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Campus de Beaulieu, 35042 Rennes cedex, France
{cordier,moinard}@irisa.fr

Abstract. We define an inference system to capture explanations based
on causal statements, using an ontology in the form of an IS-A hierarchy.
We first introduce a simple logical language which makes it possible to
express that a fact causes another fact and that a fact explains another
fact. We present a set of formal inference patterns from causal statements
to explanation statements. These patterns exhibit ontological premises
that are argued to be essential in deducing explanation statements. We
provide an inference system that captures the patterns discussed.

1 Introduction

We are aiming at a logical formalization of explanations from causal statements.
For example, it is usually admitted that fire is an explanation for smoke, on the
grounds that fire causes smoke. In other words, fire causes smoke is a premise
from which it can be inferred that fire is an explanation for smoke. In this
particular example, concluding from cause to explanation is immediate but such
is not always the case, far from it. In general, the reasoning steps leading from
cause to explanation are not so trivial:

Example. We consider two causal statements:

(i) Any ship that is about to sink causes her crew to launch some red rocket(s)

(ii) In France, July the 14th causes colourful rockets to be launched (fireworks)

So, if the place is a coastal city in France, on July the 14th, then red rockets
being launched could be explained either by some ship(s) sinking or by the French
national day.

In this example, it is needed to acknowledge the fact that a red rocket is a kind
of (colourful) rocket in order to get the second explanation, which makes sense.

Example (con’d). Suppose that we now add the following statement:

(i) Seeing a red rocket being launched triggers a rescue process

Now, a possible explanation for the triggering of the rescue process, as happens
in practice, is that we are on July the 14th in a coastal city in France.



In this paper, we define a dedicated inference system to capture explanations
based on causal statements and stress that the rôle of ontology-based information
is essential. In the second section, we introduce the logical language that we
propose to use. In the third section, we define the set of patterns dedicated to
inferring explanations from causal statements and ontological information. In
the fourth section, we give the formal inference system allowing us to derive
explanations from a given set of formulas. We conclude by discussing the rôle of
ontology and by giving some perspectives.

2 Language

We distinguish various types of statements in our formal system:

C: A theory expressing causal statements. E.g., On(alarm) causes Heard(bell).
O: An ontology listing entities, in the form of an IS-A hierarchy which defines

classes and sub-classes. E.g., loud bell is a bell and soft bell is a bell.
W : A classical first order theory expressing truths (i.e., incompatible facts, co-

occurring facts, . . .). E.g., Heard(soft bell) → ¬Heard(loud bell).

We assume a logical language whose alphabet consists of constants a, b, c, . . . and
unary predicates such as P, . . . Intuitively, constants denote objects or entities,
including classes and sub-classes to be found in the IS-A hierarchy. The pred-
icates (unary for simplicity, they could be n-ary in theory) are used to express
facts or events on these objects or entities as Heard(soft bell) or Own(blue car).
The causal statements express causal relations between facts or events expressed
by these predicates as in On(alarm) causes Heard(bell).

Moreover, we assume that these unary predicates “inherit upwards” through
the IS-A hierarchy in the following sense: If b IS-A c then P (b) entails P (c).
Consider owning as an example, together with small car and car. Of course, a
small car is a car and “I own a small car” entails “‘I own a car”. This property
happens to be fundamental when designing inference patterns (next section) as
it allows us to apply inheritance properties between entities to facts and events
on these entities.. It also means that we restrict ourselves to those predicates
that “inherit upwards”, which precludes for instance the predicate Dislike as
Dislike(small car) does not imply Dislike(car). In the following, we say that
Heard(soft bell) is a specialization of Heard(bell) and that Heard(bell) is a
generalization of Heard(soft bell).

The formal system we introduce below is meant to infer (this inference will
be noted `C), from such premises C ∪O ∪W , formulas denoting explanations.

In the sequel, α, β, . . . denote the so-called sentential atoms (i.e., ground
atomic formulas) and Φ, Ψ, . . . denote sets thereof.

Atoms

1. Sentential atoms: α, β, . . . (Ground atomic formulas)
2. Causal atoms: α causes β.



3. Ontological atoms: b →IS−A c.
4. Explanation atoms: α explains β because possible Φ.

An ontological atom reads: b is a c.
An explanation atom reads: α is an explanation for β because Φ is possible.

