subgraph of I . Let �GZGncinG
be the interior of G. Let �J be the restriction of the
Jacobian of F to �G calculated in a non-degenerated,
Dirichlet constrained (given boundary values, free
interior) steady state: �J i;jZvFi=vXj , i; j2�G . Let
us suppose that �DZdetð�J Þs0 and that there is no
direct influence of the parameters on the interior nodes
of G, i.e. vFi=vPkZ0; c i2�G .

Then, the response of i2�G to small changes on the
boundary of G is given by

dXi Z
X

j2cinG

X
j,i2P�G

aj,i

�C j,i

dXj : ð4:13Þ

(i) PG denotes the set of paths included in G, starting
on the boundary and that do not return to the
boundary.

(ii) �C j,iZðK1ÞlkðjÞ,iC1ð�D=�DkðjÞ,iÞ denotes the path
modulus of the internal path k(j ),i where



190 Static response of interaction networks O. Radulescu and others
kðjÞ2�G is the second node after j of the path j,i.
If k(j)Zi, then �C j,iZ�C iZK�D=�Di.

Remark 4.7. Theorems 4.2 and 4.6 make no assumption
on the connectivity of the subgraph G. For discon-
nected internal nodes we should have dXiZ0, meaning
that at steady states Xi does not depend on the
parameters. For such a node the stationarity equations
read Fi(Xi)Z0.

Equations (4.6) and (4.7) give the loop products
expression of moduli. They generalize Mason and
Coates gain formulae (Mason 1953; Coates 1959) from
electrical networks. Susceptivities are related to moduli
according to the following equations

cN
ij Z

X
j,i2PG

aj,i

Cj,i

C
1

Ci

dij ; ð4:14Þ

cD
ij Z

X
j,i2P�G

aj,i

�C j,i

: ð4:15Þ

Let us note that the restriction of the Neumann
susceptivity matrix to the boundary ððcNjcinGÞij ZcN

ij ;
i; j2c

inGÞ is the Neumann-to-Dirichlet map.
4.3. Signs of moduli

The signs of moduli are important for qualitative
discussions of the transmission of influences (Siegel
et al. in press). Equations (4.14) and (4.15) lead to an
interesting possibility. Even if all the paths from j to i
correspond to globally positive regulation (path
products aj,i are all positive), it is possible to have
negative susceptivity cij, which means negative corre-
lation between Xi and Xj. This possibility occurs when
the moduli Cj,i are negative (see §5.2) and is a
feedback effect. Indeed, from equations (4.6) and (4.7)
it follows:

Property 4.8. If the subgraph G contains no positive
loops for a given non-degenerate constrained steady
state, then all its path moduli Cj,i and node moduli Ci

are positive for that state.
4.4. Significance and limits of the approach

Equations (4.10), (4.11) and (4.13) should be inter-
preted as differential constraints connecting small
variations of the concentrations at steady state,
when this steady state is shifted as a result of the
change of parameters. The significance of these
constraints is the propagation of influence along the
interaction graph: for any analysed subset of the
interacting species concentration variations of internal
species are obtained from concentration variations of
boundary species. Mathematically, these constraints
express a local functional relation between the internal
variables and the boundary variables, which follows
from the implicit function theorem. Let us note that
we have not addressed yet the question of the global
existence of a unique implicit function expressing
the internal variables as functions of the boundary
variables (the nonlinear Dirichlet problem). The
existence of such a function depends on the
J. R. Soc. Interface (2006)
nonlinearities of the system and cannot be proven
without further additional hypothesis. Without being
exhaustive, let us give here some results applying to
particular cases.

Let us consider that for certain subsets G3I we
are able to specify global interiors, i.e. sets of species
that are never directly influenced by external species,
whatever the concentrations. The steady-state
equations for internal species constrained by boundary
species read

FiðX ;X 0ÞZ 0; i2�G ; ð4:16Þ
where X, X 0 have coordinates in �G , cinG, respectively.

The implicit function theorem implies that X is a
function of X 0 in a neighbourhood of any non-
degenerate steady state satisfying detð�J Þs0. The
global existence of the implicit function follows from
an existence result for the solution of the system (4.16)
and from the following global univalence theorem
ensuring the uniqueness of this solution.

Theorem 4.9. Let us consider that FiðX ;X 0ÞZ
FiðX ;X 0ÞKliXi; i2�G, where liO0 and Fi(X, X

0) are
differentiable, bounded and satisfy

Fið.;Xi Z 0;.;X 0ÞO0: ð4:17Þ

Then for any X 0 the system (4.16) has at least a
solution X such that all concentrations Xi, i2�G are
positive.

