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Abstract. Friedman and Halpern have introduced the inference by
plausibility structures, which provides semantics for various default
logics. This is a generalization of known inferences, such as those
based on expectations, or on possibilistic logic. We argue that a
slightly different inference by plausibility would be more appropriate
for default reasoning. It would still be appropriate for all the default
logics considered by Friedman and Halpern. Significant cases, such
as subsets of normal defaults with multiple extensions, or a formal-
ism extending circumscription to the cases where (AND) is falsified,
can be translated into the new formalism only.

In order to prove our results, we complete the list of the reason-
ing properties for the (two versions of the) inference by plausibility.
Since these properties describe the behavior of a given inference in
an intuitive and non technical way, this list is important for any poten-
tial user. Moreover, it happens that considering these properties only,
without going into the technicalities of the plausibility approach, is
enough to describe the main results given here.

1 INTRODUCTION

Friedman and Halpern have introduced inference by plausibility and
shown it to encompass various kinds of default reasoning [4, 5]. A
feature of this inference is that the rule (AND) – if ψ1 and ψ2 can be
derived, then their conjunction ψ1∧ψ2 can be derived – is not neces-
sarily satisfied. Many interesting cases where the rule (AND) should
not be satisfied are known (e.g. when using defaults for expressing
expected results of indeterministic actions, a common application of
default reasoning). However, against the main traditions in default
reasoning, the inference by plausibility defined in [4, 5] must satisfy
a special case of the rule (AND), where ψ1 and ψ2 are contradic-
tory. As a consequence, with any subset of the normal defaults of
Reiter [10] (the simplest and the most often used defaults in Reiter’s
tradition), this enforces the rule (AND) in full generality.

Notice that Friedman and Halpern have not provided any example
of default formalism without (AND). Moreover, they have detected
an embarrassing behavior even when (AND) is satisfied. We propose
a slight modification of the original definition. We describe the rea-
soning properties (those that any potential user should know) of the
new version, and of the original one. Thanks to these reasoning prop-
erties, we prove the following results about the modified formalism
with respect to the original version:

1. The main unexpected or unwanted behaviors, either in the general
case or in the case where (AND) holds, are suppressed.

2. All the default formalisms considered by Friedman and Halpern
can also be translated into the new version.

3. There exist useful known formalisms for default reasoning that
can be translated into the new version only.
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In section 2 we introduce the logical framework, and Friedman and
Halpern’s inference by plausibility, exhibiting unwanted properties
of this inference in section 3. In section 4 we introduce an alternative
definition, simpler and more powerful than the original version, com-
pleting the comparison in section 5. In section 6 we examine a known
default formalism which can be translated into the new version only.
In section 7 we give the necessary and sufficient conditions which
allow one inference by plausibility to be translated into the other ver-
sion. These results show that all the default formalisms considered by
Friedman and Halpern can also be translated into the new version.

We omit the proofs which do not present real difficulty, however
we take care of providing enough intermediate results in order to
make each isolated proof rather easy to reconstruct.

2 INFERENCES FOR DEFAULT REASONING

Since Reiter [10], a great number of formalisms have been con-
sidered for inferring conclusions by default, meaning from what is
presently known: inferences “in the absence of other information”.
In this text, for the sake of simplicity, we consider only the proposi-
tional case, and inferences from a single formula. Let us denote by
L the set of all the classical formulas, and by ⇒ the classical im-
plication. We introduce a default connector →. Informally, for any
ϕ, ψ in L, ϕ → ψ means “if ϕ, then typically ψ”. Since clas-
sical way of reasoning is assumed, we will consider only the for-
malisms satisfying the reasoning properties of “left logical equiva-
lence” (LLE), “right weakening” (RW) and “reflexivity” (REF) as
defined by Kraus, Lehmann and Magidor in [7]:

(LLE) If `L ϕ⇔ ϕ′, then from ϕ → ψ, we get ϕ′ → ψ.
(RW) If `L ψ ⇒ ψ′, then from ϕ→ ψ, we get ϕ → ψ′.
(REF) ϕ→ ϕ.