Notation: α explains β bec poss Φ abbreviates α explains β because possible Φ.

Formulas

1. Sentential formulas: Boolean combinations of sentential atoms.
2. Causal formulas: Boolean combinations of causal atoms and sentential atoms.

The premises of the inference `C , namely C∪O∪W , consist of sentential formulas
as well as causal formulas and ontological atoms (no ontological formula). Notice
that explanation atoms cannot occur in the premises.

The properties of causal and ontological formulas we consider are as follows.

1. Properties of the causal operator
(a) Entailing the conditional : If α causes β, then α → β.

2. Properties of the ontological operator
(a) Upward inheritance: If b →IS−A c, then α[b] → α[c]3.
(b) Transitivity : If a →IS−A b and b →IS−A c, then a →IS−A c.
(c) Reflexivity : c →IS−A c.

Reflexivity is unconventional a property for an IS-A hierarchy. It is included
here because it helps keeping the number of inference schemes low (see later).

W is supposed to include (whether explicitly or via inference) all condition-
als induced by the ontology O. For example, if loud bell →IS−A bell is in O
then Heard(loud bell) → Heard(bell) is in W . Similarly, W is supposed to
include all conditionals induced by the causal statements in C. For example, if
On(alarm) causes Heard(bell) is in C, then On(alarm) → Heard(bell) is in W .

3 Patterns for inferring explanations

A set of patterns is proposed to infer explanations from premises C ∪O ∪W .

3.1 The base case

A basic idea is that what causes an effect can always be suggested as an expla-
nation when the effect happens to be the case:

If




α causes β

and
W 6|= ¬α


 then α explains β because possible {α}

3 α[b] denotes the atomic formula α and its (only) argument b.



Example. Consider a causal model such that W 6` ¬On(alarm) and O is empty
whereas

C = {On(alarm) causes Heard(bell)}
Then, the atom

On(alarm) explains Heard(bell) because possible {On(alarm)}

is inferred. That is, On(alarm) is an explanation for Heard(bell).

By the way, “is an explanation” must be understood as provisional. Infer-
ring that On(alarm) is an explanation for Heard(bell) is a tentative conclusion:
Should On(alarm) be ruled out, e.g., ¬On(alarm) ∈ W , then On(alarm) is not
an explanation for Heard(bell).
Formally, with Form = On(alarm) explains Heard(bell) bec poss {On(alarm)}:
C ∪O ∪W `C Form; C ∪O ∪W ∪ {¬On(alarm)} 6`C Form

3.2 Wandering the IS-A hierarchy: Going upward

What causes an effect can be suggested as an explanation for any consistent
ontological generalization of the effect:

If




α causes β[b]
and
b →IS−A c

and
W 6|= ¬α




then α explains β[c] because possible {α}

Example. C = {On(alarm) causes Heard(bell)} and O = {bell →IS−A noise}.
W contains no statement apart from those induced by C and O, that is:

W = {On(alarm) → Heard(bell),Heard(bell) → Heard(noise)}

Inasmuch as noise could be bell, On(alarm) then counts as an explanation for
Heard(noise).

C ∪O ∪W `C On(alarm) explains Heard(noise) bec poss {On(alarm)}

Again, it would take On(alarm) to be ruled out for the inference to be prevented.

Example. C = {On(alarm) causes Heard(bell)}

O = {bell →IS−A noise, hooter →IS−A noise}



W states that a hooter is heard (and that Heard(bell) is not Heard(hooter))
and additionally expresses the conditionals induced by C and O, that is:

W =





Heard(hooter)
¬(Heard(bell) ↔ Heard(hooter))

On(alarm) → Heard(bell)
Heard(hooter) → Heard(noise)
Heard(bell) → Heard(noise)





Even taking into account the fact that bell is an instance of noise, it cannot
be inferred that On(alarm) is an explanation for Heard(noise). The inference
fails because it would need noise to be of the bell kind (which is false, cf hooter).
Technically, the inference fails because W ` ¬On(alarm).

The next example illustrates why resorting to ontological information is essential
when attempting to infer explanations: the patterns in sections 3.2-3.3 extend the
base case for explanations to ontology-based consequences, not any consequences.