Let us consider that the interaction subgraph
corresponding to the interior of G has no positive
loop, whatever the concentrations may be. Then, the
solution of the system (4.16) is unique for any X 0.

We shall only give a brief outline of the proof. The
first part of theorem 4.9 is based on the following
standard mathematical lemma which is a consequence
of Poincaré–Hopf formula.

Lemma 4.10. Let D be a smooth ball in a metric space,
let S be the boundary of D. Let F be a vector field defined
on a neighbourhood of D. If F points inward D at any
point of S, then F admits a zero in the interior of D.

The second part of the theorem is known as the
Thomas’s conjecture (Thomas 1981; Gouzé 1998;
Snoussi 1998; Soulé 2003) and can be proven as follows.
When the subgraph G has no positive loops whatever
the concentrations, equations (4.3)–(4.5) imply that all
the minors of the opposite Jacobian KJ are positive.
From this and from the Gale–Nikaido–Inada theorem
(Parthasarathy 1983) it follows the uniqueness of the
equilibrium. The complete proof of Thomas’s conjec-
ture can be found in Soulé (2003).

The conditions of the first part of theorem 4.9 are
fulfilled by gene networks. Indeed, the terms liXi

correspond to degradation or to dilution produced by
cell growth. The production terms Fi are bounded
because they saturate at large concentrations. Equation
(4.17) is natural, meaning that concentrations can
never become negative.

We come now to the experimental significance of our
approach. The type of experiment that we consider is
the following: the set of parameters is changed such
that we start and we end in a non-degenerate stable
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Figure 1. Cusp catastrophe. Two trajectories T1 and T2 start
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respectively. In order to find the variation of the internal
variable X3 one could integrate the differential response
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Figure 2. Operon lactose interaction network. L int and L ext
stand for Li and Le, respectively.
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steady state. If the conditions of theorem 4.9 are
fulfilled then the nonlinear Dirichlet problem has a
unique solution and the internal variables are con-
strained to be univoque functions of the boundary
variables. The finite variations of these functions
between the start and the end of the experiment can
be obtained by integrating the differential form in
equation (4.13) along any differentiable path D
connecting the two steady states and made of non-
degenerate constrained steady states (non-degenerate
solutions of equation (4.16))

DXi Z

ð
D

X
j2cinG

X
j,i2P�G

aj,i

�C j,i

dXj : ð4:18Þ

The uniqueness of the implicit function ensures the
path independence of the result. We must emphasize
that equation (4.18) is not destined to provide numerical
values. It serves to identify the signs of different
contributions to the concentration variations and leads
to qualitative equations in sign algebra (Kuipers 1994;
details can be found in Siegel et al. in press). Similar
results hold for shifts of Neumann constrained steady
states (nonlinear Neumann problem).

This result fails when the steady-state shift meets a
singular point, defined by vanishing moduli (infinite
sensitivity). Then, the steady state loses stability. The
new attractor is either a distance apart (for instance in
the cusp catastrophe), or it has a different type (for
instance in the Hopf bifurcation a point attractor
becomes a stable limit cycle) from the old one.

The cusp catastrophe occurs rather often in molecu-
lar biology. It occurs in the well-studied lactose operon,
that we shall present in §5. This situation is represented
in figure 1. The boundary variables X 0

1, X
0
2 influence the

internal variable X3. Suppose that X 0
1 changes. Then,

the state of the system moves along the trajectories
starting from P. For small changes ending in P1 there is
J. R. Soc. Interface (2006)
a differentiable path of stable steady states connecting
P and P1 and we can apply equation (4.18). For large
changes ending in P2 there is no such path. The steady-
state shift is discontinuous: the state jumps from the
attractor branch PP1P

0
1 to the branch P 00

2P
0
2P2.

Equation (4.18) has to be changed by adding a finite
jump X3ðP 0

2ÞKX3ðP 0
1Þ.
5. EXAMPLES

5.1. Lactose operon

The main enzymes for the lactose (L) metabolism in
Escherichia coli are LacY (lactose permease) allowing
the uptake of lactose, LacZ (b-galactosidase) catalysing
the degradation of lactose to glucose (Yildirim &
Mackey 2003; Mackey et al. 2004).

