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Abstract We propose to use ILP techniques to learn sets of temporally
constrained events called chronicles that a monitoring tool will use to
detect pathological situations. ICL, a system providing a declarative bias
language, was used for the experiments on learning cardiac arrhythmias.
We show how to obtain properties, such as compactness, robustness or
readability, by varying the learning bias.

1 Introduction

In medical domains such as cardiology, intensive care units make use of more
and more sophisticated monitoring tools. These tools have improved the surveil-
lance and care of patients suffering from strong disorders. However, many false
alarms are still generated and, from our point of view, these tools rely too much
on signal processing algorithms. There exists a gap between the understanding
level of clinicians and the information displayed by monitoring tools. To be more
informative and explicative we think, as Lavrǎc et al. [8], that monitoring tools
must manipulate more abstract knowledge such as temporal relations between
interesting events reflecting the patient’s state. We have proposed in [2] to asso-
ciate signal processing techniques with high-level temporal reasoning for patient
monitoring. The first module processes input signals and outputs symbolic at-
tributed events that feed a chronicle recognizer which attempts to detect specific
patterns among these events. Chronicles are event patterns which state temporal
constraints among a set of events.

As devising chronicles is not, in general, an easy task, we propose to use
machine learning techniques in order to obtain accurate and interesting charac-
terizations of pathological situations from examples of input signals related to
disorders that may affect some patient. In the domain of coronary care units, the
signals are multi-channel electrocardiograms (ECGs) and the situations to rec-
ognize are cardiac arrhythmias. As temporal relations among events are crucial
as well as a specification language which can lead to informative explanations, we
have chosen to use inductive logic programming (ILP). This is a major difference
between Kardio [1] and our own approach. Kardio uses feature-based induction,
thus, it can only learn predefined propositional structural relations. Target con-
cepts are represented as first-order formulas in ILP. This makes the rules more



Figure1. A normal ECG (on the left) and a bigeminy ECG (on the right).

abstract and easier to understand and that is an essential point in our context
as tools have to explain their results to users. Kókai et al. [6] proposed to learn
attributed grammars for arrhythmia recognition in ECG from elementary curve
segments. Their approach relies on grammar refinement which, they say, is not
well suited to learning constraints in rules. Also, the learnt grammars specify
only one cardiac cycle which is too short to describe recurrent phenomena as
cardiac arrhythmias.

In this paper, our goal is to demonstrate that ILP is a powerful and smart
technique that makes it relatively easy to learn knowledge adapted to the prob-
lem at hand. Precisely, we show how to play with bias specifications in order to
learn concept definitions enjoying such different properties as robustness, read-
ability or recognition efficiency. DLAB, the declarative bias language of ICL [12],
has reveal quite useful and flexible to achieve this goal. The first section gives
some basic knowledge about cardiac arrhythmias. The next section presents the
data and learning materials. Next, we describe the results obtained on learning
five arrhythmias. Finally, we conclude and give some perspectives to this work.

2 Electrocardiograms

The electrocardiogram provides very important cues for cardiac analysis and di-
agnosis. First of all, they can be recorded easily with non invasive leads that are
put at particular locations of the body surface. Second, ECGs can be inspected
visually by physicians in order to analyze the ordering and the shape of particu-
lar waves which can be related directly to the patient’s heart activity. The most
important waves are the P wave and the QRS complex which are related respec-
tively to the depolarization of the atria and the depolarization of the ventricles.
The ECG presents series of such waves which are organized in cardiac cycles
representing a complete heart contraction and an electrical potential recovery.
The normal cycle is a succession of: P wave - QRS complex - T wave. The tem-
poral intervals between these waves are commonly used for diagnosis and noted
PR, QT and RR (see figure 1, left part).

Cardiac arrhythmias are disorders of rates, rhythms and conduction originat-
ing in heart areas with dysfunctions. Arrhythmias can be recognized by specific
arrangements of ECG waves satisfying temporal constraints. For example, figure
1 presents on the left a normal ECG where all heart elements (seem to) work



fine. The ECG on the right is related to an arrhythmia called bigeminy, where
one can note the presence of extra ventricular beats due to an ectopic focus
which acts as an extra pacemaker. Bigeminy is classically defined by the wave
sequence P - QRS - QRS’ - P - QRS - QRS’, where QRS’ denotes a QRS having
an abnormal shape together with the temporal constraints normal PR, short
RR’ and long R’R, where R’ denotes the abnormal QRS. This is the kind of
temporal patterns that chronicle recognition algorithms [4,3] are able to detect.

