
Repair and Prediction (under Inconsistency) in Large Biological Networks
with Answer Set Programming

Martin Gebser
University of Potsdam

D-14482 Potsdam

Carito Guziolowski
INRIA/Irisa

F-35042 Rennes

Mihail Ivanchev
University of Potsdam

D-14482 Potsdam

Torsten Schaub
University of Potsdam

D-14482 Potsdam

Anne Siegel
INRIA/Irisa

F-35042 Rennes

Sven Thiele
University of Potsdam

D-14482 Potsdam

Philippe Veber
Institut Cochin
F-75014 Paris

Abstract
We address the problem of repairing large-scale biological
networks and corresponding yet often discrepant measure-
ments in order to predict unobserved variations. To this end,
we propose a range of different operations for altering ex-
perimental data and/or a biological network in order to re-
establish their mutual consistency—an indispensable prereq-
uisite for automated prediction. For accomplishing repair and
prediction, we take advantage of the distinguished modeling
and reasoning capacities of Answer Set Programming. We
validate our framework by an empirical study on the widely
investigated organism Escherichia coli.

Introduction
The availability of high-throughput methods in molecular
biology has led to a tremendous increase of measurable data
along with resulting knowledge repositories, gathered on the
web (e.g. KEGG, MetaCyc, RegulonDB) usually in terms of
biological networks. However, both measurements as well
as biological networks are prone to considerable incomplete-
ness (Ernst et al. 2008), heterogeneity (Gutiérrez-Rı́os et
al. 2003), and mutual inconsistency (Ferrazzi et al. 2007),
making it non-trivial to draw biologically meaningful con-
clusions in an automated way.

We addressed the problem of detecting and explaining in-
consistencies in large-scale biological networks and datasets
in (Gebser et al. 2008) by introducing a declarative ap-
proach based on Answer Set Programming (ASP; (Baral
2003)). Our approach builds upon the Sign Consistency
Model (SCM; (Siegel et al. 2006)), imposing constraints be-
tween experimental measurements and cellular interactions,
expressed as influence graphs. In contrast to available prob-
abilistic methods (cf. (Ferrazzi et al. 2007)), this model is
particularly well-suited for dealing with qualitative knowl-
edge (for instance, reactions lacking kinetic details) as well
as incomplete and noisy data.

The natural question arising now is how to repair net-
works and data that have been found to be inconsistent,
that is, how to modify network and/or data in order to re-
establish their mutual consistency. A major challenge lies
in the range of possible repair operations, since an inconsis-
tency can be explained by missing interactions or inaccurate

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information in a network as well as by aberrant data. How-
ever, once consistency is re-established, network and data
can be used for predicting unobserved variations.

To this end, we extend our basic approach and propose
a framework for repairing large-scale biological networks
and corresponding measurements in order to allow for pre-
dicting unobserved variations. We discuss the interest of
different repair operations wrt several criteria: biological
meaning, minimality measures, and computational cost. We
implement our framework by taking advantage of the dis-
tinguished modeling and reasoning capacities of ASP. In
particular, we detail how reasoning modes can be used for
efficient prediction under minimal repairs, complying with
the objective of minimal change. We then apply ASP to
empirically evaluate the effect of different repair opera-
tions, both quantitatively and qualitatively, by considering
the well-studied organism Escherichia coli along with pub-
lished experimental data. The obtained results demonstrate
the advantages of a highly declarative approach combined
with high-performance inference engines. From the appli-
cation perspective, the distinguishing novel features of our
approach are as follows: (i) it offers a flexible concept of re-
pair to overcome inconsistencies in biological networks, (ii)
it is fully automated, (iii) it deals with large-scale systems in
a global way, and finally (iv) it allows for predicting unob-
served variations (even in the presence of inconsistency).

Background
Our approach relies on the qualitative framework of
SCM for modeling biological networks and experimental
measurements, and on ASP as declarative programming
paradigm. These concepts are introduced in the following.

Sign Consistency Model
SCM is based on influence graphs, a common represen-
tation for a wide range of dynamical systems, lacking or
abstracting from detailed quantitative descriptions, in bi-
ology (Soulé 2006) or physics (Kuipers 1994). While
multivalued logical formalisms (Thomas 1979) may pre-
cisely describe the dynamics of small-scale systems, dis-
junctive causal rules on influence graphs were originally in-
troduced in random dynamical frameworks to study global
properties of large-scale networks, using a probabilistic ap-
proach (Kauffman 1993) mainly illustrated on the transcrip-

tional network of yeast (Kauffman et al. 2003). Further
probabilistic and heuristic methods (Gutiérrez-Rı́os et al.
2003; Ideker 2004) exploit disjunctive causal rules to de-
rive regulatory networks from high-throughput experimental
data. Complementary to such data-driven methods, the main
interest of SCM lies in its global approach to confront a net-
work and data. To this end, SCM imposes a collection of
constraints on experimental data together with information
on regulations between network components (Siegel et al.
2006). Let us now detail the construction of such a model.

An influence graph is a directed graph whose vertices are
the input and state variables of a system and whose edges
express the effects of variables on each other. The vertices
of an influence graph are biologically mapped to genes, pro-
teins, or metabolites. An edge j→ imeans that the variation
of j in time influences the level of i. The edges j→ i of an
influence graph are labeled with signs, either 1 or −1, de-
noted by σ(j, i). Sign 1 (−1) indicates that regulator j tends
to increase (decrease) i. Biologically, 1 stands for DNA tran-
scription, protein activation, or molecule production, while
−1 expresses inhibition of DNA transcription or protein in-
activation. An example influence graph is given in Figure 1
(left), depicting positive (negative) influences in green (red).

In SCM, experimental profiles are supposed to come from
steady state shift experiments. Initially, the system is in a
steady state, then perturbed using control parameters, and
eventually, it settles into another steady state. It is assumed
that the data measures the differences between the initial and
the final state. Thus, for genes, proteins, or metabolites,
one observes whether the concentration has increased or de-
creased, while quantitative values are unavailable, unessen-
tial, or unreliable. By µ(i), we denote the sign, either 1 or
−1, of the variation of a species i between the initial and the
final state. In Figure 1 (middle and right), an observed in-
crease 1 (decrease −1) is indicated by a green (red) colored
vertex; variations of uncolored vertices are unknown.

Given an influence graph (as a representation of cellular
interactions) and a labeling of its vertices with signs (as ob-
servations of an experimental profile), we now describe the
constraints that relate both. For every non-input vertex i, an
observed variation µ(i) should be explained by the influence
of at least one regulator j on i, given by µ(j)∗σ(j, i). If
a vertex i receives at least one influence matching µ(i), we
say that its sign is consistent. The notion of sign consistency
is extended to whole influence graphs in the natural way, re-
quiring the sign of each non-input vertex to be consistent.
In practice, influence graphs and experimental profiles are
likely to be partial. Thus, we say that a partial labeling of
the vertices is consistent with a partially labeled influence
graph if there is some consistent total extension of vertex
and edge labelings to all vertices and edges, respectively.

