
Decentralized diagnoser approach: application to telecommunication networks

Yannick Pencoĺe
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Abstract

This paper presents a general method for the diagnosis
of large systems, such as telecommunication networks.
Because of the size of the system, the model we use is
decentralized. In order to increase the efficiency of the
diagnosis, the method combines two basic techniques of
diagnosis: diagnosers and simulation-based techniques.
We propose the construction of diagnosers based on lo-
cal behaviors to compute local diagnoses. Then, we
propose a coordination of local diagnoses based on a
strategy which minimizes the computation for the coor-
dination.

Introduction
The problem we deal with is the supervision of complex and
large systems – such as telecommunication networks. Our
purpose is to help operators of such systems to diagnose fail-
ures in the system according to observed events (alarms)1.

Our motivation is to propose a model-based diagnosis
method which can be implemented on a real system such
as the largest package switching French network. We want
to prove efficiency in diagnosis. There are two methods for
performing supervision in model-based diagnosis: abduc-
tive techniques or simulation-based techniques.

Abductive techniques consist in the computation of fail-
ures directly from observations. One of these techniques
proposed in (Sampathet al. 1995) is the diagnoser approach.
The diagnoser approach is the compilation of diagnostic in-
formation in a data structure (called adiagnoser) which ef-
ficiently maps failures and observations for on-line diagno-
sis. The main problem of such a technique is the size of
the data structure. In large systems, like telecommunication
networks, it is impossible to create acentralized diagnoser
because of the large number of states in such systems.

The simulation-based technique consists in tracking, on-
line, the potential unobservable behavior of the system ac-
cording to the observation and the model. This type of tech-
nique is proposed for example in (Baroniet al. 1999). One
advantage of this approach is that adecentralized modelof

1This work is partially supported by the RNRT project
MAGDA, funded by the Minist`ere de la Recherche; other partners
of the project are France Telecom R&D, Alcatel, Ilog, and Paris-
Nord University.

the system can be used. Nevertheless, the number of poten-
tial behaviors of the system according to observations may
be so large that the computation may take too long to pro-
duce a useful on-line diagnosis.

We propose a combination of both techniques to set up an
efficient method for diagnosing the large systems we consid-
ered. The architecture of our method is based on a decentral-
ization of the diagnoser. We build a set oflocal diagnosersto
reduce the size. In (Debouk, Lafortune, & Teneketzis 1998),
an architecture of this type has been proposed; however, the
diagnosers they use are still based on a global model of the
system. We propose to use decentralized models and to con-
struct local diagnosersbased only on local behaviors de-
scribed in the model. Thus, each local diagnoser efficiently
produces alocal diagnosis. Then, to obtain aglobal diag-
nosis, acoordinatorcomputes the simulation of these diag-
noses with a strategy for minimizing the computation of the
overall diagnosis.

The first section of this paper introduces the telecommu-
nication network application we are dealing with. In the sec-
ond section, the behavioral model of the system is presented.
Then, the general architecture of our diagnosis method is
discussed, followed by the construction and coordination of
the local diagnoses. Finally, we apply our method to our
network application.

Application : telecommunication network
The network considered in this paper is the largest packet
switching French network. This network is a hierarchi-
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Figure 1: Hierarchical structure of the Network

cal structure made up of about ten technical centers (TC)
and three hundred switches (SW) (see Fig. 1). SWs route
data through the network. There is one supervision center
(SC) which is in charge of receiving alarms emitted by each



equipment of the network (the SC is not in charge of su-
pervising the data transmission itself). Analyzing observed
alarms is a difficult task, due to the large number of alarms
(150,000 a day). Moreover, the supervision must take the
masking phenomenon into account. This phenomenon is
due to the fact that alarms from hierarchically inferior equip-
ments (e.g switches) are conveyed to the supervisor by supe-
rior equipments (such as technical centers). If one of those
equipments is down, an alarm from inferior equipment is not
received by the supervisor. Thus, there are some alarms the
supervisor does not observe.