Clearly, the definition of bigeminy above is best represented by a first-order
formula as it contains true relations between events. In fact, the following Prolog
clause gives a straightforward specification of this definition:

bigeminy← qrs(R0, normal, P0, ), qrs(R1, abnormal, P1, R0), rr1(R0, R1, short). (1)

It states that, in bigeminy, the temporal interval between a normal and an
abnormal QRS is short. To learn specifications like formula (1) we need meth-
ods that can induce temporal constraints such as simple or delayed precedence
between events. Inductive logic programming (ILP) aims at inducing first-order
representations of target concepts and is quite adapted to this task [10].

3 Learning algorithms and materials

In this section, we first recall some principles of ILP. Then we describe the
learning data that were used to learn cardiac arrhythmias. Finally, we show how
to fomulate a bias in order to improve the learning efficiency.

ICL: an Inductive Logic Programming system

The aim of ICL is to find a first-order theory H ⊂ LH that is complete (it covers
all the given positive examples) and is consistent (it covers no negative exam-
ples). LH is the hypothesis language and is generally a subset of first-order logic.
An interesting feature of ILP systems is to provide the users with declarative
tools which provide means to specify LH . ICL [12] proposes a high-level concept
specification language called DLAB in which the hypothesis language syntax can
be defined. DLAB grammars are preprocessed in order to generate candidate hy-
potheses from the most general to the specific ones (under θ-subsumption).

ICL enables also multi-class learning [7]. The idea beyond multi-class learning
is simple: when learning one particular class consider as positive only those
examples belonging to this class and as negative all the examples belonging to
the remaining classes. This is an attractive option in our case as we want to
discover definitions which discriminate among several (> 2) arrhythmias.

Data

In order to assess the versatility of ICL and DLAB, we have selected a subset
of arrhythmias related to different cardiac disorders involving various parts of
the heart: the atria-ventricular (AV) node for the Mobitz type II arrhythmia
(class mobitz2), the left bundle branch for the left bundle branch block (class
lbbb) and the ventricle for bigeminy. ECGs related to a normal heart activity
were also added (class normal). These 4 classes are not so difficult to separate.
To augment the difficulty, we have added one class: the premature ventricular



begin(model(bigeminy_119_1)).

bigeminy.

wave(p1, p, 651, normal, null).

wave(r1, qrs, 836, normal, p1).

wave(r2, qrs, 1357, abnormal, r1).

wave(p2, p, 2528, normal, r2).

wave(r3, qrs, 2686, normal, p2).

wave(r4, qrs, 3203, abnormal, r3).

wave(p3, p, 4428, normal, r4).

wave(r5, qrs, 4577, normal, p3).

wave(r6, qrs, 5086, abnormal, r5).

wave(p4, p, 6279, normal, r6).

end(model(bigeminy_119_1)).

Figure2. A bigeminy arrhythmia ECG and its related specification as an ICL example

contraction arrhythmia (PVC) is characterized by sparse extra contractions due
to an ectopic focus. The presence of ectopic beats makes this class close to
bigeminy. The fact that ectopic beats are sparse makes this class close to the
normal class as large portions of PVC ECGs are normal.

Real recorded ECG examples taken from the MIT BIH database [9] were
used. 20 ECGs lasting 10s each were associated to each class. Every ECG is
preprocessed by a signal processing algorithm and transformed into a symbolic
representation based on P and QRS events [5]. This is the same module that is
used on-line to produce symbolic events that will be processed by the chronicle
recognizer. It aims: i) at detecting and at identifying the markers of the cardiac
activity, P waves, QRS complexes, ii) at characterizing each wave by feature
vector, and iii) at classifying waves in normal or abnormal classes. This mod-
ule is not further detailed here (see [2]) but it is of major importance as the
performance of the “symbolic part” of the system relies on good input data.

Symbolic electrocardiograms

Figure 2 presents an ECG example coded as a set of prolog clauses. To each
event is associated its type, its occurrence time in the ECG and a qualification
(normal or abnormal) of the related wave shape. This information is coded by
the predicate wave(Event, Type, Time, Qual, Pre event) which states that
Event is related to a wave of type Type (p or qrs), which occurred at time
Time, the shape of which is Qual (normal or abnormal) and Pre event just
precedes Event on the ECG. We chose to code the structural information (order
of events) as a 5th argument of the predicate wave. We could have used an
additional relational predicate as well.

Background knowledge

The aims of background knowledge is to ease learning by bringing knowledge of
the domain from which the data come from as well as search knowledge which
will be used to prune the clause space. In [11], the concept of declarative learning
bias is studied and its importance and properties are clearly demonstrated.