Answer Set Programming

We here only briefly introduce main concepts related to logic
programs under answer set semantics (see (Baral 2003) for
details). A rule is of the form

a← a1, . . . , am,∼am+1, . . . ,∼an. (1)

Each ai is an atom for 1≤ i≤ n, a is either an atom or ⊥,
and ∼ denotes (default) negation. A rule of form (1) such
that n=m= 0 is called a fact. An integrity constraint is a
rule of form (1) such that a = ⊥; its semantic role is to deny
interpretations where the right-hand side of← holds. In the
following, we omit ← when writing facts, and similarly ⊥
when writing integrity constraints. A (logic) program Π is
a set of rules; its ground instantiation, denoted by Π, is ob-
tained by applying all substitutions of first-order variables
with terms from the (implicitly given) Herbrand universe
of Π. A (Herbrand) interpretation X is a subset of the Her-
brand base of Π; X is a model of Π if {a, am+1, . . . , an} ∩
X 6= ∅ or {a1, . . . , am} 6⊆ X for every rule of form (1)
in Π. Finally, X is an answer set of Π if X is a subset-
minimal model of

{
a ← a1, . . . , am. | a ← a1, . . . , am,

∼am+1, . . . ,∼an. ∈ Π, {am+1, . . . , an} ∩X = ∅
}

. Note
that any answer set of Π is as well a model of Π. The idea
of ASP is to encode a given problem by a program such that
its answer sets correspond to solutions for the problem.

Approach
Our goal is to provide ASP solutions for reasoning over in-
fluence graphs and experimental profiles, in particular, if
they are inconsistent with each other. To this end, we iden-
tify below several operations, called repairs, which can be
applied to re-establish consistency. The framework we de-
velop is configurable, so that biological experts may selec-
tively investigate critical parts of biological networks and/or
measurements. In what follows, we provide logic pro-
gram representations of repair in the input language of ASP
grounder gringo (Gebser et al. 2009). After describing the
format of instances, repair operations, and our repair encod-
ing, we consider minimal repairs. Finally, we explain the us-
age of minimal repairs for prediction (under inconsistency).

Problem Instance
An influence graph is represented by a fact vtx (i), for each
species i, a fact edge(j, i), for each (known) regulation
j→ i, and a fact obs e(j, i, s) with s ∈ {1,−1}, for each
(known) regulation type. Furthermore, an experimental pro-
file is declared via a fact exp(p); its observed variations and
inputs are specified by facts obs v(p, i, s) with s ∈ {1,−1}
and inp(p, j), respectively. We assume that, for a given
species i (or regulation j→ i) and an experimental profile p,
an instance contains at most one of the facts obs v(p, i, 1)
and obs v(p, i,−1) (or obs e(j, i, 1) and obs e(j, i,−1)),
but not both of them.

Example 1 The facts describing the influence graph (Πg)
and experimental profiles (Πp1 and Πp2) shown in Figure 1
are provided in Figure 2. Note that experimental profile p1

(cf. middle in Figure 1) and p2 (cf. right in Figure 1) are in-
consistent with the given influence graph. Both necessitate
labeling vertex b with −1 in order to explain the observed
decrease of c. With p1, such a decrease of b is unexplained;
with p2, it can be explained by labeling a with −1, which in
turn leaves the observed decrease of e unexplained. How-
ever, there were no such inherent inconsistencies, e.g., if in-
creases of c had been observed in p1 and p2. ♦

Πg =


vtx (a). vtx (b). vtx (c). vtx (d). vtx (e).
edge(a, b). obs e(a, b, 1). edge(b, a). obs e(b, a, 1). edge(d, b). obs e(d, b, 1).
edge(a, d). obs e(a, d,−1). edge(b, c). obs e(b, c, 1). edge(d, c). obs e(d, c, 1).
edge(a, e). obs e(a, e,−1). edge(c, e). obs e(c, e,−1). edge(d, e). obs e(d, e, 1).

(2)

Πp1 = {exp(p1). inp(p1, d). obs v(p1, d, 1). obs v(p1, c,−1). obs v(p1, a, 1).} (3)
Πp2 = {exp(p2). inp(p2, d). obs v(p2, d, 1). obs v(p2, c,−1). obs v(p2, e,−1).} (4)

Figure 2: Facts representing the influence graph and experimental profiles from Figure 1 in Πg , Πp1 , and Πp2 , respectively.

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

Figure 1: An influence graph (left) along with two exper-
imental profiles (middle and right), in which increases (de-
creases) have been observed for vertices colored green (red),
and vertex d is an input.

Repair Operations
Repairs are operations on an influence graph (model) or ex-
perimental profiles (data) that can be applied to make model
and data mutually consistent. Consistency of the repaired
model/data is then witnessed by consistent total labelings of
vertices and edges.

To begin with, we use the rules in (5)–(9), shown in Fig-
ure 3, to define admissible repair operations. Note that par-
ticular operations are identified with function terms inside of
predicate rep, which enables us to deal with repairs in a gen-
eral way whenever knowing particular repair types is unnec-
essary. The function terms add e(U, V), flip e(U, V, S),
and inp v(V) stand for model repairs, where add e(U, V)
introduces an edge from U to V , flip e(U, V, S) flips the
sign S of an existing edge from U to V , and inp v(V) treats
vertex V as an input in all experimental profiles. For data
repair, the function term inp v(P, V) treats vertex V as an
input in experimental profile P , and flip v(P, V, S) flips the
sign S of vertex V in P . These repair operations are in-
spired by existing biological use cases. To repair a model
by adding new edges makes sense when the model is incom-
plete (which is often the case in practice). Flipping the sign
of an edge is a way to curate the model; it means that in
some experiment the effect of a regulator (activator or in-
hibitor) should be corrected. Turning a vertex into an input
can be used to indicate missing (unknown) regulations or os-
cillations of regulators. Revising experimental observations
puts the dataset into question and may help to identify aber-
rant measurements (frequent in microarray data).

Which repair operations ought to be permitted or omitted
requires background knowledge about the model and data
at hand. By offering a variety of operations, our frame-
work is flexible and may be adjusted to particular situations.

In rules (5)–(9), the declaration of admissible repair oper-
ations is governed by atoms rep a, . . . , rep v . Depending
on the requested repair types, such atoms are to be provided
as facts. It would also be possible to restrict repair opera-
tions to particular edges or vertices, respectively, based on
the availability of biological expert knowledge.

Finally, note that rules (5)–(9) filter some redundant re-
pairs. An edge between distinct vertices can be introduced
only if there is none in the model. Flipping the sign of an
edge or vertex is possible only if a sign is provided in the
model or data, respectively. Making a vertex input, glob-
ally or in a particular experimental profile, requires it to not
already be input in an arbitrary or the considered profile.

Repair Encoding
With admissible repairs at hand, the rules in (10)–(12) en-
code the choice of operations to apply. While (10) and (11)
do not explicitly refer to types of repair operations, the in-
tegrity constraint in (12) denies repair applications where a
vertex is made input both globally and also in a particular ex-
perimental profile. In such a case, the latter operation would
be redundant. In general, the question of declaring a vertex
as input either globally or local to an experiment depends on
the intention whether to repair the model or data; however,
simultaneously applying similar operations is futile.

The rest of the repair encoding is about identifying wit-
nesses for the consistency of the repaired model/data. To this
end, we first declare available signs and their complement
relation in (13).1 Rules (14)–(17) take care of labeling edges
and also incorporate repairs on them. In fact, Rule (14) prop-
agates (known) signs of edges if not flipped by a repair; oth-
erwise, Rule (15) is used to derive the opposite sign instead.
For edges introduced by repairs and unlabeled edges in the
model, respectively, rules (16) and (17) encode the choice
of a sign, making sure that any answer set comprises a total
edge labeling given by ground atoms over predicate lab e .