Our purpose is to interpret the observed alarms for the su-
pervision operator. Earlier work for this application includes
the GASPAR project2 (Bibaset al. 1996) (Rozé 1997).

Model of the supervised network
Global Model
The considered model describes the behavior of the system
in the case of failures on the system. A failure is modeled
as a set of unobervable events that are received by the sys-
tem (for instance, “begin of failure 1”, “end of failure 1”
are such events). When one of the failure events (�fail ) is
received, we suppose that the system instantaneously reacts
and potentially emits some of the observable events (�obs).
We model this behavior as a communicating finite-state ma-
chine (Brand & Zafiropulo 1983). Formally, our communi-
cating finite-state machine� is:

� = (�fail ; 2
(�obs)

?

; Q;E)

where

� �fail is the set ofexogenous events(failure events) of the
system;

� �obs is the set ofobservable eventsof the system;

� Q is the set of global states of the system; and

� E � (Q � �fail � 2(�obs)
?

�Q) is the set of transitions:
a transition is also composed of one input failure event
(from �fail ) and a set of observations (from�obs) in re-
action to the input failure event.

With large systems, the size of such a model is potentially
large. As an example, in our application, a simplified model
of the network already contains2104300 states. So a realistic
diagnosis method for large systems cannot be based on such
a model. We propose to base the diagnosis production on a
decentralized model.

Decentralized Model of the network
The systems we consider are distributed systems. The sys-
tem is composed of sub-systems which interact with each
other. The sub-systems are modeled ascomponents. A com-
ponent models the behavior of the sub-system faced with
failure occurrences on this sub-system. In such a model,
two kinds of events occur to a sub-system: exogenous fail-
ure events (�fail ) or internal events (�int ). The first kind of

2Joint project with France Telecom R&D (CNET/CNRS 93 1B
142 513 project).

event is modeled as an exogenous event in the global system
(event from�fail ). The second kind of event happens when
failures propagate in the system. We model this propagation
with internal events between components (�int ). We con-
sider that exogenous and internal events are unobservable
((�int [ �fail ) \ �obs = ;). A component reacts to exoge-
nous events or events from other components. It can emit
events outside the system (observable events from�obs ) and
events which affect other components (internal events). We
assume that two components of the model do not emit the
same events (observable or internal events). The formal-
ism used for modeling a component�i is a communicating
finite-state machine:

�i = (�i
in ; 2

(�i
out
)? ; Qi; Ei)

where
� �i

in is the set of input events (�i
in = �i

fail [�
i
int);

� �i
out is the set of output events (�i

out = �i
obs [ �

i
a� );

� Qi is the set of states of the component; and

� Ei � (Qi ��
i
in � 2

(�i
out
)? �Qi) is the set of transitions.

�i
fail and�i

int are respectively the sets of exogenous and
internal events that affect�i (�i

fail � �fail , �i
int � �int ).

�i
obs is the set of observable events potentially emitted by

the component. The setf�i
obsg(1;:::;n) is a partition of the

observable events set�obs . �i
a� is the set of internal events

which can affect the behavior of other components (�i
a� �

�int ). Moreover, we assume that a component cannot emit
an event on itself:

�i
a� \�

i
int = ;

Such a decentralized model is presented in Figure 2. The
presented model has three components (�1;�2 and�3). For
example, if�1 is at state 1 and receives the failure event
F1 , then�1 emits the observable evento11 and the failure
F1 is propagated by the emission of the internal eventsi12
andi13 respectively to�2 and�3. The component�1 goes
to state 2. Then, if�2 is at state 2,�2 receives thei12 event,
so it stays at state 2 without emitting anything. If�3 is at
state 1, it receives thei13 event and goes to state 2 without
emitting anything.

