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Abstract A (general) preferential entailment is defined by a “preference rela-
tion” among “states’. States can be either interpretations or sets of interpreta-
tions, or “copies’ of interpretations or of sets of interpretations, although it is
known that the second kind and the fourth one produce the same notion. Circum-
scription isaspecial case of the simplest kind, where the states are interpretations.
It is already known that alarge class of preferential entailments where the states
are copies of interpretations, namely the “cumulative” ones, can be expressed as
circumscriptionsin agreater vocabulary. We extend thisresult to the most general
kind of general preferential entailment, the additional property requested here is
“loop”, a strong kind of “cumulativity”. The greater vocabulary needed here is
large, but only avery simple and small set of formulasin this large vocabulary is
necessary, which should make the method practically useful.

1 Introduction

Preferential entailments are useful in knowledge representation. Four kinds are intro-
ducedin Krausand al. [7], whichin fact reduce to three. Till now, no system computing
efficiently the most general kindsis known, but systems do compute circumscription, a
particular case of the simplest kind of preferential entailment. Costello [4] has shown
how, contrarily to an affirmation in [7], an important subclass of an intermediate kind
can be tranglated into circumscription, by extending the vocabulary. We show that an
important subclass of the most general kind can also be translated into circumscription
by modifying the vocabulary. We begin with notations (§2), definitions (§3) and useful
known results (§4). Then, we need two technical definitions: an auxiliary vocabulary
in which the theories of the original language correspond to single interpretations in
the new one (§5); and a simplified preference relation for a large class of preferential
entailments (§6). Finally, we describe the trandlation (§7) and detail an example (§8).

2 Notations and framework

e We work in a propositional language L. As usual, L aso denotes the set of all the
formulas. V(L ), the vocabulary of L, denotes a set of propositional symbols. Letters
v, denote formulasin L. A formula will generally be assimilated to its equivalence
class. Letters such as 7 or C denote sets of formulas (i.e. subsets of L). Two logical
constants T and _L denote respectively the true and the false formulas.

o Letters p, v denote interpretations for L, identified with subsets of V(L). u = ¢
and = T are defined classically. If My € M, M; = 7 means i = T for any



pw € My. For aset E, P(E) denotes the set of the subsets of E. The set P(V (L)) of
the interpretationsfor L isdenoted by M. A model of 7 is an interpretation . such that
wET,M(T)and M (y) denote respectively the sets of the models of 7 and .

T =, 7 ET,andTh(T) aredefined classicaly. A theory is asubset of L closed
for deduction, T denotestheset {7 CL /7 =Th(7)} of thetheoriesof L. If 71 is
atheory,weget7 C 7, iff 7, = 7,forany 7 C L.

e Atheory C € T iscompleteif Vo € L, ¢ € Ciff ~p ¢ C. We denote by C the
set of al the complete theories of L. Th(u) denotes the set of the formulas satisfied
by p. For any subset M of M, Th(M1) = {¢ / M1 |= ¢} = (,epm, Th(n). This
ambiguoususeof T'h and of |= (for formulasor interpretations) isusual. Forany 7 € T,
T = Ncec, c=1 C. T'h defines a one-to-one mapping between M and C: T'h(n) € C
forany u € M. If V(L) isfinite, © denotes the canonica one-to-one mapping from
P(M)toL:foranyM; C M, ©(M,) istheformulasuch that M(©(M 1)) = M.

e T,C,M,Th,© and = should be indexed by L. To keep the notations readable, we
will denote two languagesby say L and L’, and all what concernsL will be denoted as
above, whilewewill use T',C’,M’, Th’, ©" and |=’ for what concernsL’.

3 Thevariouskinds of preferential entailments

Definition 3.1. A pre-circumscription f (inL) isan extensive(i.e., f(7) 2 7 for any
7) mapping from T to T. For any subset 7 of L, we use the abbreviation f(7) =
f(Th(T)), assimilating a pre-circumscription to a particular extensive mapping from
P(L) toitseft. Wewrite f(¢) for f({¢}) = f(Th(p)). O

Definitions3.2 1. A set of states Sis a set of “copies’ of elements of T (or equiva
lently [3] aset of “copies’ of subsets of M): there exists amapping [ from Sto T
and, forany 7 € T, thesubset | =1 (7) of Sisthe set of the copiesof 7.

