About the computation of forgetting symbols and literals

Yves Moinard
INRIA/IRISA, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE
moinard@irisa.fr

Abstract

Recently, the old logical notion of forgetting propositional symbols (or reducing the logical vocabulary) has been generalized to a new notion: forgetting literals. The aim was to help the automatic computation of various formalisms which are currently used in knowledge representation, particularly for nonmonotonic reasoning. We develop here a further generalization, allowing propositional symbols to vary while forgetting literals. We describe the new notion, on the syntactical and the semantical side. We provide various manipulations over the basic definitions involved, including for the original version, which hopefully should help improving again the efficiency of the computation. This work concerns especially circumscription, since it is known that one way of computing circumscription uses the forgetting of literals.

Introduction

The well-known notion of forgetting propositional symbols, which is known at least since a 1854 paper by Boole under the name "elimination of middle terms", has been used for a long time in mathematical logic and in its applications for knowledge representation (see e.g. (Lin \& Reiter 1994; Lin 2001; Su, Lv, \& Zhang 2004)). It is a reduction of the vocabulary, thanks to the suppression of some propositional symbols. Let us consider the formula

$$
(\text { bird } \wedge \neg \text { exceptional } \rightarrow \text { flies }) \wedge \neg \text { exceptional. }
$$

We may want to "forget" the symbol exceptional, considered here as "auxiliary", then we get the formula

$$
\text { bird } \rightarrow \text { flies }
$$

Recently, Lang et al. (Lang, Liberatore, \& Marquis 2003) have extended this notion in a signifi cant manner, by allowing the forgetting of literals. In above example, it happens that in fact what has been done is equivalent to forgetting the literal \neg exceptional. In the general case, forgetting a literal is more precise than forgetting its propositional symbol: we get a formula standing "somewhere between" the original formula and the formula obtained by forgetting the propositional symbol.

This new defi nition is a natural extension of the classical defi nition of forgetting propositional symbols. Lang et al.
have shown that this new notion also is useful for knowledge representation and particularly for nonmonotonic reasoning. In some cases, this provides a simplifi cation of the computations, and the authors provide various ways for computing the forgetting of literals, in order to obtain concrete examples of simplifi cation of the computation of some already known formalism.

We extend the notion by allowing some propositional symbols to vary when forgetting literals. The new defi nitions are a simple and natural extension of the original ones, and they have the same kind of behavior

We describe various ways for computing these notions (including the original ones, without varying symbols), and we provide hints showing that the complexity of the new notion should be comparable to the complexity of the notion without variable symbols. This is of some importance in order to apply the results given in (Lang, Liberatore, \& Marquis 2003) to the new notion, since this should simplify signifi cantly the overall computation. The main application example of the interest of these methods for computing already known formalisms given in (Lang, Liberatore, \& Marquis 2003) concerns circumscription, and (Moinard 2005) has shown how the new notion with varying symbols allows to reduce a two stage method to a single stage one.

Firstly, we give the preliminary notations and defi nitions. Then we remind the notion of propositional symbol forgetting, with a few more technical tools. Then we remind the notion of literal forgetting as introduced by Lang et al. Then we introduce our generalization, allowing symbols to vary when literals are forgotten. Finally, we detail yet another method for computing these notions.

Technical preliminaries

We work in a propositional language $\mathbf{P L}$. As usual, $\mathbf{P L}$ also denotes the set of all the formulas, and the vocabulary of $\mathbf{P L}$ is a set of propositional symbols denoted by $\mathcal{V}(\mathbf{P L})$. We restrict our attention to fi nite sets $\mathcal{V}(\mathbf{P L})$ in this text.

Letters φ, ψ denote formulas in $\mathbf{P L}, \top$ and \perp denote respectively the true and the false formulas. Interpretations for $\mathbf{P L}$, identifi ed with subsets of $\mathcal{V}(\mathbf{P L})$, are denoted by the letter ω. The notations $\omega \models \varphi$ and $\omega \models X$ for a set X
of formulas are defi ned classically. For a set $E, \mathcal{P}(E)$ denotes the set of the subsets of E. The set $\mathcal{P}(\mathcal{V}(\mathbf{P L}))$ of the interpretations for $\mathbf{P L}$ is denoted by Mod. A model of X is an interpretation ω such that $\omega \models X, \operatorname{Mod}(\varphi)$ and $\operatorname{Mod}(X)$ denote respectively the sets of the models of $\{\varphi\}$ and X.