Example. Rain makes me growl. Trivially, I growl only if I am alive. However,
rain cannot be taken as an explanation for the fact that I am alive.

C = {Rain causes I growl}
W = {I growl → I am alive}

C ∪O ∪W 6`C Rain explains I am alive bec poss {Rain}

3.3 Wandering the IS-A hierarchy: Going downward

What causes an effect can presumably be suggested as an explanation when the
effect takes place in one of its specialized forms:

If




α causes β[c]
and
b →IS−A c

and
W 6|= ¬(α ∧ β[b])




then α explains β[b] because possible {α, β[b]}

Example. Consider a causal model with C and O as follows:

C = {On(alarm) causes Heard(bell)} and O =
{

loud bell →IS−A bell
soft bell →IS−A bell

}

O means that loud bell is more precise than bell. Since On(alarm) is an explana-
tion for Heard(bell), it also is an explanation for Heard(loud bell) and similarly
Heard(soft bell). This holds inasmuch as there is no statement to the contrary:



The latter inference would not be drawn if for instance ¬Heard(soft bell) or
¬(Heard(soft bell) → On(alarm)) were in W . Formally, with Form(loud) =
On(alarm) explains Heard(loud bell) bec poss {On(alarm),Heard(loud bell)}
and Form(soft) =
On(alarm) explains Heard(soft bell) bec poss {On(alarm),Heard(soft bell)}:
C ∪O ∪W `C Form(loud), C ∪O ∪W `C Form(soft), and
C ∪O ∪W ∪ {¬(Heard(soft bell) → On(alarm))} 6`C Form(soft)

3.4 Transitivity of explanations

We make no assumption as to whether the causal operator is transitive (from
α causes β and β causes γ does α causes γ follow?). However, we do regard
inference of explanations as transitive which, in the simplest case, means that if
α explains β and β explains γ then α explains γ.

The general pattern for transitivity of explanations takes two causal state-
ments, α causes β and β′ causes γ where β and β′ are ontologically related, as
premises in order to infer that α is an explanation for γ.

In the first form of transitivity, β′ is inherited from β by going upward in the
IS-A hierarchy.

If




α causes β[b],
β[c] causes γ,

b →IS−A c,

and
W 6|= ¬α




then α explains γ because possible {α}

Example. Sunshine makes me happy. Being happy is why I sing. Therefore,
sunshine is a plausible explanation for the case that I am singing.

C =
{

Sunshine causes I am happy
I am happy causes I am singing

}

W =
{

Sunshine → I am happy
I am happy → I am singing

}

So, we get:

C ∪O ∪W `C Sunshine explains I am singing bec poss {Sunshine}.

The above example exhibits transitivity of explanations for the simplest case
that β = β′ in the pattern α causes β and β′ causes γ entail α causes γ
(trivially, if β = β′ then β and β′ are ontologically related). Technically, β =
β′ is obtained by applying reflexivity in the ontology. This is one illustration
that using reflexivity in the ontology relieves us from the burden of tailoring
definitions to capture formal degenerate cases.



Example. Let O = {bell →IS−A noise} and

C =
{

On(alarm) causes Heard(bell)
Heard(noise) causes Disturbance

}

W states the facts induced by C and O, that is:

W =





On(alarm) → Heard(bell)
Heard(noise) → Disturbance
Heard(bell) → Heard(noise)





So, we get:

C ∪O ∪W `C On(alarm) explains Disturbance bec poss {On(alarm)}.

In the second form of transitivity, β′ is inherited from β by going downward
in the IS-A hierarchy.

If




α causes β[c],
β[b] causes γ,

b →IS−A c,

and
W 6|= ¬(α ∧ β[b])




then α explains γ because possible {α, β[b]}

Example. O = {loud bell →IS−A bell}

C =
{

On(alarm) causes Heard(bell)
Heard(loud bell) causes Deafening

}

W =





Heard(loud bell) → Heard(bell)
On(alarm) → Heard(bell)

Heard(loud bell) → Deafening





On(alarm) does not cause Heard(loud bell) (neither does it cause Deafening),
but it is an explanation for Heard(loud bell) by virtue of the upward scheme.
Due to the base case, Heard(loud bell) is in turn an explanation for Deafening.
In fact, On(alarm) is an explanation for Deafening by virtue of transitivity.