2. Asusual, wedefinel(S) = {I(s)}ses ={7 €T /171 (T) #0}.Forany T C L,
S(7T) isthe subset of Sdefinedby S(7) ={s € S/ Il(s) =T}.

3. Forany 7 C L wedefinethesubsetof T:W(7T) = {71 €T /T C 7T,}.We
write W (y) for W({¢}). Noticethat we get S(7) = I~ 1(W(T)).

Definitions 3.3 1. A general preference relation <, is a binary relation over S. For
any 7 € T, we define the subsets S (7)) of Sand W (7) of T as follows:
S.,(T)={se€S(T) /[ s1<gsfornos; € S(T)},andW (7) =1(S<,(T)).

2. The general preferential entailment f < isthe pre-circumscription defined by
I<,(T) = ﬂ?’leWﬁ(T) Tiforany7 C L.

This is the definition of [3, Definitions 3.1, 3.2], originating from [7, Definition
3.11]. Particular cases give the most classical kinds of preferential entailments:

Definitions3.4 1. If I(S) C C (instead of [(S) C T), let uscall the general preference
relation amulti preference relation, which we will denote by <, instead of <, and
letuscall f-  amulti preferential entailment.

! For areader familiar with [7], a pre-circumscription is an inference operation satisfying the
full (or theory) versions of reflexivity, left logical equivalence, right weakening and AND.



2. If S=T and ! = identity, let uscal <, asimplified general preference relation.
3. If S=Candl = identity (i.e. restrictions 1 and 2 apply), then the rel ation, defined
in C, iscalled apreferencerelation < and f is called a preferential entailment.

As we work in propositional logic, C can be replaced by M and T by P(M) (see
e.0.[3]). Point 1 originatesfrom [7, Definition 5.6] and point 3 from [18]. The notion of
genera preferential entailment has been qualified as “ cumbersome” in the introducing
paper [7]. Then, this notion has been tamed in varioustexts[1,2,3,6,13,10,14].

The best known kind of preferential entailment is circumscription:

Definition 3.5. P,Q, Z isapartition of V(L ). The symbolsin P, Z and Q are respec-
tively circumscribed, varying and fixed. We define the preference relation < (p g, z) in
Mby: i <pqz vifPNpCPNrandQnu=Qnuv (C:strictinclusion).

The circumscription CIRC(P, Q, Z) isthe preferential entailment f'<(P,Q,Z)'
Definition 36. # C L, V(L) = QU Z (disoint union), P’ = {P/} ce is a set
of distinct propositional symbols not in L. The formula circumscription of the set of
formulas @, with Q fixed and Z varying, is defined asfollows, forany 7 C L:

CIRCF(9,Q,Z)(T) = CIRC(P',Q,Z)(T U{¢ & P,},ca) NL.

CIRC isdefined in the greater languageL’: V(L) = V(L) UP'.

Remark 3.1. CIRCF(®,Q,Z) isthe preferential entailment f~ in L associated with
the preferencerelation < 4.q,z) definedin M by:
b =@wqz v if Th(p)N® CThv)N® and QNu=QNv.O

These are the usual propositional adaptations[17,12,4] of the original predicate cal-
culus versions [8,9,16]. Circumscription is a preferential entailment (Definition 3.4-3)
and various systems make useful automatic computation for propositional circumscrip-
tion?. Thus, it is interesting to express more complex formalisms in terms of circum-
scription. This has aready been done for multi preferential entailments [4] (see also
[13,11]), what we do now is to extend thistechniqueto general preferential entailments.

4 A reminder: characterization results

Here are known results from [7,17] and other texts (see [13,14] for precise references).
We consider now that V(L ) isfinite.
(Noticethat in this case we can restrict our attention to finite sets S[7].)

Definition 4.1. A general preference relation <, is safely founded (sf), if for any s €
S(7) -S4, (7), thereexists s; € S¢,(7) suchthat s, <, s.

Definitions 4.2 Here are various properties a pre-circumscription may possess. 7 1,7 o

arein T (remind that intersecting theories correspondsto adisunction \ of formulas):

Case reasoning: f(T1NTo) E f(T1)N f(T2). (CR)

2 Here are three examples: LWB (http://lwbwww.unibe.ch:8080/LWBtheory.html), SMODELS
(http://www.tcs.hut.fi/Software/smodel /), and DLV (http://www.dbai .tuwien.ac.at/proj/div/).