The transcriptional regulators for the genes lacY and
lacZ are an activator (cAMP receptor protein, CRP)
and a repressor (LacI). An inducer (cAMP) binds to the
activator and triggers it. Lactose, under an isomeric
form named allolactose, binds to the repressor and
inhibits it. The glucose inhibits the activator. The
interaction graph for this system is represented in
figure 2. The exterior and interior lactose are denoted as
Le, Li, respectively.

Negative self-interaction loops should be added to
each node, in order to take into account degradation
processes or dilution produced by cell growth. These
correspond to negative diagonal elements for the
Jacobian (self-interactions).

There are four loops in the interaction graph: two
positive (even number of negative regulations) ones
lC1 ZfLi;LacI;LacY;Lig, lC2 ZfLi;G;cAMP;CRP;LacZ;

Lig and three negative (odd number of negative
regulations) ones lK1 ZfLi;LacI;LacZ;Lig, lK2 ZfG;
cAMP;CRP;LacZ;Gg, lK3 ZfLi;G;cAMP;CRP;LacY;
Lig. The existence of positive loops is a necessary
condition (Soulé 2003) for the observed bistability of
the operon lactose.

Experiments show that when Le is increased, the
operon switches from a transcriptionally blocked,
lactose poor state to a transcriptionally active, lactose
rich state. We intend to check whether the linear
response of the model given in figure 2 is coherent to
observed variations, namely whether the Dirichlet
susceptivity cD

Li;Le is positive.
From theorem 4.6, cD

Li;LeZaLe,Li=CLe,Li , where
aLe,LiO0 from the construction of the model (see
figure 2). This means that the influence of Le on Li

is positive provided that the modulus of the path
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Le,Li is positive. The modulus is given by
�CLe,Li

ZcLi

1K
P2

iZ1
~lpðlCi ÞK

P3
iZ1

~lpðlKi ÞC ~lpðlC1 Þ ~lpðlK2 Þ
1K ~lpðlK2 Þ

;

ð5:1Þ
where cLi is the absolute value of the self-interaction on
Li, ~lp is the loop product divided by the product of
absolute values of self-interactions for nodes in the loop.
~lp is positive for positive loops and negative for negative
loops.

The condition for a monotonic response is given by
the following.

Property 5.1. The dependence of Li on Le is mono-
tonically increasing provided that the modulus �CLe,Li is
positive, i.e.

~lpðlC1 Þ½1K ~lpðlK2 Þ�C ~lpðlC2 Þ!1K
X3
iZ1

~lpðlKi Þ: ð5:2Þ

The monotonicity condition (5.2) is valid for small
positive loops products. The typical scenario for strong
positive loops is the cusp catastrophe: the operon
becomes bistable and its response is discontinuous and
hysteretic (Mackey et al. 2004). Bistability requires the
existence of a branch of states with negative moduli on
which the condition (5.2) is broken, but this branch is
usually unstable (see also §5.2).

The susceptivity approach can predict the effect of
gene knock-outs. For instance, a knock-out of the
inducer or of the activator cancels the loops lC2 , l

K
2 , l

K
3 .

According to equation (5.1), the modulus increases,
therefore the uptake of lactose decreases, provided that
~lpðlC2 ÞOK~lpðlK2 Þ ~lpðlK1 ÞK ~lpðlK3 Þ. Similarly, a knock-out
of the repressor cancels the loops lC1 , l

K
1 . The uptake

of lactose decreases provided that ~lpðlC1 ÞO ~lpðlC1 Þ
~lpðlK2 ÞK ~lpðlK1 Þ.
5.2. Negative moduli and non-monotonic
response

For the lactose operon the input/output relation relating
outside and inside lactose ismonotonic and themoduli for
stable branches are positive. We build here an artificial
example of switch with non-monotonic response.

Let us suppose that X1 regulates positively X2 and
that the modulus �C 12!0. Then increasing X1 produces
a decrease in X2. In order to create an example of this
kind one should consider at least another componentX3

of the system. Indeed, stability asks for eigenvalues of
the Jacobian to be in the left half of the complex plane;
in dimension 2 this is equivalent to the absence of
positive loops, hence moduli are positive at steady
states (property 4.8). A simple example illustrating the
possibility of having negative moduli is

dx1
dt

ZKx1 C1Cl;

dx2
dt

ZK2x2Kx3 Cx1;

dx3
dt

Z f ðx3ÞC3x2;

9>>>>>>>>>=
>>>>>>>>>;

ð5:3Þ
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with f ðxÞZKaxðxK1ÞðxK2Þ. The steady state is
shifted by changing the parameter l, which at
equilibrium is equivalent to changing the boundary
value x1Z1Cl.