A literal l is either a symbol p in $\mathcal{V}(\mathbf{P L})$ (positive literal) or its negation $\neg p$ (negative literal). If l is a literal, $\sim l$ denotes its complementary literal: $\sim \neg p=p$ and $\sim p=\neg p$. Similarly, we defi ne $\sim T=\perp$ and $\sim \perp=T$.

A clause (respectively a term) is a disjunction (respectively a conjunction) of literals. Subsets of $\mathcal{V}(\mathbf{P L})$ are denoted by $P, Q, V . P^{+}$(respectively P^{-}) denotes the set of the positive (respectively negative) literals built on P, and $P^{ \pm}$denotes the set $P^{+} \cup P^{-}$of all the literals built on P (P and P^{+}can be assimilated). For any (fi nite) set X of formulas, $\bigwedge X$ (respectively $\bigvee X$) denotes the conjunction (respectively disjunction) of all the formulas in X. We get: $\bigwedge X \equiv X, \bigwedge \emptyset \equiv \top$ and $\bigvee \emptyset \equiv \perp . \mathcal{V}(X)$ denotes the set of the propositional symbols appearing in X.

A disjunctive normal form or DNF of φ is a disjunction of consistent terms which is equivalent to φ. A set L of literals in $V^{ \pm}$(and the term $\bigwedge L$) is consistent and complete in V if each propositional symbol of V appears once and only once in L; the clause $\bigvee L$ is then non trivial and complete in V. For any set L of literals, $\sim L$ denotes the set of the literals complementary to those in L (notice that $\sim P=P^{-}$).

We need the following notions and notations, many of them coming from (Lang, Liberatore, \& Marquis 2003):

If φ is some formula and p is a propositional symbol in $\mathbf{P L}, \varphi_{p: T}$ (respectively $\varphi_{p: \perp}$) is the formula obtained from φ by replacing each occurrence of p by \top (respectively \perp). If $l=p$ is a positive literal, $\varphi_{l: i}$, denotes the formula $\varphi_{p: i}{ }^{1}$; if $l=\neg p$ is a negative literal, $\varphi_{l: i}$ denotes the formula $\varphi_{p: \sim i}$.

Notations 11. If v_{1}, \cdots, v_{n} are propositional symbols, $\varphi_{\left(v_{1}: \epsilon_{1}, \cdots, v_{n}: \epsilon_{n}\right)}$ with each $\epsilon_{j} \in\{\perp, \top\}$, denotes the formula $\left(\cdots\left(\left(\varphi_{v_{1}: \epsilon_{1}}\right)_{v_{2}: \epsilon_{2}}\right) \cdots\right)_{v_{n}: \epsilon_{n}}$.
If the v_{j} 's in the list are all distinct, the order of the v_{j} 's is without consequence for the final result. Thus, if V_{1} and V_{2} are disjoint subsets of V, we may define $\varphi_{\left[V_{1}: \top, V_{2}: \perp\right]}$ as
 $\left(v_{n+1}, \cdots, v_{n+m}\right)$ are two orderings of all the elements of V_{1} and V_{2} respectively.
2. If $L=\left(l_{1}, \cdots, l_{n}\right)$ is a list of literals, $\varphi_{\left(l_{1}: \epsilon_{1} \cdots l_{n}: \epsilon_{n}\right)} d e$ notes the formula $\left(\cdots\left(\left(\varphi_{l_{1}: \epsilon_{1}}\right)_{l_{2}: \epsilon_{2}}\right) \cdots\right)_{l_{n}: \epsilon_{n}}$.
3. Let $\mathcal{V}(\mathbf{P L})^{ \pm}$be ordered in some arbitrary way. If L_{1}, \cdots, L_{n} are disjoint sets of literals, $\varphi_{\left\langle L_{1}: \epsilon_{1}, \cdots, L_{n}: \epsilon_{n}\right\rangle}$ denotes the formula $\varphi_{\left(l_{1}: \gamma_{1}, \cdots, l_{n}: \gamma_{n}\right)}$ where $\left(l_{1}, \cdots, l_{n}\right)$ is the enumeration of the set $L_{1} \cup \cdots \cup L_{n}$ which respects the order chosen for the set of all the literals, and where, for each l_{j}, γ_{j} is equal to ϵ_{r} where $r \in\{1, \cdots, n\}$ is such that $l_{j} \in L_{r}$.