Digjunctive coherence: fF(THUf(T2) Ef(T1NTy). (DC)

Cumulative transitivity: fT"CH(T), f(TUT")CFf(T). (CT)
Cumulative monotony: If 7" C £(7), f(T)C f(TUT"). (CMm)
Cumulativity: If 7" C f(7), then f(T) = f(TUT"). (CuUMU)

T2 C f(T1),,Tn C f(Tn-1),T1 C f(Tn), then f(T1) = f(T,). (LOOP,)
(Loop): For any integer n > 2, f satisfies (LOOP,,). (LOOP)
Preservation of consistency: If f(T1)=Th(L)=L,then7; =1L. (PC)

Proposition 4.1. For pre-circumscriptions. 1. (CR) implies (CT).
2. As(CUMU) is(CM) + (CT), in case of (CR), (CUMU) and (CM) are equivalent.
3. (LOOP,) is equivalent to (CUMU), (LOOP,, , 1) is stronger than (LOOP,,).
4. (CR) and (CUMU) imply (LOOP). O

Theorem 4.1. 1. For anygeneral preferential entailment f -, thereexistsa simplified
general preferencerelation <, suchthat f- = f<_ . ‘
2. Apre-circumscription f satisfies (CT) iff it isa general preferential entailment.
3. A pre-circumscription f satisfies (CUMU) — respectively (LOOP) — iff it is a gen-
eral preferential entailment defined by a relation <, satisfying (sf) — respectively a
transitive and irreflexive relation (i.e. a strict order) <, satisfying (sf) (cf point 5).

. A pre-circumscription satisfies (CR) iff it isa multi preferential entailment.

. A pre-circumscription satisfies (CR) and (CUMU) iff it is a multi preferential en-
tailment defined in a finite set Sby arelation < ,,, whichisa strict order (on afinite
set thisimplies (sf) and, contrarily to 3 for (LOOP), (sf) alone suffices here).

6. A pre-circumscription satisfies (CR) and (DC) iff it is a preferential entailment.

7. Apreferential entailment satisfies (CUMU) and (PC) iff it is defined by a preference

relation < which istransitive and irreflexive, iff it is a formula circumscription. O
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5 Modifying the vocabulary

Definitions5.1 L and L’ are two languages, f is a mapping from T to T and f/ is
a pre-circumscription defined in L. We say that f is obtained from f’ by (Def<=) —
respectively by (Def=4) —if there exist two mappingsb; from T to T’ and b3 from T’
to T such that the three conditions (=1-3) — respectively the four conditions (=1-4) —
below are satisfied and such that we have, forany 7 € T:  f(7) = ba(f'(b1(T))).

1. by preservesinclusion:

forany 7,,72inT,if 71 C T, thenby(7T1) C b1(72), =1)
2. b1 o by iscontractiveon the set f/(b1(T)):

b1(b2(f'(01(7)))) C f'(b1(T)) forany 7 € T, =2)
3.bao fob;isextensive:forany 7 € T, T C bo(f'(b1(7))). =3)

4. by preservesinclusionontheset f/(b1(T)): Forany 71,72 in T,
if f/(01(71)) € f'(01(72)), thenba(f'(b1(71))) C ba(f'(01(72))). =4)

=3) meansthat f = by o f’ 0 by isapre-circumscription. Notice that we need only
to know the value of b, onthe subset f/(b1(T)) = {f'(b+(7)) /T € T} of T'.
The following preservation results are immediate:



Proposition 5.1. 1. If f’ isapre-circumscription defined in alanguage L’ which sat-
isfies (CUMU) —resp. (LOOP) —and if f is defined from f’ by (Def<), then f isa
pre-circumscription defined in L which satisfies (CUMU) —resp. (LOOP).

2. If f' is a pre-circumscription defined in a language L’ which satisfies (CT) —
respectively (CM) — and if f is defined from f’ by (Def<4), then f is a pre-
circumscription defined in L which satisfies (CT) — respectively (CM). O

6 A useful smplified general preference relation

Definition 6.1. [7] Let f be a pre-circumscription. We define the following general
preferencerelation <% 1.S= f(T) = {f(T) / T €T},
2.listhemappingfrom Sto T defined by I(f(7)) = f(7)forany 7 € T.
3. f(T1) <§™ f(To)if f(T1) # f(T2) andthereexists 73 € T such that
f(T1) = f(T3)and T35 C f(T2).