The solutionof theDirichletproblem isdx2Zdx1=�C 12,
dx3Zdx1=�C 13, where

�C 12 Z 3K2
df

dx3

� �
= K

df

dx3

� �
; ð5:4Þ

�C 13 Z 3K2
df

dx3
: ð5:5Þ

The model has unique equilibrium for a!3/2 and is
bistable for aO3/2. In the monostable regime (a!3/2)
�C 13O0 everywhere; �C 12%0 when x3 is inside the
interval I1Z ½1K1=

ffiffiffi
3

p
; 1C1=

ffiffiffi
3

p
� and is positive outside

the interval I1. For x3Z1K1=
ffiffiffi
3

p
; 1C1=

ffiffiffi
3

p
; 1=�C 12 and,

therefore, the susceptivity cD
21 vanishes: the response

curve for x2 represented infigure 3 have amaximumanda
minimum at these points.

For aO3/2, the system is bistable. We have �C 12O0

unless when x32I2Z ½1K1=
ffiffiffi
3

p
; 1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3K1=ð2aÞ

p
�g

½1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3K1=ð2aÞ

p
; 1C1=

ffiffiffi
3

p
� and �C 13O0 unless when

x32I3Z ½1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3K1=ð2aÞ

p
; 1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3K1=ð2aÞ

p
�. The

region I3 where �C 13!0 is in fact unstable and is never
reached. When x1 increases x3 jumps discontinuously
from one attractor to another without taking values
inside the interval I3. The jump occurs at different values
of x1 on increase and decrease of the control parameter.
Thus, the response of x3 is discontinuous and hysteretic,
but monotonic. The response of x2 is also discontinuous
and hysteretic, but non-monotonic. There is a small
region on the response curve of x2 where �C 12!0; this
region corresponds to the intersection between the
stability domain for x3 and I2.
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5.3. Regulation of lipogenesis in hepatocytes

5.3.1. Interactionmodel.Twoways of production of fatty
acids coexist in liver. Saturated and mono-unsaturated
fatty acids are produced from citrates thanks to a
metabolic pathway composed of four enzymes, namely
ATP citrate lyase (ACL), acetyl-Coenzyme A carboxy-
lase (ACC), fatty acid synthase (FAS) and Stearoyl-
CoA desaturase 1 (SCD1). Polyunsaturated fatty acids
(PUFA) are synthesized from essential fatty acids
provided by nutrition; Delta-5 Desaturase (D5D) and
Delta-6 Desaturase (D6D) catalyse the key steps of the
synthesis of PUFA.

PUFA plays pivotal roles in many biological func-
tions; among them, they regulate the expression of genes
that impact on lipid, carbohydrate and protein metab-
olism. The effects of PUFA are mediated either directly
through their specific binding to various nuclear
receptors (PPARa—peroxisome proliferator activated
receptors, LXRa—Liver-X-Receptor a, HNF-4a) lead-
ing to changes in the trans-activating activity of these
J. R. Soc. Interface (2006)
transcription factors; or indirectly as the result of
changes in the abundance of regulatory transcription
factors (SREBP-1c—sterol regulatory element binding
protein, ChREBP—carbohydrate response element
binding protein, etc.; Jump 2004).

We consider in our model nuclear receptors PPARa,
LXRa, SREBP-1c (denoted by PPAR, LXR, SREBP,
respectively, in the model), as they are synthesized from
the corresponding genes and the trans-activating active
forms of these transcription factors, i.e. LXR-a
(denoting a complex LXRa:RXRa), PPAR-a (denoting
a complex PPARa:RXRa) and SREBP-a (denoting the
cleaved form of SREBP-1c). SCAP—(SREBP cleavage
activating protein) is a key enzyme involved in the
cleavage of SREBP-1c. We also include in the model
‘final’ products, i.e. enzymes ACL, ACC, FAS, SCD1
(implied in the fatty acid synthesis from citrate), D5D,
D6D (implied in PUFA synthesis) as well as PUFA
themselves.