An equivalent way for describing a default inference is by defining
a mapping f from L to the set of the sets of formulas P(L):
ψ ∈ f(ϕ) iff ϕ → ψ, i.e., f(ϕ) = {ψ ∈ L/ϕ → ψ}.

This text will use two kinds of inference by plausibility, the two
mappings being denoted by fFH and fN , and the two default con-

nectors by
FH
−→ and

N
−→.

(RW) implies (RLE), “right logical equivalence”: if `L ψ ⇔ ψ′,
then from ϕ → ψ, we get ϕ → ψ′. (LLE) and (RW) being required,
we consider that L is the set of all the equivalence classes of for-
mulas, identifying a formula with its equivalence class. The “true”
and the “false” formulas are defined as follows: true = ϕ ∨ ¬ϕ,
false = ϕ ∧ ¬ϕ.

Identifying a formula with its equivalence class concerns only
(LLE) and (RLE), but not full (RW). In terms of f , (RW) is: If
`L ψ ⇒ ψ′ and ψ ∈ f(ϕ), then ψ′ ∈ f(ϕ). This means that the



set f(ϕ) is not any subset of L, but a union of theories, called here
a U-theory, where a theory T is a set of formulas closed by deduc-
tion: T = {ϕ ∈ L/T `L ϕ}. Let us denote by T the set of all the
theories in L and by U the set of all the U-theories. Clearly T ⊆ U.

Thus, f is a mapping from L to U. Restricting our attention to
these mappings f means precisely restricting our attention to con-
nectors → satisfying (LLE) and (RW). If moreover we require

ϕ ∈ f(ϕ) for each ϕ ∈ L,

we take also (REF) into account. Since Reiter’s proposal (where
the set of all the extensions is indeed a U-theory), a stronger reflex-
ivity (sREF) is implicitly assumed in default reasoning [if we con-
clude F lies(Tweety) from Bird(Tweety), we want to conclude
also Bird(Tweety)∧ F lies(Tweety) from Bird(Tweety)]:

(sREF) If ψ∈f(ϕ), then ϕ∧ψ∈f(ϕ), i.e., if ϕ→ ψ, then ϕ→ ϕ ∧ ψ.

Sometimes, we need also the rules (Deduc) (“deduction”), (AND),
(OR), (“case reasoning”), (CM) (“cumulative monotony”), (rCM)
(“restricted (CM)”), and (CT) (“cumulative transitivity”):

(Deduc) If ϕ ∧ ψ → ψ′, then ϕ → ψ ⇒ ψ′.
(AND) If ϕ→ ψ and ϕ → ψ′, then ϕ→ ψ ∧ ψ′.
(OR) If ϕ→ ψ and ϕ′ → ψ, then ϕ ∨ ϕ′ → ψ.
(CM) If ϕ→ ψ and ϕ → ψ′, then ϕ ∧ ψ → ψ′.
(rCM) If `L ψ

′ ⇒ ψ and ϕ→ ψ′ then ϕ ∧ ψ → ψ′,
(CT) If ϕ→ ψ and ϕ ∧ ψ → ψ′, then ϕ→ ψ′.

Here are two translations in terms of the mapping f . Recall that f
satisfies (LLE), (RW) and (REF), i.e. that f is a mapping from L to
U satisfying ϕ ∈ f(ϕ): (AND) f is a mapping from L to T.

(OR) f(ϕ) ∩ f(ϕ′) ⊆ f(ϕ ∨ ϕ′).

Most of these properties are well known. However, (CM) and
(REF) are est motivated when (AND) holds. Since (AND) does
not always hold, it is useful to introduce the variations (sREF)
and (rCM). Clearly, (AND) and (REF) imply (sREF), (CM) implies
(rCM), (sREF) implies (REF) (recall that (RW) is assumed here).

Definition 2.1 A d-mapping (“d” standing for “default”) is a map-
ping f : L ; U which satisfies (sREF).