Theset f(T) isthen the set denoted by [(S) in Definition 3.3 for the general preference
relation defined here. The relation </ isintroduced in [7, Theorem 3.25] in order to
prove“the hard part” of Theorem 4.1-3for (CUMU). Therelation < %™ can bereplaced
by asimplified general preferencerelation (see dso [1,2]):

Definition 6.2. Let <, be a general preference relation (defining thus a set S and a
mapping [). We define the following simplified general preferencerelation < ;: for any
71772 ceT,T1 <72 if 1.7, ZTh(L) and 75 ¢ Z(S)U{Th(L)},OI’

2.T1=1(s1), T2 =1(s2) # Th(L),and s1 <, sz, for some sy, sz in S.

Proposition 6.1. If a general preference relation <, is such that the mapping [ isin-
jective, we have, forany 7 € T, W (7)) U{Th(L)} = W, (7)U{Th(L)}. Thus
wehave f- = f-, where <, isthesimplified general preference relation defined from
<, asin Definition 6.2,

Proof: As [ is injective, for any sq1,s2 INS, s1 <4 sg iff there exist 77 and 75 in
I(S) = f(S)suchthat sy = (7 1), s2 =1(T2)and T <5 To. Moreover Th(L) <; T
forany 7 ¢ I(S),and Th(L) €e W(T) forany 7 € T. Thus, forany 7 € T, we have
W2 (T)U{Th(L)} = W (T)U{Th(L)}. ASTh(L) € W(p) forany ¢ € L,
we get that if <; and <5 are two general preference relations such that W <, (7) =
W_,(T) U{Th(L)},then f~, (T) = f~,(T). Thusweget here f = f- .0

Definition 6.3. The mapping ! of the relation <" is injective. We can thus consider

the simplified general preference relation, that we call <., s, defined from <4 asin
Definition 6.2. We call <, ¢ the normal general preference relation associated to f. O

We get fﬂzm = fx,,, from Proposition 6.1.

As V(L) is finite, we will now generally replace T by L. W () will be a set of
formulas, any ssimplified general preference relation will be abinary relation in L and,
if fisapre-circumscription, f(¢) = o will replace f(¢) = Th(v).



Proposition 6.2. If f satisfies (CT), the normal general preference relation <, asso-
ciated to f isthe binary relation described as follows: for any ¢4, @2 inL,

©1 =<nf P2 iff lyp;=_Llandpy #pforanyp €L, or
2. ©2 7£J_, Y1 #(pg and there exist ©3, P4 such that f(cpg) =1, f(§04) =2, P2 ':gog.

Proof: This is a consequence of Definitions 6.1 and 6.3, taking into account two
peculiarities of <. Firstly, the set I(S) = f(L) associated to the general prefer-
ence relation <™ contains L: as [ is a pre-circumscription, we have f(1) = L.
Secondly, we have never 1 <%™ . Indeed, 1 <% o iff f(1) # f(p) and
there exists ¢; € L such that f(¢1) = L and f(¢) = ¢1. From (CT) we get then
F(f(v) = flo) E flp1),ie f(p) =L = f(L): acontradiction. O

These results show that all the general preference relations considered in [7] could
have been replaced directly by a simplified general preferencerelation.

Proposition 6.3. If f isa pre-circumscription satisfying (CUMU), then it is a general
preferential entailment which can be defined by <,.¢: f = f<, ;.
More precisely we have, for any o € L: W< (p) = {f(¢), L}.O

We omit the proof, asit is an adaptation of a proof givenin [7, proof of Theorem 3.25],
establishing that we have in this case W _sim (p) = {f(¢)}. The fact that we use a
simplified general preference relation simplifies even the matter. Notice also that, as in
[7, proof of Theorem 3.25] for <", we get that in this case <., 7 is (sf).

Here is another result extrapolated from [7], which will be useful in our trandation
of some general preferential entailmentsin terms of circumscription (cf the proof of [7,
Theorem 4.9], which givesthe result for what concerns < ’Jilm and itstransitive closure):

Proposition 6.4. A pre-circumscription f satisfying (CUMU) satisfies (LOOP) iff the
transitive closure <, of the normal general preference relation <,y associated to f
isirreflexive. Inthis case, i.e. if f satisfies (LOOP), we have W -, . (¢) = W=—(¢) =

{flp), L}, thus f = fo,, = fz—. O

7 Finitegeneral preferential entailmentsas circumscriptions

Theorem 7.1. A pre-circumscription f in L satisfies (LOOP) iff it can be ex-
pressed by (Def<) — or by (Def=4) — from a formula circumscription f’ =
CIRCF(&#',0,V(L")) definedin alanguageL .