Our goal is to compute a diagnosis of the system based on
the decentralized model and avoid the building of the global
model. The idea is to build a diagnosis of the system by
extracting from the decentralized model the necessary in-
formation with respect to a given set of observations. This
extraction consists of the computation of diagnoses of the
different components (local diagnosis) and the building of a
global diagnosisfrom the component diagnoses. In the next
section, we define the notions ofglobal diagnosisandlocal
diagnosisand we present the architecture of the diagnosis
system.

Diagnosis system
Hypotheses on the observations
We assume there is one supervisor that receives observations
from each component. Each observation is labeled with the
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Figure 2: System model of three components. The system could be affected by 7 types of failure events :F1 ; : : : ;F7 . It can
emit 6 types of observable events (observable events are emitted by the transitions in bold). Internal events are produced when
failure events propagate in the system.

date of reception by the supervisor. Thus, we do not know
the order of emission of the observations because the emis-
sion order can be different from the reception order. Never-
theless, we suppose that two observed events from the same
component are received by the supervisor in the order of
their emission.

Therefore, we can consider that the supervisor receives
a set of sequences�1; : : : ; �n where�i is the sequence of
observed events from the component�i (�i 2 (�i

obs)
?).

Because, we do not know the order between two ob-
served events from two different components, the diagnosis
must take all the possible orders into account. For exam-
ple, in the system of Figure 2, if the supervisor observes
fo11o13; o22; o3g, the sequence of emission of the observed
events can be among others,o11o13o3o22 or o3o11o13o22
or o22o11o3o13. In the following, we denote these sets
of observed event sequences as the partially ordered set
O = f�1; : : : ; �ng3.

Global Diagnosis
In the supervision of systems like telecommunication net-
works, a diagnosis consists in providing two kinds of infor-
mation. The first kind of information is the sequences of
exogenous failure events that can produce the set of obser-
vations received by the supervision center. Such a sequence
is a path of transitions in our global model� where the
output events are compatible with the observations. Those
sequences of failures may be infinite because some failure
events can occur several times without causing observations.
The second kind of information is the possible current states
of the system after the emission of observations. So, a global
diagnosis represents a potentially infinite set of failure se-
quences explaining the observations and the set of possible
current states of the system after the observations. Thus,

3If one of�i is equal to�, it means that the supervisor does not
receive any observations from the component�i.

we propose to define aglobal diagnosisas a communicating
finite-state machine. Each state contains a global state of
the system and the subsequences of observations explained
by the state. Some states are marked as final states. The fi-
nal states represent the current states of the system after the
observations are emitted. The transitions are labeled with
exogenous failure events of the system as input and with ob-
served events as output. Formally, according to the defined
global model�, we define the diagnosis of the set of ob-
servationsO = f�1; : : : ; �ng from a global statex of the
system as:

�(x;O) = (�fail ; 2
(�obs)

?

; QO; (x; f�; : : : ; �g); FO; EO)

where

� QO � Q�Pr(O) is the set of states.Pr(O) is the prefix
language of all the sequences represented byO. Thus, a
state of the diagnosis associates a state of the system and
the partially ordered set of observed events explained at
this state of the diagnosis.

� (x; f�; : : : ; �g) is the initial state of the diagnosis. The
system is supposed to be at statex and the set of
the explained observations at this state of diagnosis is
f�; : : : ; �g.

� FO is the set of final states of the diagnosis. This set con-
tains all the states in which the system can be after the
observation ofO and under the assumption that it was at
statex previously.

� EO � (QO ��fail � 2(�obs)
?

�QO) is the set of failure
transitions which eventually produce the observed events
with respect toO.

In Figure 3, we present the global diagnosis of the model
shown in Figure 2, when we assume the initial state is (1,1,1)
and the observations areO = fo12; �; o3g. A diagnosed be-
havior is represented as a path of transitions between the



initial state and a final state. There are some loops of transi-
tions in the machine which mean that the number of possible
behaviors is infinite.