[^0]
Forgetting propositional symbols

Let us remind a possible defi nition for this well known and old notion ${ }^{2}$.
Definition 2 If $V \subseteq \mathcal{V}(\mathbf{P L})$ and $\varphi \in \mathbf{P L}$, $\operatorname{Forget} V(\varphi, V)$ denotes a formula, in the propositional language $\mathbf{P} L_{\bar{V}}$ built on the vocabulary $\bar{V}=\mathcal{V}(\mathbf{P L})-V$, which is equivalent to φ in this restricted language: $\operatorname{Forget} V(\varphi, V) \equiv \operatorname{Th}(\varphi) \cap$ $\mathbf{P L}_{\bar{V}}$ where $\operatorname{Th}(\varphi)=\left\{\varphi^{\prime} \in \mathbf{P L} / \varphi \models \varphi^{\prime}\right\}$.

For any $\psi \in \mathbf{P L}_{\bar{V}}, \varphi \models \psi$ iff $\operatorname{Forget} V(\varphi, V) \models \psi$.
Here are two known ways to get $\operatorname{Forget} V(\varphi, V)$:

1. In a DNF form of φ, for each term suppress all the literals in $V^{ \pm}$("empty terms" being equivalent to T as usual).
2. For any formula φ, and any list V of propositional symbols, we get
(a) $\operatorname{Forget} V(\varphi,\{v\} \cup V)=$

Forget $V(\varphi, V)_{v: T} \vee \operatorname{Forget} V(\varphi, V)_{v: \perp}$,
(b) $\operatorname{Forget} V(\varphi, \emptyset)=\varphi$.

The iterative point 2 applies to any formula, and shows that we can forget one symbol at a time. Also, the order is irrelevant: the fi nal formulas are all equivalent when the order is modifi ed. Here is the corresponding "global formulation" (cf Notations 1-1):
Definition 3 Forget $V(\varphi, V)=\bigvee_{V^{\prime} \subseteq V} \varphi_{\left[V^{\prime}: T,\left(V-V^{\prime}\right): \perp\right]}$.
Considering the formulation Forget $V(\varphi, V) \equiv \operatorname{Th}(\varphi) \cap$ $\mathbf{P L}_{\bar{V}}$, the following obvious technical remark happens to be very useful:
Remark 4 When considering a formula equivalent to a set $T h(\varphi) \cap X$, the set of formulas X can be replaced by any set Y having the same \wedge-closure: $\left\{\bigwedge X^{\prime} / X^{\prime} \subseteq X\right\}=$ $\left\{\bigwedge X^{\prime} / X^{\prime} \subseteq Y\right\}$. Indeed, we have:

- If X and Y have the same \wedge-closure, then $\operatorname{Th}(\varphi) \cap X \equiv$ $T h(\varphi) \cap Y$.
- The converse is true, provided that we assimilate equivalent formulas: if $T h(\varphi) \cap X \equiv T h(\varphi) \cap Y$ for any $\varphi \in \mathbf{P L}$, then X and Y have the same \wedge-closure.
Since we work in finite propositional languages, there exists a unique smallest (for set inclusion, and up to logical equivalence) possible set, the \wedge-reduct of X, equal to the set $X-\{\varphi \in X / \varphi$ is in the \wedge-closure of $X-\{\varphi\}\}$. Thus, X can be replaced by any set containing the \wedge-reduct of X and included in the \wedge-closure of X.

Thus, instead of considering the whole set $\mathrm{PL}_{\bar{V}}$ in Forget $V(\varphi, V) \equiv T h(\varphi) \cap \mathbf{P L}_{\bar{V}}$ (Defi nition 2), we can consider the set of all the clauses built on \bar{V}, the smallest (for \subseteq) set that can be considered here being the set of these clauses which are non trivial and complete in \bar{V}.

[^1]On the semantical side, the set of the models of Forget $V(\varphi, V)$ is the set of all the interpretations for $\mathbf{P L}$ which coincide with a model of φ for all the propositional symbols not in V :
$\operatorname{Mod}(\operatorname{Forget} V(\varphi, V))=$

$$
\left\{\omega \in \operatorname{Mod} / \exists \omega^{\prime}, \omega^{\prime} \models \varphi \text { and } \omega \cap \bar{V}=\omega^{\prime} \cap \bar{V}\right\}
$$

These syntactical and semantical characterizations justify the name "Forget".