By Proposition 6.4, “A pre-circumscription f” could be replaced by “A general
preferential entailment f”. Remind a similar result for multi preferential entailments
satisfying (CM) ([11, Theorem 31], extrapolated from [4, Theorem 15]). The reason
why we need (LOOP) here instead of just (CUMU) is that we must get a strict order
relation in order to get aformulacircumscription (see Theorem 4.1, points 3, 5 and 7).

Constructive proof: (if): Any formulacircumscription f satisfies (CUMU) and (L OOP)
from Prop. 4.1-4 and Th. 4.1 (-6,7). Then f satisfies (LOOP) from Prop. 5.1-1.




(only if): f = f=from Proposition 6.4, <, s being described in Proposition 6.2. <, ¢
is a strict order from Proposition 6.4 and in fact this proof works for any simplified
general preferencerelation <, suchthat f = f~_ and whichisastrict order. We define
(1) alanguage L such that there exists a one-to one mapping p fromM to V(L ') and
(2) aone-to one mapping b fromP(M)toM’ = P(V(L")):

Forany n CV(L), p(n) =P, € V(L) 1)
ForayM; CM, b(Mi)=pM —M)={P, e V(L) /peM-Mi}. (2

Then, we define (3) a one-to-one mapping b from L to
Lo ={¢' e L'/TW(¢') € C'} = {Aprep P' N Nprevwy-p ~P/P S V(L')}
(L isthesubset of L’ correspondingto C’, inthe same way than L’ correspondsto T')
and (4) amapping b, fromL toL’. Forany ¢ € L:

b(p) = ( A P,;) A ( A ﬁp,;) )
P/ eV(L') / peM—M(yp) P eV(L') / neM(p)

hig)= N\ P (4)

HEM—M(p)

Thus, M’(b(y)) is the singleton {b(M(y))}, where b(M(y)) = {P,/p€M~—

M(p)} = {P,/ 1 € M(—yp)}. Here is a feature of these mappings, which gresatly

simplifiesthe translation: forany M 1,M2 C M: M1 C M iff 5(M2) C (M), i.e,
forany o, inL, o ¢iff 5(M(1)) C b(M (). ®)

From (4), b1(y) is the formulawhich has the set {1’ / b(M(¢)) C p/ C V(L')} for
set of models. Thanksto (5), we get that b1 () is the formula such that M’ (b (¢)) =
{b(M () / ¥ € W(p)}: bi(y) isanimage of the set W(y) inL’. Asb; isinjective,
it defines a one-to-one mapping between L and theset b1(L) = {b1(¢) / p € L} =
{Apecp P’/ P CV(L")} of al the conjunctions of atoms of L.

We must now come back from L’ to the original languageL .
The one-to-onemapping b ! from M’ to P(M) can be described as follows (cf (2)):

b W) ={b" (B / PLe V(L) —p'y={u/ P, e V(L) - '}
We define the mapping b, from L’ to L by the following two equivalent equations:

forany o' € L', ba(p') = by A P). (6)
P/EV(L/)7 (PI‘ZIP/

M(b2()) =0 ({P, / ¢ E P} ={neM /¢ P}). (1)

From (4) and (6) we get, forany ¢ € L : ba(b1(p)) = . (8)

The restriction of b, to the subset L of L’ is (b)~!, a one-to one mapping from L [,
onto L. Indeed we get, P’ ranging over V(L '):

ifo'ele, theng'= A P'A \ -P. 9)
W":/P, W’\#/P/



If o' € L, thenM’(¢’) isthesingleton M’ (') = {p/'} for / = {P' e V(L") /¢’
P}, andweget: M(ba(¢')) = b= 1(i').
It is convenient to introduce the “exhaustive conjunction” ¢’ = Apcyr,) P
We suppose here that ¢’ = ¢} Vv ¢/, with ¢} € L. Thismeans that there exists a
subset P’ of V(L') suchthat ©" = Apicywn_p P’ A (Apicpr =PV Aprepr P').