1 1-1:[

2 len-len:[p_wave(P1, 1-1:[normal, abnormal], R0),

3 qrs(R1, 1-1:[normal, abnormal], P1),

4 0-len:[rr1(R0, R1, 1-1:[short, normal, long]),

5 pr1(P1, R1, 1-1:[short, normal, long])]],

6 len-len:[p_wave(P1, 1-1:[normal, abnormal], R0),

7 pp1(P0, P1, 1-1:[short, normal, long])],

8 len-len:[qrs(R1, 1-1:[normal, abnormal], R0),

9 0-1:[rr1(R0, R1, 1-1:[short, normal, long])]]

10 ],

Figure3. Syntactic specification of a cardiac cycle in DLAB

ICL [12] comes with DLAB, a declarative language for bias specification.
A DLAB grammar consists in rule templates that fixes the syntactic form of
clauses defining the target concept. These templates have the form Head <-

Body where Head and Body are DLAB terms. A term is either an atomic for-
mula or a set specification having the form l-h:[el1,el2,...,eln]. Such an
expression means: choose from l to h elements from the set [el1,el2,...,eln].
The special symbol len can be used to specify the total length of the list.
These expressions are used as combinatorial generators that can produce all
the possible instances satisfying the templates. For example, the DLAB term
p(2-len:[el1,el2,el3]) generates the following expressions:
p(el1,el2), p(el1,el3), p(el2,el3), p(el1,el2,el3).

Figure 3 shows how the specification of a cardiac cycle may be formulated in
DLAB. It says that a cardiac cycle is composed of exactly one (range 1-1 line
1) of the following configurations:

– a P-wave followed by a QRS complex followed by optional (range 0-len)
temporal constraints ( pr1 and rr1 in lines 2-5). For instance, the following
expression satisfies this DLAB specification:
p wave(P1, normal, R0), qrs(R1, abnormal, P1), pr1(P1, R1, long),

– a P-wave alone, in this case the temporal constraint between this wave and
the preceding one is mandatory (lines 6 and 7),

– a QRS complex alone, in this case the temporal constraint between this wave
and the preceding one is optional (lines 8 and 9).

Finally, a rule body is a sequence of such DLAB expressions telling ICL that
an arrhythmia is defined by one or several cardiac cycles. Such a specification
may appear quite sophisticated and restrictive. We have tried more permissive
biases but either they led to prohibitive learning times or the quality of induced
rules was very poor. Our objective has been to induce clauses that could be
tailored in order to take into account such notions as readability, efficiency or
robustness. Basing the induction on the notion of cardiac cycle enables readabil-
ity since this is a concept that is commonly used by specialists for arrhythmia
description or for diagnosis.



class(bigeminy) :- %[13, 0, 0, 0, 0], [5, 19, 18, 18, 17]

qrs(R0, abnormal, _), p_wave(P1, normal, R0), qrs(R1, normal, P1),

qrs(R2, abnormal, R1), rr1(R1, R2, short).

class(bigeminy) :- %[5, 0, 0, 0, 0], [13, 19, 18, 18, 17]

qrs(R0, normal, _), p_wave(P1, normal, R0), qrs(R1, abnormal, P1).

class(lbbb) :- %[0, 19, 0, 0, 0], [18, 0, 18, 18, 17]

qrs(R0, abnormal, _), p_wave(P1, normal, R0), qrs(R1, abnormal, P1).

class(mobitz2) :- %[0, 0, 16, 0, 0], [18, 19, 2, 18, 17]

p_wave(P0, normal, _), equal(P0, R0),

p_wave(P1, normal, R0), qrs(R1, normal, P1).

class(mobitz2) :- %[0, 0, 2, 0, 0], [18, 19, 16, 18, 17]

p_wave(P0, normal, _), equal(P0, R0),

p_wave(P1, normal, R0), qrs(R1, abnormal, P1).

class(normal) :- %[0, 0, 0, 17, 4], [18, 19, 18, 1, 13]

p_wave(P0, normal, _), qrs(R0, normal, P0),

p_wave(P1, normal, R0), qrs(R1, normal, P1),

p_wave(P2, normal, R1), qrs(R2, normal, P2),

p_wave(P3, normal, R2), qrs(R3, normal, P3), p_wave(P4, normal, R3).

class(pvc) :- %[0, 0, 0, 0, 17], [18, 19, 18, 18, 0]

p_wave(P0, normal, _), qrs(R0, normal, P0),

p_wave(P1, normal, R0), qrs(R1, normal, P1),

qrs(R2, abnormal, R1), rr1(R1, R2, short).

Figure4. Rules induced for a learning experiment on 5 classes

4 Results

The first goal of the experiments was to test whether understandable and use-
ful arrhythmia specifications could be learnt from temporal data coming from
example ECGs. A second goal was to assess the flexibility of using a declara-
tive bias for imposing desirable properties such as readability or robustness on
induced concepts. For instance, inducing the shortest clauses can be achieved
by imposing only one cardiac cycle. This should bring efficiency to recognition
as such rules specify less events to be recognized. Inducing longer rules enhance
readability since a phenomenon regularity may be easier to assessed. A bias
imposing several cycles, e.g. three or four, would be used to this purpose.