Using the same methodology as with edges, but now
relative to experimental profiles, rules (18)–(20) deal with
vertex labels and repairs on them. In analogy to (14),
Rule (18) maintains signs given in experimental profiles,
while Rule (19) applies repairs flipping such signs. Ground
instances of Rule (20) direct choosing signs of unobserved
vertices, not yet handled by Rule (18) or (19). As a con-
sequence, the instances of lab v in an answer set provide a
total vertex labeling.

1Note that gringo interprets arithmetic functions like ‘−’. For
instance, it evaluates −−1 to 1.

rep(add e(U, V)) ← rep a, vtx (U), vtx (V), U 6= V,∼edge(U, V). (5)
rep(flip e(U, V, S)) ← rep e, edge(U, V), obs e(U, V, S). (6)

rep(inp v(V)) ← rep g , vtx (V), exp(P),∼inp(P, V). (7)
rep(inp v(P, V)) ← rep i , vtx (V), exp(P),∼inp(P, V). (8)

rep(flip v(P, V, S)) ← rep v , vtx (V), exp(P), obs v(P, V, S). (9)

app(R) ← rep(R),∼app(R). (10)
app(R) ← rep(R),∼app(R). (11)

← app(inp v(V)), app(inp v(P, V)). (12)

opp(S,−S) ← sig(S). sig(1). sig(−1). (13)

lab e(U, V, S) ← edge(U, V), obs e(U, V, S),∼app(flip e(U, V, S)). (14)
lab e(U, V, T) ← app(flip e(U, V, S)), opp(S, T). (15)
lab e(U, V, S) ← app(add e(U, V)), opp(S, T),∼lab e(U, V, T). (16)
lab e(U, V, S) ← edge(U, V), opp(S, T),∼lab e(U, V, T). (17)

lab v(P, V, S) ← vtx (V), exp(P), obs v(P, V, S),∼app(flip v(P, V, S)). (18)
lab v(P, V, T) ← app(flip v(P, V, S)), opp(S, T). (19)
lab v(P, V, S) ← vtx (V), exp(P), opp(S, T),∼lab v(P, V, T). (20)

rec(P, V, S∗T) ← lab e(U, V, S), lab v(P, U, T),∼inp(P, V). (21)
← lab v(P, V, S),∼rec(P, V, S),∼inp(P, V),∼app(inp v(V)),∼app(inp v(P, V)). (22)

#minimize{app(R) : rep(R)}. (23)

Figure 3: The repair encoding, consisting of the rules in (5)–(22), along with a cardinality-minimization statement in (23).

Finally, we need to check whether the variations of all
non-input vertices are explained by the influences of their
regulators. This is accomplished via the rules in (21)
and (22). First, observe that the influence of a regulator U
on V is simply the product of the signs of the edge and of U .
Based on this, the integrity constraint in (22) denies cases
where a non-input vertex V , neither a given input of a pro-
file P nor made input globally or in P by any repair, receives
no influence matching its variation S. That is, a non-input
vertex must not be unexplained in a profile. Conversely, any
answer set comprises consistent total vertex and edge label-
ings wrt the repaired model/data.

Example 2 Reconsider the influence graph, described
by Πg in (2), and experimental profiles, represented as Πp1

and Πp2 in (3) and (4), shown in Figure 1. Let Π be
the encoding consisting of the rules in (5)–(22). Then,
Π∪Πg∪Πp1 ∪{rep v .} admits two answer sets comprising
app(flip v(p1, c,−1)) as single repair operation to apply,
viz., the sign of c is flipped to 1. Edge labels are as deter-
mined in Πg , and the consistent total vertex labelings given
by ground atoms over predicate lab v are shown in Row I:

a b c d e

I p1 1 1 1 1 1|−1

II p2 1|−1 1|−1 1 1 −1

III p1 1 1 −1 1 1|−1
p2 1 1 −1 1 −1

So witnessing labelings require increases of a, b, c, and d,

while e may either increase or decrease.
Similarly, the two answer sets of Π∪Πg∪Πp2 ∪{rep v .}

flipping c to 1 are shown in Row II. Here, c as well as d must
increase and e decrease, and the variations of a and b are
variable but must comply with each other.

When looking at model repairs using program Π ∪ Πg ∪
Πp1 ∪Πp2 ∪{rep g .}, where we may globally make vertices
input, we get two answer sets applying only the repair op-
eration expressed by app(inp v(c)). The witnesses for p1

and p2 are shown in Row III. We have that p1 and p2 ne-
cessitate the same signs for a, b, c, and d wrt the repaired
model. Moreover, with p1, e can either increase or decrease,
while it must decrease with p2. ♦

Minimal Repairs
Typically, plenty of repairs are possible, in particular, if sev-
eral repair operations are admitted by adding multiple con-
trol atoms rep a, . . . , rep v as facts. However, one usually
is only interested in repairs that make few changes on the
model and/or data.

Repairs that re-establish consistency by applying a min-
imum number of operations can easily be selected among
candidate repairs by using the #minimize directive avail-
able in lparse’s and gringo’s input languages (Syrjänen;
Gebser et al. 2009). The #minimize statement in (23)
means that the number of instances of predicate app in an-
swer sets, with argument R ranging over the ground in-
stances of “domain predicate” rep, is subject to minimiza-

tion. Note that (23) does not explicitly refer to the types of
repair operations whose application is to be minimized.
Example 3 As discussed in Example 1, the experimental
profiles in Πp1 and Πp2 are inconsistent with the influ-
ence graph represented by Πg . When augmenting program
Π ∪ Πg ∪ Πp1 ∪ Πp2 ∪ {rep g .} from Example 2 with the
statement in (23), the answer sets comprising app(inp v(c))
as the only repair operation to apply, along with the corre-
sponding witnesses given in Example 2, yield a cardinality-
minimal and thus optimal repair. ♦

Although we do not detail them here, we note that alter-
native minimality criteria, such as weighted sum or subset
inclusion, can also be used with the repair encoding in (5)–
(22). While augmenting the #minimize statement in (23)
with weights for atoms is straightforward, encoding subset-
based minimization is more sophisticated. An encoding of
the subset-minimality test is thus deferred to the appendix.

In fact, cardinality-minimal repairs may sometimes be too
coarse and suppress further structurally interesting repairs
being subset-minimal.
Example 4 The previous example resulted in cardinality-
minimal answer sets comprising app(inp v(c)) as the sin-
gle repair operation to apply. As a consequence, answer sets
containing both app(inp v(a)) and app(inp v(b)) as ap-
plied repair operations are ignored because they fail to be
cardinality-minimal. However, such answer sets exist, and
the following vertex labelings are their witnesses:

a b c d e

p1 1 −1 −1 1 1|−1
p2 1 −1 −1 1 −1

Note that the increase of a and the decrease of b are both un-
explained by these witnesses. Hence, neither app(inp v(a))
nor app(inp v(b)) can be dropped without losing consis-
tency, so that the repair at hand is subset-minimal. ♦

Example 4 shows that minimizing cardinality can miss
subset-minimal repairs. In fact, any cardinality-minimal re-
pair is also subset-minimal, while the converse does not
hold in general. Regarding computational complexity, we
have that cardinality-minimization is usually accomplished
with algorithms devised for problems in ∆P

2 (see, e.g., (Si-
mons, Niemelä, and Soininen 2002)), while algorithms
usable for subset-minimization typically still handle ΣP

2 -
hard problems (cf. (Leone et al. 2006; Drescher et al.
2008)). The different complexities of solving methods sug-
gest that cardinality-minimization is presumably more ef-
ficient in practice than subset-minimization. This is also
confirmed by our experiments, whose results based on
cardinality-minimization are presented below, while subset-
minimization turned out to be too costly for an extensive
empirical investigation.