Weget: if ¢ =) V' with ) Ly, then ba(¢') = (B)'(¢})  (10)

From (7), we get that by preservesV : ba(p] V ©h) = ba(¢)) V ba(h). (11)

We get then, reminding b2 = (b) "' onL: ba(¢') = Verer,, orrpr (B)~L(l).
We define the following preferencerelation <’ on M’ (remember section 2 for ©):
forany ', v/ inM’, i/ <" v iff O (1)) <, OB (). (12)

Thus <’ istheimagein M’ of therelation <, onL. Itisastrict order and there exists a
set ¢’ of formulasin L’ suchthat f~, = CIRCF(®',0,V (L)) (cf Theorem 4.1-7).
We know from (5) and (4) that b1 () has for set of models the set associated to the
set W(p) by b (or b if we consider L ¢ instead of M). Thus, W < _ () isthereverseim-
age of theset M7, (b1(¢)): W<, () = (b) 1 (0" (ML, (b1(9)))) = {(0) *(¥L)/ i €
Lo, M (¢l) = {/}withp' € M, (b1(¢))}. From Definition 3.3 we have, for any
¢ €L, f<.(¢) = Vgew. (p) 1. We get thus, from the definition of <': for any
. € Li, theonly model 11/ of ¢!, isin M. (b1 () iff the formula (b) ~*(¢,) isin
W__(p). As isin L., weget (see (9)): (5) (L) = ba(,). We get then
F< (@) =Vorew_ (5 91 = Vorery, with M/ (p))={w'} and weM, (ba(p)) 02(22)-
From (11) weget f~_(¢) = bQ(\/«p’CGLE with M/ (pf)={p'} and p/ €M’ , (b1(¢)) we)-

We get then f<. (@) = ba(fL: (b1(9))).
If we choose <, as our <, we get W=—(¢) = {L, f(¢)} from Proposition 6.4.
Thus, M </ (b1 (y)) asat most two elements, V(L") and the subset of . of V(L") which

is the only other model of f~/(b1(y)), if thereis another model. As moreover we can
apply (10) in this case, these peculiarities greatly ssimplify the effective computation.

It remainsto check the conditions. (=1): ¢ = ¢ iIff M(¢) C M () iff M=M (¢)) C
M — M (y) and, from (4) we get that if M — M (¢)) C M —M (), thenby () E' b1 ().

(2): We prove that b; o b, is weakening on L’. For any ¢’ € L', we get
b1(b2(#") = Aprevw), orrp P from(4) and (6), thus " |=" by (b2(¢")).

(23): Forany € L, we get M(ba(f'(b1(9)))) = {n € M / f'(ba(9)) B PL}
from (7). As f’ is a pre-circumscription, we have f'(b1(¢)) ' b1(v), thus we get
MB2(f' (b)) € {u € M / bi(p) & F,}. Now we have M (b2(bi (i) =
{1 €M / bi(p) ¥ P} Thus we get M(ba(f'(b1())) € M(ba(bi(9))), i.e:
ba(f'(01(9))) [ ba(b1 (). 1., from (8): ba( ' (b1(9))) = .

=4): FromM (b2 (¢')) = {p € M / ¢' |£" P} (7) we get that, if ¢’ =" ¢/, then
we have by (') ' ba(y').



Asthefour conditions are satisfied, the trand ation preserves (LOOP) and also (CM)
and (CT) (Proposition 5.1). The preservation of (CT) isinteresting: from Theorem 4.1-
2,if f/ isagenera preferential entailment, and if f is defined from f’ as here, then f
isagenera preferential entailment. Thus this translation preserves the main properties
which can be preserved in this case. Noticefinally that, asthe proof of the“if side” does
not require condition (=4), we can formulate the theorem with or without (=4). O

A consequence of this proof is the following result:

Corollary 7.1. A pre-circumscription satisfies (LOOP) iff it is a general preferential
entailment defined by a simplified general preference relation which isa strict order. O

We do not know what happens if V(L) isinfinite. A characterization of formula
circumscription is known, but (sf) aloneis not enough [12]. Moreover, b 1, b, should be
defined for each 7 € T and not only for ¢ € L, which would complicate the matter.