Example 1 Here $\mathcal{V}(\mathbf{P L})=\{a, b, c, d\}$, and $\varphi=(\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge \neg c \wedge \neg d)$.

DNF rule: $\operatorname{Forget} V(\varphi,\{b, c\}) \equiv(\neg a) \vee(a \wedge \neg d)$

$$
\equiv \neg a \vee \neg d
$$

iteratively: Forget $V(\varphi,\{c\}) \equiv(\neg a \wedge b) \vee(a \wedge \neg b \wedge \neg d)$.
ForgetV $(F \operatorname{orget} V(\varphi,\{c\}),\{b\}) \equiv$ $\operatorname{Forget} V(\varphi,\{b, c\})$.
semantics:
Starting with $\operatorname{Mod}(\varphi)=\{\{a\},\{b, c\},\{b, c, d\}\}$, we get the twelve models of ForgetV $(\varphi,\{b, c\})$ by adding all the interpretations varying on $\{b, c\}$, which gives the twelve interpretations: $\emptyset \cup E,\{a\} \cup E,\{d\} \cup E$, for any subset E of the set of the forgotten symbols $\{b, c\}$.

Remind that for any formulas φ_{1} and φ_{2},
we get $\operatorname{Forget} V\left(\varphi_{1} \vee \varphi_{2}, V\right) \equiv$

$$
\text { ForgetV }\left(\varphi_{1}, V\right) \vee F \operatorname{rorget} V\left(\varphi_{2}, V\right),
$$

and Forget $V\left(\varphi_{1} \wedge \varphi_{2}, V\right) \quad \models$

$$
\operatorname{Forget} V\left(\varphi_{1}, V\right) \wedge \operatorname{Forget} V\left(\varphi_{2}, V\right) .
$$

Here is counter-example for the converse entailment: $\varphi_{1}=a \vee \neg b, \varphi_{2}=b$, thus $\varphi_{1} \wedge \varphi_{2}=a \wedge b$ and we get $\operatorname{Forget} V\left(\varphi_{1},\{b\}\right)=\operatorname{Forget} V\left(\varphi_{2},\{b\}\right)=\top$, while $\operatorname{Forget} V\left(\varphi_{1} \wedge \varphi_{2},\{b\}\right)=a$.

We need now another defi nition:
Definition 5 (Lang, Liberatore, \& Marquis 2003, pp. 396397) Let ω be an interpretation for $\mathbf{P L}, p$ be a propositional symbol in PL and L be a consistent set of literals in PL.

We define the interpretations
Force $(\omega, p)=\omega \cup\{p\}$ and
Force $(\omega, \neg p)=\omega-\{p\}$ and more generally,
$\operatorname{Force}(\omega, L)=\omega \cup\{p / p \in \mathcal{V}(\mathbf{P L}), p \in L\}$

$$
-\{p / p \in \mathcal{V}(\mathbf{P L}), \neg p \in L\}
$$

Thus, $\operatorname{Force}(\omega, L)$ is the interpretation for $\mathbf{P L}$ equal to ω for all the propositional symbols in $\mathcal{V}(\mathbf{P L})-\mathcal{V}(L)$ and which satisfi es all the literals of L.

An immediate consequence of the defin nition of $\varphi_{: ~} \tau$ is that we get: $\operatorname{Mod}\left(\varphi_{l: T}\right)=$
$\{\omega / \omega \models \varphi, \omega \models l\} \cup\{\operatorname{Force}(\omega, \sim l) / \omega \models \varphi, \omega \models l\}=$
$\{\operatorname{Force}(\omega, l), \operatorname{Force}(\omega, \sim l) / \omega \models \varphi, \omega \models l\} \quad\left(\operatorname{Mod}_{l: \top}\right)$.
It is then interesting to relate $\operatorname{Forget} V(\varphi, v)[v \in$ $\mathcal{V}(\mathbf{P L})]$ to the formulas $\varphi_{v: T}$ and $\varphi_{v: \perp}$:

$$
\begin{aligned}
\varphi_{v: T} & \equiv \operatorname{Forget} V(v \wedge \varphi, v) ; \\
\varphi_{v: \perp} & \equiv \operatorname{Forget} V(\neg v \wedge \varphi, v) \\
\operatorname{Forget} V(\varphi, v) & \equiv \varphi_{v: T \vee \varphi_{v: \perp}}
\end{aligned}
$$

Indeed, Forget $V(\varphi, v) \equiv \varphi_{v: T} \vee \varphi_{v: \perp}$ and $\varphi \equiv(v \wedge$ $\left.\varphi_{v: T}\right) \vee\left(\neg v \wedge \varphi_{v: \perp}\right)$ are obvious, while choosing $l=v$ in result $\left(\operatorname{Mod}_{l: T}\right)$ gives: $\varphi_{v: T} \equiv$ Forget $V(v \wedge \varphi, v)$.