Prediction under Repairs
For large real-world biological networks and measurements,
there can be plenty witnessing vertex and edge labelings af-
ter re-establishing consistency via repairs. To not get lost
in manifold scenarios, it is thus reasonable or even manda-
tory to focus on their common consequences. We therefore

present the identification of consequences shared by all con-
sistent vertex and edge labelings under minimal repairs as
the ultimate application of our method, and we call this task
prediction. Due to the capability of repairing, our approach
enables prediction even if model and data are mutually in-
consistent, which is often the case in practice. Importantly,
enumerating all consistent total labelings is unnecessary. In
fact, cautious reasoning (Gebser, Kaufmann, and Schaub
2009), supported by ASP solver clasp (Gebser et al. 2007),
allows for computing the intersection of all (optimal) answer
sets while investigating only linearly many of them.

For prediction, an input program Π is composed of an
instance (cf. Figure 2), a definition of admissible repair op-
erations (rep a, . . . , rep v), the repair encoding in (5)–(22),
and the #minimize statement in (23) (or alternatively the
subset-minimality test in the appendix). Predicted signs for
edges and vertices are then simply read off from instances of
predicates lab e and lab v in the intersection of all optimal
answer sets of Π, that is, answer sets comprising a minimum
number of instances of predicate app. Though we mainly
target at prediction wrt mutually inconsistent model and
data, we note that prediction under consistency, where the
unique minimal set of repair operations to apply is empty, is
merely a particular case of prediction under repairs.

Experiments
For validating our approach, we use the transcriptional net-
work of Escherichia coli, obtained from RegulonDB (Gama-
Castro et al. 2008). In the corresponding influence graph,
the label of an edge depends on whether the interaction was
determined as activation, inhibition, dual, or complex in
RegulonDB. Overall, the influence graph consists of 5150
interactions between 1914 genes. We confront this model
with datasets corresponding to the Exponential-Stationary
growth shift study in (Bradley et al. 2007) and the Heatshock
experiment in (Allen et al. 2003). For each of them, the ex-
tracted data yields about 850 significant variations (1 or−1)
of Escherichia coli genes. Since the data is highly noisy, not
surprisingly, it is inconsistent with the RegulonDB model.
For enabling a qualitative assessment of predictions (see Ta-
ble 2), we generated data samples by randomly selecting
3%, 6%, 9%, 12%, or 15% of the whole data (about 850
variations with either experiment). We use these samples
for testing both our repair modes as well as prediction (of
omitted experimental data).2 All experiments were run with
grounder gringo (2.0.3) and solver clasp (1.2.1) on a Linux
PC equipped with AthMP+1900 processor and 4GB main
memory, imposing a maximum time of 600 seconds per
run. Below, we first report runtime results for (cardinality-
minimal) repair and prediction; afterwards, we analyze the
obtained predictions both quantitatively and qualitatively.

Feasibility of Repairs
We first tested the feasibility of our repair modes on con-
sistent as well as inconsistent samples (depending on the
random selection). Table 1 provides average runtimes and

2Instances and encodings available at: http://www.cs.
uni-potsdam.de/bioasp/

Exponential-Stationary growth shift
Repair 3% 6% 9% 12% 15%

Repair Times
e 6.58 (0) 8.44 (0) 11.60 (0) 14.88 (0) 26.20 (0)
i 2.18 (0) 2.15 (0) 2.21 (0) 2.23 (0) 2.21 (0)

v 1.41 (0) 1.40 (0) 1.40 (0) 1.41 (0) 1.37 (0)
e i 73.16 (6) 202.66 (23) 392.97 (87) 518.50(143) 574.85(179)
e v 28.53 (0) 85.17 (0) 189.27 (12) 327.98 (33) 470.48 (88)
i v 2.09 (0) 2.14 (0) 2.45 (0) 3.08 (0) 6.06 (0)

e i v 133.84 (8) 391.60 (76) 538.93(151) 593.33(193) 600.00(200)
Prediction Times

e 13.27 (0) 12.19 (0) 14.76 (0) 15.34 (0) 25.90 (1)
i 6.18 (0) 5.26 (0) 4.77 (0) 4.60 (0) 4.42 (0)

v 4.64 (0) 4.45 (0) 4.39 (0) 4.40 (0) 4.30 (0)
e i 35.25 (0) 97.66 (1) 293.80 (3) 456.55 (3) 550.33 (1)
e v 14.35 (0) 26.17 (0) 90.17 (3) 200.25 (13) 363.36 (16)
i v 6.43 (0) 5.75 (0) 6.27 (0) 6.69 (0) 8.61 (0)

e i v 42.51 (0) 248.30 (1) 468.71 (2) 579.58 (0) — (0)

Heatshock
Repair 3% 6% 9% 12% 15%

Repair Times
e 25.54 (4) 42.76 (8) 50.46 (5) 69.23 (6) 84.77 (6)
i 2.10 (0) 2.13 (0) 2.13 (0) 2.05 (0) 2.08 (0)

v 1.41 (0) 1.47 (0) 1.42 (0) 1.37 (0) 1.39 (0)
e i 120.91(21) 374.69 (91) 553.00(169) 593.20(197) 595.99(198)
e v 67.92 (3) 236.05 (31) 465.92(107) 579.88(179) 596.17(197)
i v 2.27 (0) 4.94 (0) 60.63 (8) 257.68 (56) 418.93(123)

e i v 232.29(26) 542.48(152) 593.88(195) 600.00(200) 600.00(200)
Prediction Times

e 25.77 (0) 37.18 (0) 29.09 (0) 36.23 (0) 41.88 (0)
i 6.57 (0) 5.93 (0) 5.17 (0) 4.86 (0) 4.54 (0)

v 4.86 (0) 5.06 (0) 5.34 (0) 5.42 (0) 5.52 (0)
e i 85.47 (0) 293.28 (1) 524.19 (3) 591.81 (0) 594.74 (0)
e v 23.32 (0) 111.99 (0) 338.95 (0) 545.56 (2) 591.23 (0)
i v 6.91 (0) 6.63 (0) 30.33 (0) 176.14 (1) 371.95 (0)

e i v 101.82 (1) 466.91 (0) 585.64 (0) — (0) — (0)

Table 1: Repair and Prediction Times.

numbers of timeouts in parentheses over 200 samples per
percentage of selected measurements; timeouts are included
as 600s in average runtimes. We ran experiments admitting
the following repair operations and combinations thereof:
flipping edge labels denoted by e (flip e), making vertices
input denoted by i (inp v), and flipping preassigned varia-
tions denoted by v (flip v). Note that the two modes to make
vertices input (globally or locally) fall together here, and we
used only the local repair operation in i while skipping tests
with the other, equivalent one. Moreover, we do not include
results on the adding edges repair (add e), where the bot-
tleneck is grounding since the potential addition of arbitrary
edges turns the influence graph into a huge clique at the en-
coding level. To avoid this, edges that can possibly be added
by repairs should be restricted to a (smaller) set of reason-
able ones, which requires biological knowledge, e.g., regu-
lations known for organisms related to the investigated one.

In view that clasp applies a branch-and-bound approach
to search for a cardinality-minimal repair, we observe that
the average runtimes shown in Table 1 are directly corre-
lated to the number of admissible repair operations. The

fewest repairs are admitted with v, given that only about
25–130 observed variations are included in the samples of
varying percentage. All vertices of the influence graph can
potentially be made input with i, but when run in isolation
or together with v, it still performs relatively well. Finally,
as labels are available for almost all edges of the influence
graph, permitting to flip each of them in e explains long run-
times and many timeouts obtained with it, in particular, on
its combinations with i. However, the tight correlation be-
tween number of admitted repairs and runtime indicates that
our method could significantly benefit from the inclusion of
biological knowledge to restrict scopes of repairs.