(1,1,1),f�; �; �g (2,2,1),fo12; �; �g (4,2,1),fo12; �; �g
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Figure 3: Global Diagnosis of the system example. The
initial state of the system is (1,1,1) and the observable se-
quences areO = fo12; �; o3g: �((1; 1; 1);O).

Local diagnosis
The local diagnosis is established according to the lo-
cally observed events. Given a global observationO =
f�1; : : : ; �ng, the local diagnosis of the component�i is
computed with respect to the sequence�i.

A local diagnosis contains the sequences of exogenous
failures and propagated events (emitted and received) which
explain the local sequence of observations. Formally, we
define the local diagnosis of a component�i from a local
statexi of the observation�i as the communicating finite-
state machine�i(xi; �i):

�i(xi; �i) = (�i
in ; 2

(�i
out

)? ; Q�i ; (xi; �); F�i ; E�i)

where

� Q�i � Qi � Pr(�i) is the set of states.Pr(�i) is the
prefix language of�i. A state of the local diagnosis asso-
ciates a state of the component�i and a subsequence of
�i explained at this state of the diagnosis.

� (xi; �) is the initial state of the diagnosis. The component
is supposed to be at statexi and no observed event has
already been explained.

� F�i is the set of final states of the local diagnosis. This set
contains all the states in which the component can be after
the observation of�i and under the assumption it was on
statexi previously.

� E�i � (Q�i ��
i
in�2

(�i
out)

?

�Q�i) is the set of failures
and internal event transitions. Such a transition can emit
observable or/and internal events.

In Figure 4, we present the local diagnosis of�1 corre-
sponding to the example presented in Figure 3: locally, we
assume the initial state is 1 and the local observations are
o12. According to the observations, we are sure that the
component has emitted an internal eventi12 towards�2.

A local diagnosis is computed with local observations so
it does not depend on the other observations. This means
the local diagnosis is less constrained. The local diagnosis
proposes candidate behaviors which are not compatible with

1,�
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F1/fi12,o12g F3/�

Figure 4: Local Diagnosis of component�1 (at initial state
1) after observation ofO = fo12; �; o3g : �1(1; o12)

global observations. In Figure 4, the local diagnosis tells
us that the local behavior can be in 4 different final states
(1,2,3,4) whereas in the global diagnosis in Figure 3, we can
see that only two local final states (2,4) of�1 are compatible
with global observations.

System Architecture
Given a set of observations, the first stage of the method
consists in computing the local diagnosis of each component
according to the observations. Then, those local diagnoses
are merged by a coordinator to obtain a global diagnosis.

The algorithm is interactive: a human operator must ask
for a diagnosis to start. We suppose that the coordinator
has a set of initial states of the system. Once the process
starts, the coordinator gets the set of observationsO =
f�1; : : : ; �ng received by the supervisor. Then, for each ini-
tial statex = fx1; : : : ; xng, the coordinator asks for a local
diagnosis on the component�i by sending the local statexi
and the local observations�i to a local diagnosis machine
�i. The�i machine is in charge of computing a local di-
agnosis�i(xi; �i) that is returned to the coordinator. Once
the coordinator receives all the local diagnoses, coordination
rules are computed. Then, the coordinator applies the rules
and builds the global diagnosis�(x;O) (see Figure 5).

The following section presents the�i machine. This ma-
chine is based on a data structure calledlocal diagnoser.
Then, we present the coordination of the local diagnoses.

Local Diagnoser
To build a local diagnosis, the algorithm parses the compo-
nent model and searches for observable transitions that can
be reached from a given state by a succession of unobserv-
able transitions. This search is equivalent to a depth first
search algorithm (DFS) for each observation. We propose to
avoid this DFS on-line by pre-computing diagnosis informa-
tion in a machine calledlocal diagnoser. A local diagnoser
�i is a finite-state machine built off-line from a local com-
ponent�i. This machine is used to efficiently perform a
local diagnosis on�i given a state of�i and a sequence of
observations.