Thus, we get, for each $\epsilon \in\{\perp, \top\}$: $(\varphi \vee \psi)_{l: \epsilon} \equiv \varphi_{l: \epsilon} \vee \psi_{l: \epsilon}$, and also $(\varphi \wedge \psi)_{l: \epsilon} \equiv \varphi_{l: \epsilon} \wedge \psi_{l: \epsilon}$.
Remark 6 Let φ be any formula and l some literal with v_{l} as its propositional symbol. Then, the following six formulas are all equivalent:

ForgetV $\left(l \wedge \varphi, v_{l}\right) \vee \varphi$		\equiv
$\left(\neg l \wedge\right.$ ForgetV $\left.\left(l \wedge \varphi, v_{l}\right)\right) \vee \varphi$	\equiv	
$\varphi_{l: \top \vee(\neg l \wedge \varphi)}$	\equiv	$\varphi_{l: \top} \vee\left(\neg l \wedge \varphi_{l: \perp}\right)$
$\varphi_{l: \top} \vee \varphi$	\equiv	
	\equiv	$\varphi \vee\left(\neg l \wedge \varphi_{l: \perp}\right)$.

Indeed, the set of the models of each of these formulas is $\{\operatorname{Force}(\omega, l) / \omega \models \varphi, \omega \models l\} \cup\{\operatorname{Force}(\omega, \sim l) / \omega \models$ $\varphi, \omega \models l\} \cup\{\operatorname{Force}(\omega, \sim l) / \omega \models \varphi, \omega \models \neg l\}$.

Forgetting literals

Variable forgetting as been generalized as detailed now, beginning with the semantical side.

Definition 7 (Literal forgetting) (Lang, Liberatore, \& Marquis 2003, Prop. 15) If φ is a formula and L a set of literals in PL, ForgetLit (φ, L) is a formula having for models the set of all the interpretations for PL which can be turned into a model of φ when forced by a consistent subset of L :

$$
\operatorname{Mod}(\operatorname{Forget} \operatorname{Lit}(\varphi, L))=\left\{\omega / \operatorname{Force}\left(\omega, L_{1}\right) \models \varphi\right.
$$ and L_{1} is a consistent subset of $\left.L\right\}$.

Thus, the models of $\operatorname{Forget} \operatorname{Lit}(\varphi, L)$ are built from the models of φ by allowing to "negate" (or "complement") an arbitrary number of values of literals in L :

$$
\begin{gathered}
\operatorname{Mod}(\text { ForgetLit }(\varphi, L))=\left\{\operatorname{Force}\left(\omega^{\prime}, L_{1}^{\prime}\right) / \omega^{\prime} \models \varphi\right. \\
\text { and } \left.L_{1}^{\prime} \text { is a consistent subset of } \sim L\right\} .
\end{gathered}
$$

Let us consider the syntactical side now. One way is to start from a DNF formulation of φ :
Proposition 8 (Lang, Liberatore, \& Marquis 2003) If $\varphi=$ $t_{1} \vee \cdots \vee t_{n}$ is a DNF, ForgetLit (φ, L) is equivalent to the formula $t_{1}^{\prime} \vee \cdots \vee t_{n}^{\prime}$ where t_{i}^{\prime} is the term t_{i} without the literals in L.

The similar method for obtaining $\operatorname{Forget} V(\varphi, V)$ when φ is a DNF has been reminded in point 1 following Defi nition 2. Similarly, the following syntactical defi nition, analogous to Defi nition 3, can be given:

Definition 9 If L is a set of literals in PL, then

$$
\operatorname{Forget} \operatorname{Lit}(\varphi, L)=\bigvee_{L^{\prime} \subseteq L}\left(\left(\bigwedge \sim L^{\prime}\right) \wedge \varphi_{\left\langle\left(L-L^{\prime}\right): T\right\rangle}\right)
$$

This is a "global formulation", easily shown to be equivalent to the following iterative definition (Lang, Liberatore, \& Marquis 2003, Defi nition 7):