In addition to running on samples, we computed
cardinality-minimal repairs on the full datasets (containing
about 850 variations per experiment). As regards individual
operations (viz., e, i, and v), we observed that both finding
a (cardinality-minimal) candidate repair as well as proving
its optimality are accomplished easily with either i or v, re-
spectively, within split seconds. With e, incurring a greater
scope of repairs than i and v, proving an optimum turned
out to be harder, the order of magnitude however depending
on the considered experiment. On Exponential-Stationary
growth shift, mode e still completed within seconds, while
proving the optimum appeared to be very hard on the Heat-
shock data. However, some explorations also indicated that
the performance of clasp can be significantly improved by
selecting appropriate solver settings. For instance, options
--restart-on-model and --opt-heu proved to be
particularly helpful, but more systematic exploration would
be needed to suitably fix remaining parameters (e.g. restart
policy). Regarding the minimum number of repairs needed
with different operations, we found that flipping variations
(v) required fewer applications than either flipping edge la-
bels or making vertices input (e or i). Minimums of the
former are 40 and 34 on Exponential-Stationary growth shift
and Heatshock, respectively, while they are 42 and 94 for the
latter two modes. Here, the difference of 60 (!) repair appli-
cations on Heatshock is particularly remarkable, as it shows
that repairing with either e or i incurs by far more modifica-
tions (of the network) than data corrections needed with v.

Prediction under Repairs
In the second step, done after computing the minimum num-
ber of repairs needed, we performed prediction by com-
puting the intersection of all answer sets comprising a
cardinality-minimal (and sometimes empty) repair. To this
end, we used the cautious reasoning capacities of clasp
(option --cautious) along with options --opt-value
and --opt-all for initializing the objective function with
the minimum number of repairs and enumerating all opti-
mal answer sets, respectively. Runtime results are presented
in Table 1, using the same notations for repair operations as
before, but taking average runtimes only over those of the
200 samples per percentage where a cardinality-minimal re-
pair was computed before the timeout (as the optimum is not
known otherwise). We observe that the runtimes for predic-
tion are in line with the ones for computing a cardinality-
minimal repair, and maximum time is not often exceeded
on the samples with known optimum. This shows that pre-

Exponential-Stationary growth shift
Repair 3% 6% 9% 12% 15%

Prediction Rate
e 15.00 18.51 20.93 22.79 23.94
i 15.00 18.51 20.93 22.79 23.93
v 14.90 18.37 20.86 22.73 23.77

e i 14.92 18.61 20.55 21.96 22.80
e v 14.89 18.33 21.07 22.52 23.74
i v 14.89 18.33 20.79 22.59 23.66

e i v 14.58 19.00 20.29 21.13 —
Prediction Accuracy

e 90.93 91.98 92.42 92.70 92.81
i 90.93 91.98 92.42 92.70 92.81
v 90.99 92.05 92.44 92.73 92.89

e i 91.09 91.90 92.57 93.03 93.19
e v 90.99 92.03 92.50 92.82 92.94
i v 90.99 92.03 92.42 92.71 92.87

e i v 91.35 92.29 92.52 93.04 —

Heatshock
Repair 3% 6% 9% 12% 15%

Prediction Rate
e 15.47 19.54 21.87 23.17 24.78
i 15.48 19.62 21.89 23.20 24.80
v 15.32 19.59 21.37 22.13 23.79

e i 15.37 19.62 22.83 23.44 24.05
e v 15.33 19.21 21.00 22.65 24.90
i v 15.41 19.47 21.36 21.81 23.55

e i v 15.01 19.11 22.52 — —
Prediction Accuracy

e 91.87 92.93 92.92 92.83 92.71
i 91.93 92.90 92.94 92.87 92.76
v 92.29 93.27 93.88 94.27 94.36

e i 91.99 92.49 91.16 93.62 94.44
e v 92.30 93.37 93.66 94.36 94.35
i v 92.24 93.34 93.90 94.26 94.38

e i v 92.26 93.04 91.78 — —

Table 2: Prediction Rate and Accuracy.

diction is successfully applicable if computing a cardinality-
minimal repair is feasible.

In what follows, we analyze quantity and quality of the
predictions we obtained. To this end, we determined the fol-
lowing numbers for each run: N vertices without variation
given in the sample, P newly predicted vertices (variation
not given in the sample), V newly predicted vertices having
the same variation as available in the whole dataset, and W
newly predicted vertices having the opposite variation in the
whole dataset. Based on this, the prediction rate is obtained
via the formula (P∗100)/N , and the prediction accuracy is
given by (V ∗100)/(V+W). That is, the prediction rate re-
flects the percentage of newly predicted vertices, while the
prediction accuracy measures in how many cases variations
available in the whole dataset (but not in the sample) have
been recovered. Average prediction rates and accuracies
over samples where both repair and prediction terminated
are shown in Table 2. Note that some averages result from
few instances only (many timeouts reported in Table 1); such
results should be interpreted with care.

We first notice that in both experiments, Exponential-

Stationary growth shift and Heatshock, the prediction rates
are significant, varying from about 15 to 25 percent. As
it can be expected, prediction rates increase with the size
of samples, in particular, for the transition from 3% to 6%
of preassigned variations. However, while the size of the
samples increases linearly, the prediction rates do not. This
may mean that prediction rates reach a plateau related to
the topology of the network, as also observed in (Veber et
al. 2008). Interestingly, we do not notice any significant
decrease of prediction rates when admitting multiple repair
operations simultaneously. This suggests that predicted vari-
ations are rather insensitive to the repair operations used
for re-establishing consistency, given that the application of
repairs is governed by cardinality-minimality. Comparing
individual operations, we note that flipping variations (v)
yields a slightly lower prediction rate than the others, in par-
ticular, on the larger samples of Heatshock. This could be
related to the above observation that repairing wrt the full
dataset requires fewer applications of v than needed with
the other modes.

Considering prediction accuracies, they are consistently
higher than 90 percent, meaning that predicted variations
and experimental observations correspond in most cases.3
As with prediction rates, accuracies increase with sample
size, while the choice of admissible repair operations does
not exhibit much impact. This indicates that filtering re-
pairs by cardinality-minimality makes the qualitative results
largely independent of repair types, at least on the datasets
we consider here. Nonetheless, we still observe that individ-
ual operation v yields higher accuracies than either flipping
edge labels or making vertices input (e or i). Interestingly,
the gap is greatest on the larger samples of Heatshock, and
fewer modifications needed with v on the full dataset pro-
vide a reasonable explanation for it.

Finally, we compared prediction accuracies to the ones
obtained when using a different kind of repair method: iter-
atively removing (subset-minimal) inconsistent subnetworks
(cf. (Gebser et al. 2008)) until the remaining network is
found to be consistent. Repair results, that is, reduced net-
works, obtained in such a way depend on the order of remov-
ing inconsistent subnetworks, while the technique presented
here is fully declarative. The alternative repair method
achieved prediction accuracies between 65 and 73 percent
on Exponential-Stationary growth shift and from 76 to 80
percent on Heatshock data. The higher accuracies of our
declarative technique show that a firm repair concept pays
off in prediction quality.