Definition
We call observable transitiona transition of a component
which emits at least an observable event4. We callobserv-
able statea state of a component which is the target of an ob-
servable transition (in�1, states 1 and 2 are such observable

4Such transitions are in bold in Figure 2.
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Figure 5: Architecture of diagnosis system : computation of
�(x; f�1; : : : ; �ng).

states). Supposex is an observable state of the component
�i, we denote by�uo

i (x) the set of unobservable transitions
of �i that can be reached from statex by an unobservable
path. A state of the local diagnoser�i is a pair of an observ-
able statex and�uo

i (x). The local diagnoser�i is defined
as a finite-state machine:

�i = (�i
in ; 2

(�i
out

)? ; Q�i ; E�i)

where

� Q�i is the set of pairs(x;�uo
i (x)), wherex is an observ-

able state of�i;

� E�i � (Q�i � �i
in � 2(�

i
out

)? �Q�i) is the set of tran-
sitions.

The diagnoser transitions of�i are only observable
transitions of the component�i. A transition from state
x�i(x1) = (x1;�

uo
i (x1)) to statex�i(x2) = (x2;�

uo
i (x2))

is defined in the diagnoser if and only if there exists an un-
observable path fromx1 (path belonging to�uo

i (x1)) that
makes it possible to reach the corresponding observable
transition in the component�i; the target of transition be-
ing x2. Formally, a transitiont�i of the diagnoser�i is
defined by:

t�i = ((x1;�
uo
i (x1)); in ; out ; (x2;�

uo
i (x2))) 2 E�i

� 9t�i 2 �ijt�i = (x01; in; out; x2) ^ x
0

1 2 �
uo
i (x1):

In Figure 6, we present the diagnoser of the component
�1 (see Figure 2). The observable states of�1 are 1 and 2;
they are represented as the initial states of the associated set
of unobservable paths (�1(1) and�1(2)). This diagnoser is
thus composed of two states (x�1(1) andx�1(2)).
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Figure 6: Local diagnoser of the component�1.

Thus, a diagnoser is able to follow the observable behav-
ior of the component. Moreover, each state of the diagnoser
contains a set of unobservable transitions that the component
can reach between each observable transition.

Building of local diagnoses
Each state of�i contains a set of unobservable paths�uo

i (x)
wherex is an observable state of�i. If we observe an evento
occurring whereas the component was at statex, this means
that only a subset of the unobservable paths set�uo

i (x) can
have occurred before the emission of the evento. We de-
note by�uo

i (x; o) this subset of unobservable paths. In other
words,�uo

i (x; o) is the set of unobservable transitions from
�i which can have been passed through before the emission
of o whereas�i was at statex.

If we concatenate to�uo
i (x; o) the output diagnoser tran-

sitions labeled with the observableo, we obtain the local
paths of transitions that explain the observationo whereas
the component was at statex. In Figure 7, the observ-
able state of�1 is 2 and the observation iso13. The un-
observable paths of�1 from 2 are described in the diagnoser
(�1(2)) and are composed of three transitions. If the next
observed event iso13, then the possible unobservable path
is �1(2; o13) – a part of�1(2) composed only of the transi-
tion from state 2 to 3. The explanation ofo13 from state 2 is
obtained by appending the diagnoser transition labeled with
o13 to the unobservable path�1(2; o13) (see the right-hand
part of Figure 7).
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Figure 7: Construction of the explanation of the observation
o13 from state 2 in the component�1.

Thus, constructing a local diagnosis consists in parsing



the diagnoser from a given state and extracting the unob-
servable paths5 according to the observations and appending
them. In the case when a statex of the diagnoser is accessed
at the end of the parse, this means that the component can
be in any states of�uo

i (x); �uo
i (x) is then appended to the

rest of the local diagnosis and states of�uo
i (x) are marked

as final states. In Figure 8, we present the parse of the local
diagnoser�1 for the construction of the local diagnosis
�1(1; o11o13).