A d-mapping is an inference satisfying (LLE), (RW) and (sREF). In
this “core of hardly avoidable properties” for default reasoning, we
exclude (AND), (Deduc), (rCM), and (CT), falsified by some formu-
lations of Reiter’s defaults. Reiter’s defaults in their two formulations
(“skeptical” when considering the intersection of all the extensions,
versus standard or “brave”), and most of its variants, can be stud-
ied as d-mappings (satisfying (AND) for the skeptical formulations
only). For d-mappings satisfying (AND), (rCM) and (CM) are equiv-
alent, and so are (Deduc) and (OR). For ordinary d-mappings, we get
only that (CM) implies (rCM) and that (OR) implies (Deduc).

A basic inference relation B of Bochman [2] is a d-mapping sat-
isfying (Deduc) and (rCM). Bochman implicitly uses the concept of
d-mapping, when describing results true “in the framework of B”,
such as the equivalence between (Deduc) and (Confirmation):

(Confirmation) If ϕ→ ψ then ϕ ∨ ψ′ → ψ ∨ ψ′.

It seems natural to give a stronger importance to properties true in
almost any default formalisms, such as the properties of d-mappings,
than to properties falsified by various leading default formalisms (as
in [10]), such as (Deduc) or (rCM).

Proposition 2.2 A d-mapping can be defined by the set of ordered
couples (ϕ, ϕ′) such that ϕ∧ϕ′ `L false and ϕ∨ϕ′ →ϕ.

Indeed, by (LLE), (sREF) and (RW) (notice that (AND) is not
required here), we have ϕ → ψ iff (ϕ∧ψ)∨ (ϕ∧¬ψ) → ϕ∧ψ.

This result has been more or less implicitly used by various
approaches for default reasoning, such as “expectations” [6] or
possibilistic logic [1], and by Friedman and Halpern which, in [4, 5],
have generalized these approaches as described now. In particular,
their generalization allows for the possibility that (AND) does not
hold (at least in the definitions, if not in the defaults considered),
unlike the definitions of [6, 1]:

A plausibility space is a tuple (W,F, P l,D,≤) where W and D
are sets, F is a subset of the set P(W ) of the subsets of W which
is closed under union and complementation with respect to W , P l
is a mapping from F to D, the set D being partially ordered by the
relation ≤. The strict order relation< is defined as usual by d1 < d2

if [d1 ≤ d2 and d2 6≤ d1] i.e., if [d1 ≤ d2 and d1 6= d2]. P l must
satisfy condition (A1):

(A1) If A ⊆ B then P l(A) ≤ P l(B).

Thus, denoting P l(∅) by ⊥ and P l(W ) by >, we get,
for each d ∈ P l(F): ⊥ ≤ d ≤ >.

A plausibility structure PL in L is a plausibility space where the
set of worlds W is the set M of all the classical interpretations for
L. For any formula ϕ ∈ L, [[ϕ]] denotes the set of the elements of
W (= M ) that satisfy ϕ: [[ϕ]] = {w ∈ W/w |=L ϕ}. F is the set
{[[ϕ]]/ϕ ∈ L} of all the subsets [[ϕ]] of W .

The original definition in [4, 5] is apparently more general, since
W is any set of “copies of elements” of M . The notion of inference
by plausibility is unmodified by our simplifications. It follows that
P l could be defined as a mapping from L to D: we can identify
P l(ϕ) with P l([[ϕ]]). Here is the writing of (A1) then:

(A1) If `L ϕ⇒ ψ, then P l(ϕ) ≤ P l(ψ).

Definition 2.3 [4, 5] The inference by plausibility is then defined as
follows: given a plausibility structure PL, we define

PL |= ϕ
FH
−→ ψ if eitherP l(ϕ) = ⊥ or P l(ϕ∧ψ) > Pl(ϕ∧¬ψ).

We define the mapping fFH from L to P(L), associated to PL:

fFH(ϕ) = {ψ ∈ L/P l |= ϕ
FH
−→ ψ}.

Proposition 2.4 The inference by plausibility fFH is a d-mapping
satisfying (rCM).