Discussion
We have introduced repair-based reasoning techniques for
computing minimal modifications of biological networks
and experimental profiles to make them mutually consis-

3Note that edge labels (activation or inhibition) are well-curated
in RegulonDB, which both enables and explains the obtained high
accuracies. In fact, the description of RegulonDB in (Baumbach,
Tauch, and Rahmann 2009) includes the following: “The amount
of manually curated knowledge on the gene regulatory network of
E. coli is the largest, currently available for any living organism.”

tent. As final application, we provided an approach based
on ASP to predict unobserved data even in case of inconsis-
tency under SCM. We evaluated our approach on a real bio-
logical example and showed that predictions on the basis of
cardinality-minimal repairs were, for one, feasible and, for
another, highly accurate. This is of practical relevance be-
cause genetic profiles from microarray data tend to be noisy
and available biological networks far from being complete.

Given that our framework is configurable, it can be ad-
justed to varying tasks that occur in practice. As illustrated
in the experiments, it enables a meaningful analysis of par-
tially unreliable experimental data, and reasonable conclu-
sions from it can be drawn automatically. Another applica-
tion scenario stems from the utilization of data-driven meth-
ods to derive biological models (Joyce and Palsson 2006;
Faith et al. 2007; Bansal et al. 2007). In short, such ap-
proaches are based on probabilistic frameworks determin-
ing most likely models (typically, transcriptional regulatory
networks or perturbation targets) given the data. The under-
lying optimization problem is usually non-convex, and find-
ing a global optimum is not guaranteed in practice. Hence,
existing algorithms report a local optimum that should be
interpreted with care: errors can occur, and there may not
be a consensual model (Ferrazzi et al. 2007). Formal
methods provide means to deal with these issues, as shown
in (Gutiérrez-Rı́os et al. 2003; Covert et al. 2008) for check-
ing the consistency between biological models and exper-
imental data, a functionality partially automated in a Cy-
toscape plug-in (Baumbach and Apeltsin 2008). However,
to our knowledge, this work provides the first approach to
automatically and globally reason over a whole biological
network in order to identify minimal repairs on the network
and/or data. Our method could thus be used both to indicate
and to correct spurious parts of models generated from data.

Our approach is fully declarative and assigns a clear se-
mantics to (minimal) repair and prediction, so decoupling
intended results from phenomena of their computation. The
explicit representation of repair operations allows for rea-
soning over corrections on either or both of data and model.
The latter distinguishes our approach to repair from the
one applied in the area of databases (Arenas, Bertossi, and
Chomicki 1999), which is limited to data repair. Moreover,
alternative notions can be used for repair minimality, e.g.,
based on weighted sum or subset inclusion. In fact, a (dis-
junctive) ASP encoding of subset-minimality testing is pro-
vided in the appendix, but tentative experiments indicated
that computing subset-minimal repairs is harder than cardi-
nality minimization. However, available biological knowl-
edge could be incorporated in our framework to improve the
validity of results as well as computational efficiency.

As an important aspect, we want to stress the advan-
tages of using ASP as paradigm for realizing our application.
On the knowledge representation side, ASP fosters uniform
problem specifications in terms of a separate encoding and
instances given as facts. This accelerates the development
of a problem solution, viz., of the encoding, and it keeps
solutions comprehensible in view of the fact that encodings
are usually compact. To see this, note that our repair encod-
ing contains not more than 20 rules, in which we specified

five kinds of repair operations with different targets (model
or data). One additional #minimize statement enabled us
to compute cardinality-minimal repairs using off-the-shelf
tools. Notably, the task of prediction benefits from the cau-
tious reasoning capacities of clasp, intersecting all answer
sets by enumerating only linearly many of them. This illus-
trates the second major advantage of ASP, namely, the avail-
ability of powerful off-the-shelf inference engines. Except
for instance translators used to convert large biological net-
works and experimental profiles into ASP facts, no propri-
etary imperative code was needed for deploying and solving
our sophisticated application.

Appendix: Subset-Minimal Repairs
Example 4 shows that minimizing cardinality can miss
subset-minimal repairs, which could be of interest too. An
alternative is then to identify all subset-minimal repairs.
Unlike cardinality-minimal repair, which can be accom-
plished via a branch-and-bound approach, subset-minimal
repair deals with the question of whether a set of applied
repair operations has no proper subset that is also a re-
pair. In other words, subset-minimality of a candidate re-
pair is refuted if one finds a counterexample, i.e., a strictly
smaller set of repair operations along with total consis-
tent vertex and edge labelings; in turn, subset-minimality
holds if no such counterexample exists. The task of find-
ing subset-minimal repairs thus combines two subproblems:
first, providing a candidate repair and, second, excluding
the existence of a counterexample. Such a pattern is typ-
ical for ΣP

2 -complete problems (cf. (Schaefer and Umans
2002) for a compendium), among which we find, e.g.,
brave reasoning in disjunctive ASP (Eiter and Gottlob 1995;
Leone et al. 2006). Even though we have not established
ΣP

2 -hardness of decision problems related to subset-minimal
repair, it is convenient to encode it in disjunctive ASP, in
view that (disjunctive) rules for testing subset-minimality
can simply be added to the rules in (5)–(22).

In fact, one can replace the #minimize statement in (23)
with the encoding shown in Figure 4 to check whether a can-
didate repair, generated via the rules in (5)–(22), is subset-
minimal. The rules in Figure 4 aim at the construction of a
counterexample comprising a strictly smaller set of applied
repair operations and consistent total labelings of edges and
vertices, which are now given by instances of predicates
lab E and lab V . Following the methodology in (Eiter and
Gottlob 1995), the idea is to derive an inflationary amount
of atoms from an error-indicating atom bot , expressing fail-
ure to construct a counterexample. The requirement that all
atoms in an answer set must necessarily be derived makes
sure that bot can only be true if there is no counterexam-
ple for a candidate repair. Finally, an integrity constraint
stipulates bot to hold, so that only answer sets comprising
a subset-minimal repair (not admitting any counterexample)
remain.

Before describing the rules in Figure 4, note that the syn-
tax and semantics introduced in the background are general-
ized to disjunctive programs as follows. Let a = h1 ; . . . ;hl

for the head a of a rule of form (1), where each hj is an atom
for 1≤ j≤ l, and ‘ ;’ denotes disjunction. According to this,

drop(R) ; keep(R) ← app(R). (24)
keep(R) ← rep(R),∼app(R). (25)

bot ← keep(R) : rep(R). (26)

lab E(U, V, S) : sig(S) ← edge(U, V). (27)
lab E(U, V, S) : sig(S) ← app(add e(U, V)), keep(add e(U, V)). (28)

lab E(U, V, S) ← edge(U, V), obs e(U, V, S),∼app(flip e(U, V, S)). (29)
lab E(U, V, T) ← app(flip e(U, V, S)), keep(flip e(U, V, S)), opp(S, T). (30)
lab E(U, V, S) ← drop(flip e(U, V, S)). (31)

lab V (P, V, S) : sig(S) ← vtx (V), exp(P). (32)
lab V (P, V, S) ← vtx (V), exp(P), obs v(P, V, S),∼app(flip v(P, V, S)). (33)
lab V (P, V, T) ← app(flip v(P, V, S)), keep(flip v(P, V, S)), opp(S, T). (34)
lab V (P, V, S) ← drop(flip v(P, V, S)). (35)

con(P, U, V) ← lab E(U, V, S), lab V (P, U, T), lab V (P, V, Y), Y 6= S∗T,∼inp(P, V). (36)
con(P, U, V) ← rep(add e(U, V)), exp(P),∼app(add e(U, V)),∼inp(P, V). (37)
con(P, U, V) ← drop(add e(U, V)), exp(P),∼inp(P, V). (38)

mis(P, V) ← vtx (V), exp(P), con(P, U, V) : edge(U, V), con(P, W, V) : rep(add e(W, V)),∼inp(P, V). (39)
bot ← mis(P, V),∼app(inp v(V)),∼app(inp v(P, V)). (40)
bot ← mis(P, V), drop(inp v(V)). (41)
bot ← mis(P, V), drop(inp v(P, V)). (42)

drop(R) ← bot , rep(R). (43)
keep(R) ← bot , rep(R). (44)

lab E(U, V, S) ← bot , sig(S), edge(U, V). (45)
lab E(U, V, S) ← bot , sig(S), rep(add e(U, V)). (46)
lab V (P, V, S) ← bot , sig(S), vtx (V), exp(P). (47)