Relations between the variables are the following.
SREBP-a is an activator of the transcription of ACL,
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ACC, FAS, SCD1, D5D and D6D (Jump 2004). LXR-a
is a direct activator of the transcription of SREBP and
FAS, it also indirectly activates ACL, ACC and SCD1
(Steffensen & Gustafsson 2004). Note that these
indirect actions are kept in the model because we do
not know whether they are only SREBP-mediated.
PUFA activates the formation of PPAR-a from PPAR,
and inhibits the formation of LXR-a from LXR as well
as the formation of SREBP-a (by inducing the
degradation of mRNA and inhibiting the cleavage;
Jump 2004). SCAP represents the activators of the
formation of SREBP-a from SREBP, and is inhibited
by PUFA. PPAR directly activates the production of
SCD1, D5D, D6D (Miller & Ntambi 1996; Matsuzaka
et al. 2002; Tang et al. 2003).

The interaction graph for this model is shown in
figure 4. Like in the lactose operon example, for each
node we have supposed the existence of negative self-
interaction loops.
5.3.2. Fasting-refeeding protocols. The fasting-refeed-
ing protocols are suited for studying lipogenesis
regulation; during an experimentation, animals
(rodents or chicken) were kept fasting during several
hours and then refed. Hepatic mRNA of LXR, SREBP,
PPAR, ACL, ACC and SCD1 were quantified by DNA
microarray analysis. PUFA variations were determined
by biochemical measurements.

A compilation of recent literature on lipogenesis
regulation provides results of such protocols: SREBP,
ACL, ACC, FAS and SCD1 decline in liver during
fasting (Liang et al. 2002); this state is characterized by
an inhibition of fatty acid synthesis and an activation of
the fatty acid oxidation. However, Tobin et al. (2000)
showed that fasting rats for 24 h increased the hepatic
LXR mRNA and Matsuzaka et al. (2002) observe no
difference in either the hepatic D5D orD6DmRNA level
between fasting and refeeding in normal mouse livers.
5.3.3. Static response and topology. One of the
advantages of the approach that we present here is
that we have no difficulty in focusing on subgraphs of a
large network. In order to illustrate this possibility we
considered the following biological questions:

Question 1. Lee et al. studied the fatty acids profiles in
triglyceridesTG,which are the predominant (more than
50%) hepatic lipids and also in phospholipids PL which
go into cellular membranes. Moreover PL contribute
much less thanTG to the total lipidmass. These authors
(Lee et al. 2004) show that after 72 h of fasting fatty
acids profiles do not change significantly in PL, but
there is a strong increase of TG and of their fatty acids
constituents, in particular PUFA. Let us recall that TG
are transient storage forms of fatty acids. Based on
these experimental findings, we make the hypothesis of
a mass increase of regulating PUFA in the hepatic cell.
Can we prove this hypothesis indirectly by using the
incomplete model, i.e. considering that all variations
excluding PUFA are known?

Question 2. The dual regulation of desaturases SCD1,
D5D and D6D by SREBP and PPAR is paradoxical,
because SREBP transactivates genes for fatty acid
J. R. Soc. Interface (2006)
synthesis in liver, while PPAR induces enzymes for fatty
acid oxidation. Furthermore, all three desaturases have
similar regulation. Nonetheless, on fasting SCD1
decreases, while D5D, D6D have non-significant vari-
ations. How does the model cope with this?

In order to answer Question 1, let us consider the
Dirichlet problem for the subgraph G1Z{PUFA, LXR,
LXR-a, SREBP}. From theorem 4.6 and the paths
labels from figure 4 it follows that

dSREBPZ ~apdPUFAC ~ap0dLXR: ð5:6Þ

Because ~ap!0, ~ap0O0, dSREBP!0, dLXRO0, the
only possible variation compatible with equation (5.6)
is dPUFAO0. Applying a similar reasoning to the
subgraph G2Z{PUFA, LXR, LXR-a, SREBP,
SREBP-a, SCAP, FAS} we have the following.

Property 5.2. The only possible variation compatible
with dSREBP!0 and dLXR!0 is dPUFAO0. The only
possible variation compatible with dFAS!0 and
dLXR!0, is dPUFAO0. This proves our hypothesis
that regulating PUFA increase during fasting.

In order to answer to the Question 2, let us see how
the model connects the variations of PUFA and D6D.
PUFA being on the boundary we need to consider
the Neumann problem. Let us consider the subgraph
G3Z{XZPUFA, WZPPAR, PPAR-a, ZZD6D,
SREBP-a, SREBP, LXR-a, UZLXR, SCAP}. Infor-
mation from literature suggests that G3 has the
boundary c

inG3Z{U,W, X}, meaning that all external
interaction on G3 acts via LXR, PPAR, PUFA.
Nevertheless, in order to understand the differential
behaviour of D6D and SCD1, let us suppose that D6D
has unknown extra regulation that is not represented.
This can be taken into account easily by including D6D
in the boundary: cinG3Z{U,W, X, Z}.