The original texts give (LLE) and (RW), while (sREF) and (rCM)
are immediate. This shows that the inference by plausibility is indeed
well fitted for default reasoning, since it is a d-mapping.

In order to catch various kinds of default formalisms, we can ex-
pect that all we need is some additional properties on P l. Friedman
and Halpern show that this is the case for some rules such as (AND)
and (OR) and for the system P of [7]. The system P is defined as
respecting the rules (AND), (OR) and (CM) [together with (LLE),
(RW) and (sREF) which, in case of (AND) and (RW), is equivalent
to (REF)]. This system satisfies also (CT). System P was already
known to have many possible apparently different definitions or
semantics (we refer the reader to [5] for more on this subject).



The inference by plausibility has however a strange behavior, no-
ticed in [5]: in the case of (AND), the inference satisfies (OR), except
possibly for the “false case” P l(ϕ) = P l(ϕ′) = ⊥, called (fOR)
here. This particular case is so bewildering that [5] never considers
(AND) in isolation, but only the combination (AND) + (fOR). For
what concerns default reasoning in the absence of (AND), [5] does
not describe any already known system. At least since Reiter [10],
the non (AND) case is however known to be inescapable in many
cases of default reasoning (consider e.g. actions with indeterministic
effects). In this text, we examine also the non (AND) case.

3 NOT SO DESIRABLE PROPERTIES

Since for any d-mapping, (rCM) and (AND) imply (CM), we get the
the result, considered as surprising in [5], that, in the presence of
(AND), an inference by plausibility satisfies also (CM).

Apart from the (OR) problem in case of (AND), it could seem
that the inference by plausibility is a good candidate for providing a
“semantics” for default reasoning. Indeed, (rCM), even if not satis-
fied by all the main previous formalisms for default reasoning (see
Reiter’s “skeptical” counter-example), is mild enough to be accepted
as a good reasoning principle. From birds fly and flying animals are
always light, it seems natural to conclude light birds fly.

We consider now the case where (AND) is not required. Here are
the “false cases” of two properties already introduced:

(fDeduc) If ϕ ∧ ψ → false then ϕ→ ¬ψ.
(fAND) If ϕ→ ψ and ϕ→ ¬ψ, then ϕ→ false.

Propositions 3.1 1. The inference by plausibility fFH satisfies (De-
duc), except possibly the false case (fDeduc).

2. Any inference by plausibility fFH satisfies (fAND).

“Near (Deduc)” without full (Deduc), and also (fAND) even in the
absence of full (AND), are hard to justify from a reasoning point of
view. Any potential user must be aware of these facts. For the second
point, recall that for normal defaults [10], (fAND) implies (AND).
Another problem with (fAND) is that, contrarily to (AND) or (OR),
it does not generalize fully to more than two formulas. Indeed, we

may have ϕ
FH
−→ ψi, i ∈ {1, · · · , 3},

∧
3

i=1
ψi `L false, without

getting ϕ
FH
−→ false. Thus, (fAND) means that fFH is a mapping

from T to the bizarre subset of U consisting of the unions of theories
such as these unions are not contradictory in the precise case when
there are exactly two distinct theories in the union. Such restrictions
could be justified only if there were good computability reasons.

Notice that the problem with (fAND) does not concern the already
quoted formalisms of [6, 1] since (AND) holds there.

4 ANOTHER INFERENCE BY PLAUSIBILITY

Let us simplify the definition. We will show that doing this, we define
a slightly different notion which has a better set of intuitive proper-
ties of reasoning, and, for what concerns default reasoning, is more
powerful and encompasses more already known formalisms.

Definition 4.1 The inference by N-plausibility (N for “new”) is de-
fined as follows: given a plausibility structure PL, we define

PL |= ϕ
N

−→ ψ if P l(ϕ∧ψ) ≥ P l(ϕ∧¬ψ), and fN : L ; P(L)

by fN (ϕ) = {ψ ∈ L/P l |= ϕ
N

−→ ψ}.

Theorem 4.2 The inference fN is a d-mapping satisfying (Deduc)
and (rCM).