← ∼bot . (48)

Figure 4: Disjunctive encoding of testing repairs’ subset-minimality, which can be used in place of #minimize statement (23).

the notion of a modelX is adapted by requiring {h1, . . . , hl,
am+1, . . . , an} ∩ X 6= ∅ or {a1, . . . , am} 6⊆ X for every
rule of form (1) belonging to the ground instantiation Π of a
disjunctive program Π; remaining concepts stay unchanged.

Looking at Figure 4, Rule (24) describes the choice of
applied repair operations to drop in a counterexample, while
Rule (25) immediately declares non-applied operations as
kept (or not dropped, respectively). This is used in Rule (26),
deriving error-indicating atom bot if all repair operations are
kept.4 In order to avoid deriving bot , a counterexample must
thus drop at least one applied repair operation.

The rules in (27)–(31) direct choosing labels of edges in
the construction of a witness for re-established consistency
wrt a counterexample. In fact, rules (27) and (28) express
that a label needs to be chosen for each edge of the given
influence graph as well as for any edge added by a repair op-
eration that is kept. The remaining rules take care of known

4Note that gringo expands ‘:’ in a rule body to a conjunction of
atoms on the left-hand side, where ground instances are obtained
from “domain predicates” on the right-hand side. Likewise, an oc-
currence of ‘:’ in a rule head is expanded to a disjunction (cf. (Geb-
ser et al. 2009)).

edge labels and respective repair operations: (29) propa-
gates available labels not subject to flipping, while (30) and
(31) derive the opposite or the original label, respectively,
depending on whether an applied flip operation is kept or
dropped.

A total vertex labeling wrt a counterexample is con-
structed in a similar fashion as with edges, using rules (32)–
(35) to handle variations (within experimental profiles) and
potential flips. Note that (32) is analog to (27), and (33)–(35)
to (29)–(31), while there is no counterpart of (28) because
our repair operations do not introduce any new vertices.

The rules in (36)–(42) formalize incompatible influences
wrt the vertex and edge labelings of a counterexample, de-
riving bot if a non-input vertex is unexplained in some ex-
perimental profile. To this end, Rule (36) compares the sign
of a non-input vertex V in an experimental profile P to the
influence it receives from a regulator U , and con(P,U, V)
is derived if the influence is contrary to the sign of V . For
edges that can potentially be added by repair operations,
Rule (37) and (38) also derive a contrary influence on V
if such an operation is not applied or dropped, respectively.
Given this, Rule (39) identifies non-input vertices V receiv-

ing exclusively contrary influences in a profile P , thereby,
taking the conjunction over all edges in the given influence
graph targeting V as well as all potential regulators from
which edges to V can be added by repairs. The remaining
rules derive bot if a non-input vertex V missing an explana-
tion is not made input by any repair operation: (40) is used
if neither the global nor the local operation to make V in-
put is applied, while (41) and (42) check for whether either
of these operations is dropped. (Recall that, in view of the
integrity constraint in (12), repair applications making the
same vertex input both globally and locally are impossible.)

Before we proceed, let us briefly summarize the encoding
parts described so far. The rules in (24)–(26) direct guessing
applied repair operations to drop in a counterexample. In
order to witness re-established consistency, total labelings
of edges and vertices are constructed via the rules in (27)–
(31) and (32)–(35), respectively, taking kept and dropped re-
pairs likewise into account. Given such labelings, the rules
in (36)–(42) check for whether some non-input vertex is un-
explained in an experimental profile. Importantly, if a coun-
terexample under construction is invalid because it does not
drop any applied repair operation or leaves some non-input
vertex unexplained, it is indicated by deriving bot from a
ground instance of Rule (26) or rules (40)–(42), respectively.
Conversely, a valid counterexample manifests itself in hav-
ing a representation as set of atoms such that the rules in
(24)–(42) are satisfied without requiring bot to be true.

The final technical part consists of from bot deriving all
possible options for repair operations, that is, dropping and
keeping them, as well as all labels for edges (possibly added
by a repair) and vertices. This is accomplished via the rules
in (43)–(47). As atoms in an answer set must be derived nec-
essarily from a program, their inflationary inclusion when-
ever bot is true makes sure that bot belongs to an answer
set only if there is no counterexample for a candidate repair.
Finally, the integrity constraint in (48) stipulates bot to hold.
This eliminates potential answer sets consisting of a candi-
date repair along with a counterexample, given by labelings
witnessing re-established consistency under fewer repair op-
erations. Every remaining answer set must thus comprise
a repair from which no operation can be dropped without
sacrificing consistency, so that bot is necessarily derived.
Hence, a candidate repair (represented in terms of predi-
cate app) passes the test in Figure 4 iff it is subset-minimal.
Example 5 As discussed in Example 4, the following vertex
labelings witness that mutual consistency between the influ-
ence graph and experimental profiles shown in Figure 1 can
be re-established by making vertices a and b inputs:

a b c d e

p1 1 −1 −1 1 1|−1
p2 1 −1 −1 1 −1

Note that the witnesses agree on the increases of a and d,
which are the regulators of b, as well as on the decrease of b,
the only regulator of a. Given that the variations of a and b
are both unexplained (in each of the experimental profiles p1

and p2), the repair that makes a and b inputs is subset-
minimal. Thus, answer sets containing app(inp v(a)) and
app(inp v(b)) as applied repair operations should pass the

test in Figure 4 by producing bot . In view of the fact that c,
e, and at least one of a and b cannot jointly be explained (in-
creases of input d in p1 and p2 need not be explained), bot
is derived via Rule (40) or (41) if choosing drop(inp v(a))
or drop(inp v(b)) to satisfy a respective ground instance of
Rule (24). To avoid such a derivation of bot , we must thus
choose keep(inp v(a)) and keep(inp v(b)) to satisfy (24).
Since keep(inp v(c)) and keep(inp v(e)) must be true in
view of Rule (25), while rep(inp v(d)) cannot be derived
via Rule (7) in Figure 3, predicate keep then holds for all
derivable ground instances of (domain) predicate rep. This
again implies bot in view of Rule (26). We have thus checked
that bot and all atoms following from it must necessarily be
derived, so that the subset-minimality test succeeds for an-
swer sets containing app(inp v(a)) and app(inp v(b)). ♦

By using the rules in Figure 4 in place of the #minimize
statement in (23), one can compute and also perform pre-
diction wrt subset-minimal repairs instead of cardinality-
minimal ones, but the resulting tasks appear to be compu-
tationally much harder. In fact, we tried disjunctive ASP
solver claspD (Drescher et al. 2008) on part of the data used
for the experiments with clasp and observed many timeouts.
In view of the expected runtime, we thus refrained from
conducting (and reporting results of) an extensive empiri-
cal investigation. In practice, the choice of whether to ap-
ply cardinality (or likewise weighted sum) or subset inclu-
sion as minimality measure certainly depends on the consid-
ered network and data, experience, and scalability. From the
viewpoint of scalability, our tentative experiments indicated
that cardinality-minimal repairs and prediction wrt them are
much easier to compute.