�uo
1

(1; o11) �uo
1

(2; o13)

x�1
(1)x�1

(2)x�1
(1)

2; o111; � 3; o11
i21=�

1; o11o13

�uo
1

(1)

F1/fi12; i13; o11g F3/o13

F1/fi12; i13; o11g F3/o13

Figure 8: Parse of the diagnoser�1 from statex�1(1) to
construct the local diagnosis�1(1; o11o13).

To sum up, the on-line construction of a local diagnosis
consists of a parse of the local diagnoser according to the
local observation sequence. The diagnoser avoids an on-
line track of unobservable and observable transitions with
respect to the observations, thanks to a compilation of unob-
servable paths and a direct access to observable transitions.

Global diagnosis
Given a partial order setO = f�1; : : : ; �ng of ob-
servable events and a global state of the systemx =
(x1; : : : ; xn), each local diagnoser computes the local di-
agnosis�i(xi; �i). The next operation is the computation
of a global diagnosis relying on these local diagnoses.

Merging of diagnoses
We have defined local diagnoses as finite-state machines
which represent the possible behaviors of components ac-
cording to the local observations. When a diagnosis of a
component is built, we do not take the interactions with other
components into account. Thus, a local diagnosis can de-
scribe a set of local behaviors that are not compatible with
diagnosed behaviors of another component. The merging of
two diagnoses consists in eliminating such incompatible be-
haviors and computing compatible shared behaviors. Thus,
the merging of two diagnoses is based on a composition op-
eration between two communicating finite-state machines.
This composition is the classical (parallel) composition op-
eration with a synchronization on the internal events (Bibas
et al. 1996). A state of the composed diagnosis is final if
it is the composition of final states of the local diagnoses.
Hereafter, we denote this operation by�.

5The extraction of�uo
i (x; o) can be implemented by marking

the concerned unobservable transitions during the diagnoser con-
struction. Thus we have an efficient extraction of�uo

i (x; o) by just
looking for unobservable transitions that have the corresponding
mark.

In Figure 9 on the right, we present the composition of
the local diagnoses�1(1; o12) (see Figure 4) and�2(1; �)
(see Figure 9 on the left). The result�1(1; o12) ��2(1; �)

1,�

i12/�

i12/�

�2(1; �) �1(1; o12) ��2(1; �)

2,�

F4/�

1,1,f�; �g 2,2,fo12; �g 4,2,fo12; �g
F1/o12

F4/�

F3/�

F4/�

Figure 9: Composition of the local diagnoses�1(1; o12)
and�2(1; �). �1(1; o12)��2(1; �) is the diagnosis of com-
ponents�1 and�2 when they are at state 1 and the observa-
tion is o12.

contains three states. This composed diagnosis represents
the set of failure events sequences that can occur on the sys-
tem (�1,�2) when each component is at state 1 and an event
o12 from �1 is observed. In�1(1; o12), at the state(1; �),
an eventi12 is supposed to be emitted by�1 after the re-
ception of the eventF1 . In �2(1; �), at the state(1; �), the
same eventi12 is supposed to be received. Thus, these two
local behaviors are compatible because the emission and the
reception of the internal eventi12 can be synchronized. In
�1(1; o12)��2(1; �), this behavior is described by the tran-
sition labeled withF1=o12 from state(1; 1; f�; �g) to state
(2; 2; fo12; �g).

With this composition, we obtain a global diagnosis by
applying the composition on all the local diagnoses:

�(x;O) =
nK

i=1

�(xi; �i)

For example, the global diagnosis of Figure 3 is obtained
by the operation:�((1; 1; 1); fo12; �; o3g) = �1(1; o12) �
�2(1; �)��3(1; o3).

Strategy for the coordination
The� composition operation is commutative and associa-
tive, so we can compose local diagnoses in many different
ways and also use parallel computations. Though the result
is the same, some composition operations are more efficient
than others. Thus, one task of the coordinator is to plan
composition stages on local diagnoses to parallelize the op-
eration of coordination and minimize the computation.