Inducing rules for five arrhythmias

Figure 4 displays the rules obtained from ICL when imposing one mandatory
cardiac cycle and four optional ones. Those rules produce the shortest chronicles
which are expected to enable early detection. To each rule is associated the
number of examples covered by this rule in each class (respectively bigeminy,
lbbb, mobitz2, normal and pvc) and the number of examples covered by its
negation. For example, the list [13,0,0,0,0] associated to the first rule for
bigeminy in figure 4 means that this rule covers 13 positive examples from class
bigeminy, and none from the classes lbbb, mobitz2, normal and pvc.

Though only one cycle was mandatory, every rule states constraints on at
least two cycles. Two types of temporal constraints are used: sequential con-



Table1. Learning 5 classes: statistics of 10-fold cross-validation

Set | Acc TrueTot FalseTot| TrAcc | Correct*Incorrect/class #

-----------------------------------------------------------------

1 | 1.000 10 0 | 0.989 | [1,1,5,1,2] * [0,0,0,0,0] #

2 | 1.000 10 0 | 0.989 | [1,2,2,2,3] * [0,0,0,0,0] #

3 | 1.000 10 0 | 1.000 | [3,2,2,1,2] * [0,0,0,0,0] #

4 | 1.000 10 0 | 1.000 | [2,4,2,0,2] * [0,0,0,0,0] #

5 | 1.000 10 0 | 0.989 | [2,1,2,2,3] * [0,0,0,0,0] #

6 | 1.000 10 0 | 0.989 | [3,0,2,3,2] * [0,0,0,0,0] #

7 | 0.900 9 1 | 1.000 | [1,2,0,5,1] * [0,0,0,1,0] #

8 | 1.000 10 0 | 0.989 | [2,1,3,2,2] * [0,0,0,0,0] #

9 | 1.000 10 0 | 0.989 | [2,4,0,1,3] * [0,0,0,0,0] #

10 | 1.000 10 0 | 0.989 | [3,3,2,2,0] * [0,0,0,0,0] #

-------------------------------------

Tot: 9.900 99 1

Accuracy: 0.990 (+/-0.030) (Training set Accuracy: 0.992 (+/-0.005))

straints between events by means of the third argument of p wave and qrs

predicate literals and temporal constraints on intervals by means of predicates
pr1 and rr1 which appear to be the most used by specialists. Two rules were
necessary for mobitz2. This arrhythmia can be characterized by the episodic
absence of a ventricular contraction. It is sometimes accompanied by a right
bundle branch block (rbbb) provoking an enlarged QRS. This was the case for
some of the examples of this class. The two rules that were obtained reflect this
fact: in the first one the QRS are normal whereas in the second one the QRS are
abnormal and then denote a joint rbbb.

Validation

Table 1 gives the statistics obtained after a 10-fold cross-validation on learning
5 classes. 10% of the examples were left out for test in each round. The column
TrAcc gives the training accuracy and the column Acc gives the test accuracy
for each round. 99.2% and 99% global accuracy was obtained for training and
test respectively. These results are very good and show that accurate definitions
may be induced from complex data.

The rules learnt in the previous experiments were also assessed by specialists
from a qualitative point of view. Though sometimes they were surprised by some
definitions which did not correspond to the general definition they were used to,
they rated all the rules as being correct and relevant.

5 Conclusion

This paper has presented an application of ILP techniques to the acquisition
of a set of high-level temporal patterns (or chronicles) characterizing cardiac
arrhythmias. The main novelty in this application is the fact that we are dealing
with temporal and structured data. The ultimate goal is to get a chronicle base



which is used by a chronicle recognition tool to analyse, in an on-line monitoring
context, an ECG signal and detect cardiac disorders. A description of the whole
project can be found in [2]. A set of real recorded ECG signals, taken from the
MIT database, has been preprocessed by a signal processing algorithm into a
symbolic representation and constitute the training base.

We focus in this paper on the experimentation we did with ICL [12] and we
demonstrate the interest of using a declarative bias as DLAB. According to the
properties that are looked for, such as readability or robustness, different biases
have been experimented and result in different sets of rules.

Two main issues are currently investigated: the first one is to cope with
multiple sources of information (multichannels and multisensors). This means a
new learning phase in order to get a set of chronicles able to take into account
not only the temporal aspect of each signal but also the relationships existing
among these different signals. The second issue concerns active cardiac devices
which rely on leads located in both ventricles. These new devices can tackle both
rhythmic and hemodynamic disorders but the signatures are still poorly known.
We are currently experimenting our learning module on these data in order to
exhibit such signatures.
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