Acknowledgments Philippe Veber was supported by
DAAD. This work was partially funded by GoFORSYS
(Grant 0313924). The authors are grateful to Roland Kamin-
ski for helpful comments on encodings and to Sylvain Bla-
chon for useful discussions on the subject of this paper.

References
Allen, T.; Herrgård, M.; Liu, M.; Qiu, Y.; Glasner, J.; Blat-
tner, F.; and Palsson, B. 2003. Genome-scale analysis
of the uses of the Escherichia coli genome: Model-driven
analysis of heterogeneous data sets. Journal of Bacteriol-
ogy 185(21):6392–6399.
Arenas, M.; Bertossi, L.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In Pro-
ceedings of the Eighteenth Symposium on Principles of
Database Systems, 68–79. ACM Press.
Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; and
di Bernardo, D. 2007. How to infer gene networks from
expression profiles. Molecular Systems Biology 3(78).
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Baumbach, J., and Apeltsin, L. 2008. Linking Cytoscape
and the corynebacterial reference database CoryneRegNet.
BMC Genomics 9(184).

Baumbach, J.; Tauch, A.; and Rahmann, S. 2009. Towards
the integrated analysis, visualization and reconstruction of
microbial gene regulatory networks. Briefings in Bioinfor-
matics 10(1):75–83.
Bradley, M.; Beach, M.; de Koning, A.; Pratt, T.; and Os-
una, R. 2007. Effects of Fis on Escherichia coli gene
expression during different growth stages. Microbiology
153:2922–2940.
Covert, M.; Xiao, N.; Chen, T.; and Karr, J. 2008. In-
tegrating metabolic, transcriptional regulatory and signal
transduction models in Escherichia coli. Bioinformatics
24(18):2044–2050.
Drescher, C.; Gebser, M.; Grote, T.; Kaufmann, B.; König,
A.; Ostrowski, M.; and Schaub, T. 2008. Conflict-driven
disjunctive answer set solving. In Proceedings of the
Eleventh International Conference on Principles of Knowl-
edge Representation and Reasoning, 422–432. AAAI
Press.
Eiter, T., and Gottlob, G. 1995. On the computational
cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence 15(3-
4):289–323.
Erdem, E.; Lin, F.; and Schaub, T., eds. 2009. Proceedings
of the Tenth International Conference on Logic Program-
ming and Nonmonotonic Reasoning. Springer.
Ernst, J.; Beg, Q.; Kay, K.; Balázsi, G.; Oltvai, Z.; and
Bar-Joseph, Z. 2008. A semi-supervised method for pre-
dicting transcription factor-gene interactions in Escherichia
coli. PLoS Computational Biology 4(3).
Faith, J.; Hayete, B.; Thaden, J.; Mogno, I.; Wierzbowski,
J.; Cottarel, G.; Kasif, S.; Collins, J.; and Gardner, T.
2007. Large-scale mapping and validation of Escherichia
coli transcriptional regulation from a compendium of ex-
pression profiles. PLoS Computational Biology 5(1).
Ferrazzi, F.; Magni, P.; Sacchi, L.; Nuzzo, A.; Petrovič, U.;
and Bellazzi, R. 2007. Inferring gene regulatory networks
by integrating static and dynamic data. International Jour-
nal of Medical Informatics 76:462–475.
Gama-Castro, S.; Jiménez-Jacinto, V.; Peralta-Gil, M.;
Santos-Zavaleta, A.; Peñaloza-Spinola, M.; Contreras-
Moreira, B.; Segura-Salazar, J.; Muñiz-Rascado, L.;
Martı́nez-Flores, I.; Salgado, H.; Bonavides-Martı́nez, C.;
Abreu-Goodger, C.; Rodrı́guez-Penagos, C.; Miranda-
Rı́os, J.; Morett, E.; Merino, E.; Huerta, A.; Treviño-
Quintanilla, L.; and Collado-Vides, J. 2008. RegulonDB
(version 6.0): gene regulation model of Escherichia coli
K-12 beyond transcription, active (experimental) annotated
promoters and Textpresso navigation. Nucleic Acids Re-
search 36.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings of
the Twentieth International Joint Conference on Artificial
Intelligence, 386–392. AAAI Press/MIT Press.
Gebser, M.; Schaub, T.; Thiele, S.; Usadel, B.; and Veber,
P. 2008. Detecting inconsistencies in large biological net-
works with answer set programming. In Proceedings of

the Twenty-fourth International Conference on Logic Pro-
gramming, 130–144. Springer.
Gebser, M.; Kaminski, R.; Ostrowski, M.; Schaub, T.; and
Thiele, S. 2009. On the input language of ASP grounder
gringo. In Erdem et al. (2009), 502–508.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. The
conflict-driven answer set solver clasp: Progress report. In
Erdem et al. (2009), 509–514.
Gutiérrez-Rı́os, R.; Rosenblueth, D.; Loza, J.; Huerta, A.;
Glasner, J.; Blattner, F.; and Collado-Vides, J. 2003. Reg-
ulatory network of Escherichia coli: Consistency between
literature knowledge and microarray profiles. Genome Re-
search 13(11):2435–2443.
Ideker, T. 2004. A systems approach to discovering sig-
naling and regulatory pathways—or, how to digest large
interaction networks into relevant pieces. Advances in Ex-
perimental Medicine and Biology 547:21–30.
Joyce, A., and Palsson, B. 2006. The model organism as
a system: Integrating ‘omics’ data sets. Nature Reviews
Molecular Cell Biology 7(3):198–210.
Kauffman, S. 1993. The Origins of Order: Self-
Organization and Selection in Evolution. Oxford Univer-
sity Press.
Kauffman, S.; Peterson, C.; Samuelsson, B.; and Troein, C.
2003. Random Boolean network models and the yeast tran-
scriptional network. Proceedings of the National Academy
of Sciences of the USA 100(25):14796–14799.
Kuipers, B. 1994. Qualitative reasoning. Modeling and
simulation with incomplete knowledge. MIT Press.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning. ACM Transac-
tions on Computational Logic 7(3):499–562.
Schaefer, M., and Umans, C. 2002. Completeness in the
polynomial-time hierarchy: A compendium. ACM SIGACT
News 33(3):32–49.
Siegel, A.; Radulescu, O.; Le Borgne, M.; Veber, P.; Ouy,
J.; and Lagarrigue, S. 2006. Qualitative analysis of the rela-
tion between DNA microarray data and behavioral models
of regulation networks. Biosystems 84(2):153–174.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Soulé, C. 2006. Mathematical approaches to differentiation
and gene regulation. Comptes rendus biologies 329(1):13–
20.
Syrjänen, T. Lparse 1.0 user’s manual.
Thomas, R., ed. 1979. Kinetic Logic: A Boolean Approach
to the Analysis of Complex Regulatory Systems. Springer.
Veber, P.; Guziolowski, C.; Le Borgne, M.; Radulescu, O.;
and Siegel, A. 2008. Inferring the role of transcription fac-
tors in regulatory networks. BMC Bioinformatics 9(228).