To optimize the computation, the idea is to eliminate in-
compatible local diagnoses in first stages of compositions.
Diagnoses from two components are incompatible if their
respective interactions cannot be synchronized. Therefore,
if we compute the composition of local diagnoses that are
directly in interaction before any other compositions, we
rapidly eliminate incompatible hypotheses.

The problem is now to know which components are in-
teracting. We can use the static information given by the
decentralized model – for example, in Figure 2, we know
�1 has potential interactions with�2 and�3 (internal events
i12 andi21 andi13). Nevertheless, we can be more precise



and efficient if we are able to deduce the potential interac-
tions from the local diagnoses. For example, in the local
diagnosis of Figure 4, we know that�1 interacts with�2 but
not with �3. Consequently, we know that�1 and�3 have
independent local diagnoses.

Computation of component interactions The informa-
tion about the interactions of one component can be ex-
tracted from the local diagnosis by looking for interactive
transitions and noticing the components which interact. This
extraction can be pre-computed (off-line) in the local diag-
noser. In Figure 10, we present pre-computed information
about interactions of the component�1. In a flag of a di-
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Figure 10: Local diagnoser�1 of the component�1 with
flags denoting potential interactions on diagnoser transi-
tions.

agnoser transition, we list the components that are in inter-
action if we pass over the diagnoser transition. These inter-
actions are computed by looking at interaction described in
the diagnoser transition and in the unobservable transitions
(in the diagnoser state source) that can occur before. For ex-
ample, for the transition labeledF3=o13 from statex�1(2)
to x�1(1), there is only one possible interaction. This in-
teraction is the reception of ani21 event from�2 (transition
from state 2 to 3). So the flag contains the fact that there is
a possible interaction with�2 if we pass over this diagnoser
transition.

Computation of coordination rules The task of the co-
ordinator is to take into account on-line the interaction hy-
potheses and provide rules for the coordination of the local
diagnoses.

The interactions the coordinator receives are all the po-
tential interactions of all the local diagnoses from a local
point of view. A diagnoser�i may claim there is an interac-
tion between�i and�j whereas the diagnoser�j may claim
there is no such interaction. Thus, the coordinator retains in-
formation on interactions with respect to the following rule:

If a local diagnosis�i(xi; �i) claims it interacts
with another�j(xj ; �j), the coordinator keeps the in-
teractionf�i(xi; �i);�j(xj ; �j)g only if �j(xj ; �j)
claims it interacts with�i(xi; �i).

Thus, the coordinator keeps an hypothesis of interaction
between two components only if their respective diagnosers

agree about this hypothesis of interaction. From those inter-
actions, the coordinator deduces rules for the coordination
of the local diagnoses.

Coordination of the local diagnoses The coordination is
decomposed into different stages of composition between
the local diagnoses. In one stage, the coordination consists
in choosing a partition of the set of diagnoses depending on
the computed interactions and then applying in parallel the
composition of each subset. The result of this operation is
another smaller set of composed diagnoses (more global).
The coordination is finished when the last composition has
produced a unique diagnosis which is the global diagnosis
(see algorithm 1).

Algorithm 1 Coordination of local diagnoses.

input:D = f�1(x1; �1); : : : ;�n(xn; �n)g
input: interactions between the local diagnoses:I
while jDj > 1 do
�D  OnePartitionWithInteraction(D; I)
fPartition ofD according to interactions ofI .g
D  ComposeInParallel(�D)
fApplication of the composition on the set of the parti-
tion in parallel.g

end while
�((x1; : : : ; xn); f�1; : : : ; �ng) is the element ofD

OnePartitionWithInteraction(D; I) chooses a parti-
tion �D of D such that each set of the partition contains
diagnoses which interact according to the interactions set
I6. ComposeInParallel(�D) produces a set of diagnoses.
Each diagnosis corresponds to the composition of a subset
of diagnoses in�D. These compositions are done in parallel
to increase the efficiency of the computation.