This means that, contrarily to fFH , fN is a “basic inference re-
lation” as defined in [2]. Moreover, in contrast with the bewildering
behavior of fFH , with fN we get: (AND) implies (CT), which im-
plies (OR) (Theorem 4.4 below), while (fAND) is not mandatory.

We need now four properties that a plausibility measure may pos-
sess:A,B andC are subsets ofW (in F) which are pairwise disjoint.

(A2N ) If P l(A ∪B) ≥ P l(C) and P l(A ∪ C) ≥ P l(B),
then P l(A) ≥ P l(B ∪ C).

(A3) If P l(A) = P l(B) = ⊥ , then P l(A ∪ B) = ⊥.
(A6N ) If P l(A ∪B)≥P l(C) and P l(A)≥P l(B),

then P l(A)≥P l(B ∪ C).
(A7N ) If P l(A) ≥ P l(C) and P l(A) ≥ P l(B),

then P l(A) ≥ P l(B ∪ C).

(A7N ) implies (A3) [A = ∅ in (A7N )] and, thanks to (A1), (A2N )
implies (A6N ) which implies (A7N ). If the plausibility is a probabil-
ity, (A3) is satisfied. We get the following results, where the already
evoked false case (“trivial case” in [5]) of (OR) is defined as follows:

(fOR) If ϕ1 → false and ϕ2 → false then ϕ1 ∨ ϕ2 → false.

Propositions 4.3 1. An inference fN by N-plausibility satisfies
(AND) iff P l satisfies (A2N ).

2. An inference fN by plausibility satisfies (fOR) iff P l satisfies (A3).
3. fN satisfies (CT) iff P l satisfies (A6N ).
4. fN satisfies (OR) iff P l satisfies (A7N ).

Thus, the behavior is natural and easy to grasp for any user:

Theorem 4.4 If an inference by N-plausibility fN satisfies (AND),
then it satisfies (CT) [true for any d-mapping satsifying (Deduc)]. If
fN satisfies (CT), then it satisfies (OR). These implications are strict.

Notice that, exactly as with the original definition
FH
−→, by (A1)

we get: ϕ
N

−→ false iff P l(ϕ) = ⊥.

5 COMPARING THE TWO VERSIONS

We need three other properties of a plausibility measure.
Let A,B and C be three pairwise disjoint subsets in F.

(A2) If P l(A ∪B) > Pl(C) and P l(A ∪ C) > Pl(B),
then P l(A) > Pl(B ∪ C).

(A6) If P l(A ∪B) > Pl(C) and P l(A) > Pl(B),
then P l(A) > Pl(B ∪ C).

(A7) If P l(A) > Pl(C) and P l(A) > Pl(B),
then P l(A) > Pl(B ∪ C).

Friedman and Halpern have introduced (A1), (A2) and (A3) in
[4, 5], which explains the absence of (A4) and (A5), introduced in
[4, 5] for properties not considered here. (A2) implies (A6) which
implies (A7), but (A7) does not imply (A3).

Propositions 5.1 1. fFH satisfies (AND) iff P l satisfies (A2).
2. fFH satisfies (fOR) iff fFH satisfies (Deduc) iff P l satisfies (A3).
3. fFH satisfies (CT) iff P l satisfies (A6).
4. fFH satisfies (OR) iff P l satisfies (A7) and (A3).

These results either appear in [5], or are immediate, and they give
the following important results about the reasoning properties: :

Theorem 5.2 If fFH satisfies (AND), then it satisfies (CT) [5]. If
fFH satisfies (CT) and (Deduc), then it satisfies (OR). These impli-
cations are strict.



Recall also that (OR) implies (Deduc) for any d-mapping.
The following property of a plausibility measure plays a crucial

role for fN . Let A and B be any disjoint elements of F.

(A0) If P l(A) = P l(B), we get P l(A ∪B) = ⊥.

(A0) implies (A3), but (A0) is clearly much stronger than (A3).

Proposition 5.3 An inference by N-plausibility fN satisfies (fAND)
iff P l satisfies (A0). Thus, if an inference by N-plausibility fN satis-
fies (fAND), it must satisfy (fOR).