Considering a causal operator which is transitive would give the same ex-
planations but is obviously more restrictive as we may not want to endorse an
account of causality which is transitive. Moreover, transitivity for explanations
not only seems right in itself but it also means that our model of explanations
can be plugged with any causal system whether transitive or not.



3.5 Explanation provisos and their simplifications

Explanation atoms are written α explains β because possible Φ

as the definition is intended to make the atom true just in case it is successfully
checked that the proviso is possible: An explanation atom is not to be interpreted
as a kind of conditional statement. Indeed, we do not write “if possible”. The
argument in “because possible” gathers those conditions that must be possible
together if α is to explain β (there can be others: α can also be an explanation
of β wrt other arguments in “because possible”).

Using
∧

Φ to denote the conjunction of the formulas in the set Φ, the following
scheme amounts to simplifying the proviso attached to an explanation atom.

If

(
W |= ∧

Φ → ∨n
i=1

∧
Φi and

for all i ∈ {1, · · · , n}α explains β because possible (Φi ∪ Φ)

)

then α explains β because possible Φ

4 A formal system for inferring explanations

The above ideas are embedded in a short proof system extending classical logic:

1. Causal formulas
(a) (α causes β) → (α → β)

2. Ontological atoms
(a) If b →IS−A c then α[b] → α[c]

(b) If a →IS−A b and b →IS−A c then a →IS−A c

(c) c →IS−A c

3. Explanation atoms

(a) If




α causes β[b],
a →IS−A b, a →IS−A c

W 6|= ¬(α ∧ β[a])




then α explains β[c] because possible {α, β[a]}

(b) If

(
α explains β because possible Φ

β explains γ because possible Ψ

)

then α explains γ because possible (Φ ∪ Ψ)

(c) If

(
W |= ∧

Φ → ∨n
i=1

∧
Φi and

for all i ∈ {1, · · · , n} α explains β because possible (Φi ∪ Φ)

)

then α explains β because possible Φ



These schemes allow us to obtain the inference patterns described in the
previous section. E.g., the base case for explanation is obtained by combining
(2c) with (3a) (yielding another illustration of reflexivity in the ontology relieving
us from the burden of introducing further formal material) prior to simplifying
by means of (3c). Analogously, the upward case is obtained by applying (2c)
upon (3a) before using (3c).

A more substantial application is:

C =
{

α causes β[b]
β[c] causes γ

}

O = {b →IS−A c}

W =





α → β[b]
β[b] → β[c]
β[c] → γ





The first form of transitivity in Section 3.4 requires that we infer:

α explains γ because possible {α}

Let us proceed step by step:

α explains β[c] because possible {α} by (3a) as upward case
β[c] explains γ because possible {β[c]} by (3a) as base case
α explains γ because possible {α, β[c]} by (3b)

α explains γ because possible {α} by (3c) simplifying the proviso

5 A generic diagram

Below an abstract diagram is depicted that summarizes many patterns of inferred
explanations from various cases of causal statements and →IS−A links.

In this example, for each pair of symbols (σ1, σ2), there is only one “ex-
planation path”. E.g., we get α1 explains γ4 because possible {α1, γ1, γ4},
through α3 and γ1. Indeed, from α1 explains α3 because possible {α1} as well
as α3 explains γ1 because possible {α3, γ1} and
γ1 explains γ4 because possible {γ1, γ4}, we obtain
α1 explains γ4 because possible {α1, α3, γ1, γ4} (using transitivity twice).
Lastly, we simplify the condition set by virtue of W ` α1 → α3.

In other examples, various “explanation paths” exist. It suffices that the
inference pattern 3a can be applied with more than one “a”, or that transitivity
(3b) can be applied with more than one β. We have implemented a program
in DLV [8] (an implementation of the Answer Set Programming formalism [1])
that takes only a few seconds to give all the results s1 explains s2 bec poss Φ, for
all examples of this kind, including the case of different explanation paths (less
than one second for the diagram depicted below).
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6 Back to ontology

The explanation inferences that we obtain follow the patterns presented before.
The inference pattern (3a) is important, and, in it, the direction of the →IS−A

links a →IS−A b and a →IS−A c is important: Unexpected conclusions would
ensue if other directions, e.g., b →IS−A a and c →IS−A a were allowed.