Notice that we could use aslightly smaller vocabulary L/, starting fromthe set f(L )
instead of the set L, and from <% instead of =<, ;. However, this would complicate
very seriously the definitions of b, and b, and we would loose the main advantage of
our tranglation, the easy and natural definitionsof b, and bs.

The characterization result extends as followsto general preferential entailments:

Theorem 7.2. A pre-circumscription f in L satisfies (CT) iff it can be expressed by
(Def=4) from a preferential entailment f/ = f~. defined in alanguageL’.

Proof: Notice that V(L) must befinite, as for Theorem 7.1 and its corollary.

if: Preferential entailments satisfy (CT), thus f satisfies (CT) from Proposition 5.1,
notice however that (Def =) would not suffice here.

only if: If f satisfies (CT), it isagenera preferential entailment defined e.g. by the
simplified relation < ; introduced in [10, Definition 5.7]. We defineL’, b, by, b2 and the
preferencerelation <’ in L’ asin the proof of Theorem 7.1, <’ being defined from < ¢
exactly asin (12) from < ;. From the properties of b; and b2 (mainly from (11)), we get
then, asin the proof of Theorem 7.1: f(y) = ba(f</(bi(p))) forany p € L. O

Thisresult adaptsto finite general preferential entailment the characterization result
[13, Theorem 4.8 and Preservation result 6.21] showing how to express any finite multi
preferential entailment as a preferential entailment in a greater language.

8 A detailed example

Example8.1. V(L) = {P}, f = f<, where <, isdefinedby 1. <, Pand L <, -P.

Weget f(¢) = Lifpe{L,P,-P}and f(T) =T anddso <= <, =<pjy= <nys.
f fasifies(CR): f(P Vv —P) }~ f(P)V f(—=P). Thusf is one of the simplest examples
of a genera preferential entailment which is not a multi preferential entailment. It is
easy to check that f satisfies (LOOP) here, thus a'so (CUMU) (cf Theorem 4.1-3).

As f satisfies (LOOP), we apply Theorem 7.1, defining <’ from <,=<,= <, .
We define p and V(L') as follows: p(0) = P}, p({P}) = P{, V(L") = {F}, P},



L] PM) M’ Lo (L) CLT] [ePL)] [[€PL)]
e || M(p) | [b(M(¥))] blw) bi(y) W(p) W<, (p)
T [ {0,{P}} 0 |-PLA-P]] T {T.P,-P, L} {T,L}
P {{P}} || {F5} | POA—P P, {P, L} {L}
-P|| {0} {P} | -PoAP P {-P, L} {1}
1 0 (P, P} PyAP, | PyAP] {1} {1}

Tablel. Computation of b; [andof W(y) and W< (¢)] foreachp €L

getting M’ = {0, {P}},{P]},{P}, P{}}. Table 1 describes b and b;. We get then <’
described asfollowsinM': { P}, P{} <" {P}}, {P}, P{} <" {P{}.

Weget W_(T) ={T,L}andW_/(p) = {L}forp e {P,-P, L}.

Using the method given in [15], we get a set ¢’ of formulas to circumscribe: We
define the greatest pre-order (reflexive and transitive relation) <’ on L', satisfying
(0 < v < and not o/ <! ) (P, Py < {Pg) (PG, Pl < (P,
{P} = {P{}, {P]} =<' {P}} and i/ =" 1. Then for each 1/ € M’, we define the
formulay’ (') € L’ having for set of models 11" and its successors for <, getting a set
@ = {g(0),¢'({Pg}). ¢ ({Py. P{})} suchthat f' = for = CIRCF(®',0,V(L")
(@' isoptimal in cardinality for describing f/ as aformula circumscription):

¢’ (1) M(¢' (1))
¢'(0) = ~Fy A =Py {0}
' (R} = ¢ ({P}) = =(Fy < Pp) {{F}, {P}}
¢ ({ R, P} =KV R o) AP} (R, Pty

Aswe get ¢’ (0) = —'({ P}, P{}), the formula ¢’ (D) (or equivalently -’ (0)) is
“fixed” in the circumscription [5], which can help the computation. It is easy to check
that this is always true (adding disunctions of formulas to a set does not modify the
circumscription of the set of formulas[15]): the formulaassociated to the set of models
M’ — M’(b(f(L)) isaways obtained by the construction, while the formula associated
to the complementary set M’ (b(L)) is the digunction of the other formulas obtained.