Obviously, (A2N ) implies (A0) [take A = ∅ in (A2N )] which,
for fN , corresponds to the equally obvious fact that (AND) implies
(fAND).

Notice that, since (A6N ) does not imply (A0), an inference by
N-plausibility can satisfy (CT) and falsify (fAND).

Let us summarize now why we think that the new way fN of using
plausibility structures for defining a default inference is better that
the original way fFH :

(1) The property (Deduc) is satisfied by fFH , except possibly
when A ∧ B has a null plausibility. Thus, fN is a “basic inference
relation” as defined in [2] while this is not the case for fFH .

(2) The bewildering property (fAND) is mandatory with fFH . Ex-
cept in cases where full (AND) holds, this makes the reasoning be-
havior of fFH rather complex to explain to a potential user. With fN ,
(fAND) has a semantical counterpart (A0), a strong requirement, in
accordance with the strength of (fAND).

(3) If now we consider the case where (AND) holds, here again fN

is better than fFH , since fN does not have the bewildering property
“(OR) except for formulas with a null plausibility”.

Still, we cannot encompass by fN all the already known default
formalisms: in Reiter’s original proposal e.g., (AND) does not im-
ply (OR) (since it does not imply (fOR) either, fFH is not better
than fN here). However, we could expect to encompass at least the
already known formalisms which respect the main reasoning prop-
erties exhibited by the inferences by plausibility, such as “(AND)
implies (CM)” [cf. (rCM)] and “(Deduc)+(CT) implies (OR)”. Let
us examine one such candidate now.

6 THE CASE OF X-logic

Definition 6.1 [11] For any X ⊆ L, we define the X-mapping fX

from L to P(L) by: ϕ ∈ fX(ψ) iff Th(ψ ∧ ϕ) ∩X ⊆ Th(ψ).
We use the notation ψ →X ϕ for ϕ ∈ fX(ψ).

This notion had be used by Suchenek [12] (referring himself to one
the earliest works on effective computation for a non-monotonic for-
malism [3]) in order to help the computation of circumscription and
related formalisms. Circumscription satisfies (AND), thus Suchenek
was only concerned by the cases satisfying (AND), however, gen-
erally, X-mappings falsify (AND) [11]. The notion of X-mapping
remains as one of the most promising ways for introducing an ef-
ficiently computable default inference without (AND). Each finite
circumscription is an X-logic, which thus also provides an interest-
ing alternative way for effective computation of circumscription. The
next results summarize the importance of X-mappings from a default
reasoning perspective, even in the absence of (AND).

Theorem 6.2 [11, 9, 2] Any X-mapping is a d-mapping satisfying
(CT), (OR) and (rCM). Conversely, in the finite case, any d-mapping
satisfying (CT), (OR) and (rCM) is an X-mapping.

Thus, X-mappings look like very promising candidates to try in order
to sustain the claim that inferences by plausibility encompass vari-
ous default formalisms. Disappointingly, generally X-logics are not
inferences by plausibility fFH . This is only due to the fact that, as ex-
pected for a reasonable default formalism, X-logics falsify (fAND).
The next result illustrates the power and the convenience of fN :

Proposition 6.3 Any X-mapping, defined by a set X , is equal to the
inference fN defined by the following plausibility structure:

We define the plausibility P lX : for each ϕ ∈ L, P lX(ϕ) = {x ∈
X/ϕ `L x}. The set D is the set {P lX(ϕ)/ϕ ∈ L} and the partial
order ≥ is ⊆, the set inclusion on D (i.e., ≤ is ⊇).

7 FROM fN TO fFH AND BACK

It is enough to consider a few natural reasoning properties, without
going inside the technicalities of plausibility structures, in order to
state the main results (not their proofs however).

Theorem 7.1 An inference by N-plausibility fN is equal to an infer-
ence by plausibility fFH iff fN satisfies (fAND).