We have considered ontological information in the most common form, as a
→IS−A hierarchy. A closer look at the process of inferring explanations reveals
that→IS−A links serve as a means to get another kind of ontological information
by taking advantage of the property of the unary predicates to “inherit upwards”.
The basis for an explanation are causal statements, and these apply to facts or
events [9]. Indeed, the ontological information which is eventually used in the
process of inferring explanations is about facts or events, through the “inherit
upwards” property. We eventually resort to an ontology over events.

Example. Getting cold usually causes Mary to become active. I see Mary jog-
ging. So, Mary getting cold might be taken as an explanation for her jogging.
This holds on condition that the weather is possibly cold, otherwise the inference
fails to ensue: In the presence of the information that the weather is warm, Mary
getting cold is inconsistent.

C = {Mary was getting cold causes Mary is moving up}



O = {Mary is jogging →IS−A Mary is moving up}

W =
{

Mary was getting cold → Mary is moving up
Mary is jogging → Mary is moving up

}

If allowing such an ontology over events as in O, we could use an extended ver-
sion of our proof system to infer the atom

Mary was getting cold
explains Mary is jogging bec poss {Mary was getting cold}.

That is to say, Mary was getting cold would be inferred as an explanation
for Mary is jogging. Also, the inference would break down if for example both
Warm weather and Mary was getting cold → ¬Warm weather were in W .

7 Conclusion

We have provided a logical framework allowing predictive and abductive rea-
soning from causal information. Indeed, our formalism allows to express causal
information in a direct way. Then, we deduce so-called explanation atoms which
capture what might explain what, in view of some given information. We have
resorted to ontological information. Not only is it generally useful, it is key in
generating sensible explanations from causal statements.

In our approach, the user provides a list of ontological atoms a →IS−A b
intended to mean that object a “is a” b. The basic terms, denoted α, β are then
concrete atoms built with unary predicates, such as P (a). The user also provides
causal information in an intuitive form, as causal atoms α causes β (which can
occur in more complex formulas).

This makes formalization fairly short and natural. The ontology provided is
used in various patterns of inference for explanations. In our approach, such infor-
mation is rather easy to express, or to obtain in practice due to existing ontologies
and ontological languages. If we were in a purely propositional setting, the user
should write Own small car →IS−A Own car, Own big car →IS−A Own car,
and, when necessary Heard small car →IS−A Heard car, Heard big car →IS−A

Heard car, and so on. This would be cumbersome, and error prone. This con-
trasts with our setting, which, moreover, is “essentially propositional” in that,
for what concerns the causal atoms, it is as if Own(small car) were a proposi-
tional symbol Own small car, while, for what concerns the ontology, we really
use the fact that Heard and Own are predicates.

As always with knowledge representation, some care must be exercized as to
the vocabulary used. E.g., minimization formalisms such as circumscription or
predicate completion (see logic programming and its “offspring” answer set pro-
gramming) require to distinguish between “positive notions” (to be minimized)
from negative notions: Writing Fly vs. not F ly yields a different behavior than
writing not Unfly and Unfly. Here, we have a similar situation, since the infer-
ence patterns would not work properly if we were to use predicates that do not



“inherit upwards” with respect to the ontology provided: We should not expect
to infer Dislike small car →IS−A Dislike car, since Dislike obviously fails to
“inherit upwards” when the ontology contains small car →IS−A car.

It does seem to us, that what we propose here is a good compromise be-
tween simplicity, as well as clarity, when it comes to describing a situation, and
efficiency and pertinence of the results provided by the formalism.

Our work differs from other approaches in the literature in that it strictly
separates causality, ontology and explanations. The main advantages are that
information is more properly expressed and that our approach is compatible
with various accounts of these notions, most notably causality. In particular, we
need no special instances of α causes α to hold nor γ (equivalent with β) to be
an effect of α whenever α causes β holds (contrast with [3–7, 10] although in
the context of actions such confusion is less harmful). In our approach, these are
strictly limited to being where they belong, i.e., explanations. Space restriction
prevent us from giving more details on the differences with other approaches.
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