Example
Suppose we compute the following diagnosis
�((1; 1; 1); fo12; �; o3g) of the system in Figure 2.
Local diagnosers return:

� �1(1; o12): interactions with�2 (as shown in Figure 4);

� �2(1; �): interactions with�1 (as shown in Figure 9);

� �3(1; o3): interactions with�1 and�2.

Only �1(1; o12) and �2(1; �) agree with their interac-
tions. So, the coordinator keeps only the interaction set
I = f(�1(1; o12);�2(1; �)g. Thus, the first stage of
the coordination consists in applying composition on the
partitionff�1(1; o12);�2(1; �)g; f�3(1; o3)gg. The result
is the setf�1(1; o12) � �2(1; �);�3(1; o3)g. The second
stage consists in composing the two last diagnoses to obtain
�((1; 1; 1); fo12; �; o3g) from Figure 3.

6In the case whenD contains diagnoses that do not interact,
we can choose a partition according to other parameters for the
purpose of efficiency: among others, the number of diagnoses in a
set of the partition or the size of the diagnoses.



Thus, the coordination of the local diagnoses is a par-
allelized operation. Moreover each operation is decided
thanks to possible interactions between the local diagnoses
in order to optimize the computation.

Application of the method
We have already implemented a decentralized model of the
network application in a software called Dyp. Each com-
ponent of the model describes the behavior of one network
equipment (e.g switch, technical center) according to the
masking phenomenon. Therefore, the components only de-
scribe local behaviors.

The masking phenomenon is modeled with internal events
between components. For example, for aTC breakevent
(breakdown of the technical center), theTC component
emits a masking event to itsSWcomponents. Once aSW
receives such an event, it does not emit observable events
until it receives a demasking event from theTCcomponent.

A typical diagnoser is shown for a technical center in Fig-
ure 11. In this example, we suppose the technical center has
2 switches it can mask (SW1andSW2).
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Figure 11: Local diagnoser of a technical center. The ob-
servable events of a technical center arecvhsandcves.

Related works
As noted previously, our work has been influenced by other
methods for diagnosing large systems. As far as the di-
agnoser techniques are concerned, (Debouk, Lafortune, &
Teneketzis 1998) have proposed a system of coordination of
diagnosers. The diagnosers have a local point of view of the
system but directly compute diagnoses of global states of
the system. Thus, the coordination only consists in detect-
ing which diagnosers have the better global diagnoses at a
given time. In our application, because of the large number
of global states, the size of such diagnosers is prohibitive; it
is why we chose to rely on diagnosers based on local mod-
els.

As far as the simulation-based techniques are concerned,
our work is influenced by (Baroniet al. 1999) and (Lam-
perti & Zanella 1999). These authors proposed simulation
methods for diagnosing systems they calledactive. They

presented an algorithm which is a completely on-line local
diagnosis construction. We chose to partially compile this
treatment by using diagnosers. Concerning the global di-
agnosis construction, they use a predefinedreconstruction
plan. With our strategy of coordination, we have presented
an automatic reconstruction plan which relies on the local
diagnoses.

Conclusion
We have presented a method for diagnosing large systems
like telecommunication networks. Three points have been
presented for the purpose of efficiency. The first one is the
use of a decentralized model of the system (model of com-
municating components). The second one is the use of local
diagnosers on components of the system. Those diagnosers
are realistic and efficient structures in order to carry out a
local diagnosis of a component. The third point is about
a strategy for the coordination of the local diagnoses. The
coordination is based on composition operations in parallel
and a strategy which minimizes the on-line computation.

This approach is being implemented. We have already
implemented a software (called Dyp) which can initialize
a decentralized model of the supervised system from a file
description. We are currently implementing an incremental
version of the algorithm presented in this paper and we will
experiment it shortly on the telecommunication network ap-
plication.
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