Proof: See Proposition 3.1-2 if fN falsifies (fAND). If fN sat-

isfies (fAND), ϕ
N

−→ ψ iff P l(ϕ ∧ ψ) ≥ P l(ϕ ∧ ¬ψ) iff

[P l(ϕ ∧ ψ) > Pl(ϕ ∧ ¬ψ) or (ϕ
N

−→ ψ and ϕ
N

−→ ¬ψ)] iff,

by (fAND) [P l(ϕ ∧ ψ) > Pl(ϕ ∧ ¬ψ) or ϕ
N

−→ false] iff
[P l(ϕ ∧ ψ) > Pl(ϕ ∧ ¬ψ) or P l(ϕ) = ⊥]. 2

So, when this passage is possible, it is obvious: the plausibility
structure is unmodified. This result also shows that any “reasonable”
fFH is an fN : the only problem being (fAND), of arguable cognitive
interest. The passage from the original definition to the new one is not
so obvious, but it remains rather easy also:

Theorem 7.2 An inference by plausibility fFH is equal to an infer-
ence fN iff fFH satisfies (fOR) [or equivalently (Deduc)].

Recall that, for fFH and for fN , the inference satisfies (fOR) iff
PL satisfies (A3). Since this result and its proof are important, and
since this is the only result of this text for which the proof is not quasi
automatic, here are the proof of the easy way and the useful intuitions
for the (too long to appear here in full length) proof of the other way.

⇒: This proof uses a “restricted false case of (OR)” (rfOR). Even
if this is not directly related to the proof, it can be interesting, in order
to get a more precise view of the reasoning properties of the infer-
ences by plausibility, to give here also two kinds of “weak relative
consistency”, (P) and its strengthening (P’).

(rfOR) If ϕ1 → false and ϕ2 → false, then ϕ1 ∨ ϕ2 → ϕ1.

(P) If ϕ → false and ψ → ϕ, then ψ → ¬ϕ.
(P’) If ϕ → false and ψ → ϕ, then ψ → false.

The following lemma is immediate:

Lemma 7.3 1. fFH and fN satisfy (P).
2. (P’) is satisfied by fFH and is equivalent to (fOR) for fN .
3. fN satisfies (rfOR).
4. fFH satisfies (rfOR) iff it satisfies (fOR).

Notice in passing that for fN and for fFH , property (P) shows that
(rfOR) is in fact equivalent to its apparent strengthening (rfOR’):



(rfOR’) If ϕi→ false for i∈{1, 2}, then ϕ1∨ϕ2→ϕ1 and ϕ1∨ϕ2→¬ϕ1.

Here is the proof of the ⇒ side of the theorem: If fFH falsifies
(fOR), it falsifies (rfOR), which is satisfied by each inference by N-
plausibility, thus the translation is impossible.

⇐: (Main intuitions only here, see [8] for a proof in French) If
fFH satisfies (fOR), we introduce (P l′,≤′) from (P l,≤) defining
fFH . By (A3), we can keep the “equivalence class” (two formulas
being “equivalent” iff they have the same plausibility) of the formula
false. We must break the other “equivalence classes”. In order to
simplify the definition of P l′, we can break them into singletons.
Here are the three conditions that must be satisfied by (P l′,≤′): (1)
two contradictory formulas in the same “class” for P l (except the
“null class”) must be incomparable for P l′ (they cannot stay in the
same “class”, but this is not enough), (2) condition (A1), and (3),
“otherwise preserve the relation” induced on L by (P l,≤). 2

Each time fFH satisfies (fOR), i.e. is defined by a plausibility sat-
isfying (A3), we can use fN instead of fFH . Thus, the results given
in [5] for system P , and also the “direct semantical translations” for
“parameterized probability distribution” and for preferential struc-
tures, apply to fN also. Theorem 7.2 sustains our claim that all the
default inferences considered in [5] could alternatively be translated
into the new and simpler version proposed here. And we have shown
why we think that the new version has a better behavior and encom-
passes more default formalisms than the original one.

Notice that if we require that ≤ is (and remains) a linear order on
D, this translation does not apply. So, this argument in favor of fN

against fFH does not apply to the formalisms evoked above from
[1, 6], but only to the generalization to a partial order made in [5].