Table 2 describes f/ and b,. Only the framed values are used by the method. The
first column givesthe formulas p’ € L’ (shortly framed when ¢’ isintheset b1 (L), i.e.
isaconjunction of atoms). The second column describes f' = CIRCF(¢',0, V(L")):
in fact, we only need the (framed) values of f’(y’) for the four valuesin b1(L). The
next three columns give respectively M’ (¢'), M (ba(¢')) and the formulabs(¢’) € L
(we need only to consider the two formulas ¢’ in the set f/(b1(L)), framed in the f’
column, we have made this apparent by long framesin the ¢’ and b, columns).

From the values of b, () for the four € L (Table 1), we compute bo(f/(b1(v))),
and check that we getindeed b2 (f/(b1(p))) = f(v) [f(p) = V¢ew<q(¢) Y]

9 Conclusion and Per spective

We have extended the “expressive power of circumscription”, by showing that not only
cumulative multi preferential entailments as shown by Costello [4], but also general



L €] (W) EPMIT [€L]

¢ ') M () Mb2(e))]  ba(¢)
T Py < P[0 4P {PLY, (P, P {0, P} T
PV P [TRINPL| {{F). (P). (Ps, P} | {0, {P)) T
PV-P | Bye Pl {0 (P} (R P | {0.{P)) T
SPOVH | Boe Pl {0{P (RGP | {0.{P)) T
SP{V-Pl SR VoP| (0B (P | {0.(P) T
P FAP| (PP P | {{PY) P

P FoAPL]| (P (PSP {0} -P
Pel | PeP|  {0{PPFY | {0(P})] T
F&P | BeP | {RLPY) | {0.(P) T
P P {0.P(}} {0.{P}} T
P P {0.{Pe}} {0.{P}} T
\rAP]|[PoA P {P5, P} oy L
PiA-P | PyA-Pf (P} {ry P
~PyAP] | =Py AP (P {0} P
SPyAP | Py A-P {0} {0.(Py} T
1 1 0 1

Table2. Theorem 7.1 applied to example 8.1 (only the six framed computations are used)

preferential entailments satisfying (LOOP), can be trandated into circumscriptionsin
another vocabulary. These various kinds of preferential entailment are introduced in
Krausand al. [7]. In order to achieve this trandlation, we needed two results. Firstly, the
notion of general preferential entailment, asintroducedin[7], isoverly general [10]: we
do not need copies of theories (or equivaently, of sets of interpretations). We can define
therelationinthe simpler set of thetheories. Doing this, we have simplified someresults
in [7]: cumulative inferences correspond to general preferential entailment defined by
asimplified relation satisfying (sf), aso known as “smooth” (aresult aready given in
[1,2] in much more complex ways). Secondly, we have described a modification of the
vocabulary which allows to transpose any genera preference relation among theories
into a preference relation among complete theories (or among interpretations). This
method needs a huge auxiliary vocabulary, however, only a very simple, and small,
subclass of formulas in the new vocabulary (the conjunctions of atoms) needs to be
considered. Moreover, the tranglation formulas from the old vocabulary to the new one
and back are easy to compute. Thus, the method should be really applicable.

These results should have applications in helping the automatic computations of
non monotonic formalisms. The modification of vocabulary introduced here could have
other applications, asit is rather general, and relatively simple. Also, the simplification
of the originally overly complex notion of general preferential entailment should help
future studies on the subject: it is much easier to work with relations among theories
that with relations among arbitrary sets of copies of theories. Finaly, the trandation
results given here should also have real applications. Thisis obvious for the result a-
lowing to trandate any finite general preferential entailment satisfying (LOOP) into a
circumscription. Indeed, the work on automatic computation of circumscription is still



very active, and our work shows that any progress could be applied, not only to cumu-
lative preferential entailments, as already known, but aso to the strictly more genera
notion of general preferential entailment satisfying (LOOP). Also, the result showing
how to express any finite cumulative general preferential entailment (ayet strictly more
general notion) interms of preferential entailment (where the relation is directly among
interpretations) should have applications, since the notion of ordinary preferential en-
tailment is simpler and more studied than the notion of general preferential entailment.

More studies are needed in order to apply these computations. Moreover, we are
till waiting for efficient ways of computing ordinary preferential entailments, or even
formula circumscriptions. At least we know now that not only multi, but also general,
preferential entailments, would benefit from these demonstrators.
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