From theorem 4.2 and the paths labels from figure 4
it follows that

dXZ
1
~C

dX f

cX

C~ap3dZ
fC~ap9dW

fC~ap10dU
f

2
4

3
5;

dZZ
1
~C

ð~ap1 C~ap2 C~ap4 C~ap7 C~ap8ÞdX
f

2
4

C~ap5dU
fC~ap6dW

fC
dZ f

cZ

3
5;

ð5:7Þ

where ~a are path products divided by the products of
the absolute values of the self-interactions c of nodes in
the paths. The modulus is

~C Z 1K ~lpðlCÞK ~lpðlK1 ÞK ~lpðlK2 ÞK ~lpðlK3 ÞK ~lpðlK4 Þ:
ð5:8Þ

Equations (5.7) and (5.8) reveal the importance of the
dual regulation of D6D by PPAR and SREBP. The
existence of the positive loop lC involving PUFA, D6D
and PPAR-a decreases the modulus ~C in equation (5.8)
therefore, according to equation (5.7), it boosts PUFA
variations. The biological significance of this has been
pointed out by Nakamura & Nara (2003) who refer to
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this phenomenon as a compensatory reaction to the
increased demand of PUFA caused by oxidation at
fasting.

In equation (5.7), the D6D variation dZ is the sum of
different contributions of different signs: the influences
transmitted along the paths p1, p2, p4, p8 are negative
and those transmitted along the paths p7, p5, p6 are
positive. The model is, therefore, compatible with
compensated variations dZZ0, even in absence of
unknown interaction whose effect is the forcing dZ f.
Nevertheless, it is difficult to explain the difference
between D6D and SCD1 without the extra forcing,
because this forcing is the only difference between the
two products in the model. Nakamura & Nara (2003)
arrive at a similar conclusion in their analysis of the
regulation of D6D. To our knowledge, the nature of this
extra regulation is still unknown.
6. DISCUSSION

Static response provides quantitative and qualitative
information on how the steady state is changed by
forcings.

We have shown here how to relate static response of
a biological network to the topology of its interaction
graph. The key ingredient is the use of moduli that
express the rigidity (opposed to sensitivity) of the
network. Mason–Coates formulae from electrical net-
works computes moduli from loop products and were
applied to biological networks. A general consequence
of these formulae is that positive (negative) loops
decrease (increase) moduli and rigidity. Static suscep-
tivity was related to moduli by using path expansions.
An interesting possibility arises when moduli and
susceptivities have opposite signs: in this case the sign
of the correlation between two nodes can be opposite to
the sign of the regulation paths connecting them.

Susceptivities characterize linear response which
generally applies to small variations of the concen-
trations. We showed that in the absence of bifurcations,
local linear response can be integrated in order to
obtain nonlinear response. This argument justifies
qualitative analysis techniques applying to situations
when the interactions have constant signs and when the
constrained steady states of analysed subgraphs do not
bifurcate under forcings. Our formalism is well adapted
for qualitative analysis of differential transcriptional,
metabolic or proteomic data. It allows several types of
analysis: checking the consistency between model and
data, or between different types of data, filling in
missing information, and predicting the effects of gene
knock-outs or of genetic deficiencies. Qualitative
analysis of biological networks has been described in
detail in Siegel et al. (in press).

An important ingredient in our approach is the
systematic use of boundaries. This allows to separate
subgraphs for independent study. The type of biological
problem dictates the choice of the subgraph and the
type of boundary conditions (Neumann or Dirichlet).

Boundaries could be useful in further developments
such as hierarchical connection of subgraphs. Sub-
graphs can be connected in series (the entrance
boundary of one is included in the exit boundary of
J. R. Soc. Interface (2006)
another) or in parallel (boundary subsets are common)
and their equivalent response can be obtained from
equations (4.10) and (4.11). Another promising direc-
tion is the reduction of complexity of biological
networks. One would like to classify all the graph
contractions that preserve the response of the system.
This has been done for planar electrical networks
(Curtis et al. 1998) in relation to the Dirichlet-to-
Neumann map. There is no similar work for biological
networks.
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