Since (A0) is much stronger than (A3), if we count the inferences,
the new version is “more powerful” than the original one. Indeed,
the original one can be translated into the new one iff its plausibility
satisfies the relatively weak condition (A3). The new version can be
translated into the old one only when the stronger condition (A0) is
satisfied. Thus, the number of inferences that fall prey to the new
version is greater than the number of the inferences that fall prey to
the original version (at least in the finite case).

Also, the “core” made of the inferences which can be expressed
by either version is interesting in itself, since it contains e.g. all the
default formalisms examined in [5].

8 CONCLUSION AND PERSPECTIVES

The present work has introduced a new and simpler notion of in-
ference by plausibility, and has given a list of the main properties,
in terms of reasoning, of these two kinds of inference. These prop-
erties are very important, since the first thing to do before trying a
translation of a given formalism in terms of plausibility is to check,
from these properties, whether a translation is possible or not. This
is why we have given new properties for the original inference by
plausibility together with the main properties satisfied by the new
version. Thanks to these properties, we could describe the cases in
which one kind of inference by plausibility can be translated into
the other. These inter-translations show that the new version is more
powerful than the original one, even if there is no inclusion.

The main interest of the new notion is a better “reasoning behav-
ior”. Indeed, it does not enforce the “(AND) for contradictory for-
mulas”, called (fAND) here, that the original formalization satisfies.
This property is clearly “against the spirit of default reasoning”, as

shown by the case of normal defaults where (fAND) implies full
(AND). Also, the new version satisfies the property of deduction,
while the original version falsifies an important particular case of de-
duction. Moreover, the behavior of the new version is better in the
case of (AND), as shown by the “false case of (OR)” problem with
the original version.

The present work should enforce the interest of the notion of in-
ference by plausibility, since it extends its range of applicability, for
what concerns default reasoning. Indeed, working with one version
or with the other is rather similar.

Since several previously known formalisms for default reasoning
can be translated in a natural way into an inference by plausibility,
we can get interesting results in this way. As a particular example,
let us evoke the case of X-mappings, which constitute one of the
easiest to compute default formalisms allowing to discard (AND).
In the finite case, a condition on the set X is known to hold iff
an X-mapping satisfies (AND) (condition (C1) in [9]). With the
translation into an inference by plausibility (new version only here),
we get an alternative condition, (A2N ). Even if it is not clear for us
now, it could be that this condition is easier to check than (C1). Many
results of this kind, difficult with the traditional formalisms, could
be found, thanks to the method of (the new way of using) plausibility.

It remains to characterize fully theses two kinds of inference by
plausibility, and to examine more default formalisms.

The nature of the definition of inference by plausibility makes that
once a formalism is translated in these terms, this could help the ef-
fective computation, and this point also must be investigated.
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[3] Geneviève Bossu and Pierre Siegel, ‘Saturation, nonmonotonic reason-

ing and the closed-world assumption’, Artificial Intelligence, 25(1), 13–
63, (January 1985).

[4] Nir Friedman and Joseph Y. Halpern, ‘Plausibility measures: a user’s
guide’, in UAI-95, eds., Philippe Besnard and Steve Hanks, pp. 175–
194, Montreal, Quebec, Canada, (August 1995). Morgan Kaufmann.

[5] Nir Friedman and Joseph Y. Halpern, ‘Plausibility measures and default
reasoning’, Journal of the ACM, 48(4), 648–685, (July 2001).

[6] Peter Gärdenfors and David Makinson, ‘Nonmonotonic inferences
based on expectations’, Artificial Intelligence, 65(2), 197–245, (1994).

[7] Sarit Kraus, Daniel Lehmann, and Menachem Magidor, ‘Nonmono-
tonic Reasoning, Preferential Models and Cumulative Logics’, Artifi-
cial Intelligence, 44(1–2), 167–207, (July 1990).

[8] Yves Moinard, ‘Mesure de plausibilité pour le raisonnement par
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