1. $\operatorname{ForgetLit}(\varphi, \emptyset)=\varphi$.
2. $\operatorname{ForgetLit}(\varphi,\{l\} \cup L)=$

ForgetLit(ForgetLit($\varphi, L), l)$.
We refer the reader to (Lang, Liberatore, \& Marquis 2003) which shows the adequacy with Defi nition 7 and Proposition 8, and also that choosing any order of the literals does not modify the meaning of the fi nal formula (cf Notations 1-3). It follows that this independence from the order of the literals also applies to the global formulation in Defi nition 9. The fact that, exactly as with the notion of forgetting symbols (cf Defi nition 2 and following comment), the notion of forgetting literals has such an iterative defi nition is important from a computational point of view (Lang, Liberatore, \& Marquis 2003).

Notice that (Lang, Liberatore, \& Marquis 2003) uses the formula $\varphi_{l: T} \vee(\neg l \wedge \varphi)$ in point 2 , and also the variant $\varphi_{l: T} \vee\left(\neg l \wedge \varphi_{l: T}\right)$, instead of $\varphi_{l: T} \vee \varphi$. Remark 6 shows that any of the six formulas given there could be used here, which could marginally simplify the computation, depending on the form in which φ appears.

The presence of $\left(\bigwedge_{l^{\prime} \in L^{\prime}} \neg l^{\prime}\right)$ in Defi nition 9 , which is what differentiates $\operatorname{ForgetLit}(\varphi, \ldots)$ from $\operatorname{ForgetV}(\varphi, \ldots)$, comes from the fact that here we forget $l \in L$ but we do not forget $l^{\prime} \in \sim L$.

A proof in (Lang, Liberatore, \& Marquis 2003), using Proposition 8, shows that we get $\operatorname{Forget} \operatorname{Lit}\left(\varphi, V^{ \pm}\right) \equiv$ Forget $V(\varphi, V)$. This proof is easily extended to get the following result:
Remark 10 Since any set of literals can be written as a disjoint union between a consistent set L^{\prime} and a set $V^{ \pm}$of complementary literals, here is a useful formulation:
$\operatorname{ForgetLit}\left(\varphi, L^{\prime} \cup V^{ \pm}\right) \equiv \operatorname{ForgetLit}\left(\operatorname{Forget} V(\varphi, V), L^{\prime}\right)$.
Notice that we could also forget the literals first, i.e. consider the formula ForgetV $\left(\right.$ ForgetLit $\left.\left(\varphi, L^{\prime}\right), V\right)$, even if it seems likely that this is less interesting from a computational point of view.

This remark has the advantage of separating clearly the propositional symbols into three kinds. Let V^{\prime} denote the set $\mathcal{V}\left(L^{\prime}\right)$ of the propositional symbols in L^{\prime}, and $V^{\prime \prime}=$ $\mathcal{V}(\mathbf{P L})-V-V^{\prime}$ be the set of the remaining symbols. Then we get:

1. The propositional symbols in V are forgotten.
2. The propositional symbols in $V^{\prime \prime}$ are fixed, since the literals in $V^{\prime \prime \pm}$ are not forgotten.
3. The remaining symbols, in V^{\prime}, are neither forgotten nor fi xed, since only the literals in L^{\prime} are forgotten, but not the literals in $\sim L^{\prime}$.
Thus, ForgetLit $\left(\varphi, L_{1}\right)$ can be defi ned as: forgetting literals with some propositional symbols fixed. It is then natural to generalize the notion, by allowing some propositional symbols to vary in the forgetting process.

Forgetting literals with varying symbols

As done with the original notion, let us begin with the semantical defi nitions.
Definition 11 Let φ be a formula, V a set of propositional symbols, and L a consistent set of literals, in PL, with V and $\mathcal{V}(L)$ disjoint in $\mathcal{V}(\mathbf{P L})$. ForgetLitV ar (φ, L, V) is a formula having the following set of models:

$$
\begin{aligned}
& \operatorname{Mod}(\text { ForgetLitVar }(\varphi, L, V))= \\
& \left\{\omega / \text { Force }\left(\omega, L_{1} \cup L_{2}\right) \models \varphi, L_{1} \subseteq L,\right. \\
& \left.\quad L_{2} \subseteq V^{ \pm}, L_{2} \text { consistent, and }\left(\omega \not \omega L_{1} \text { or } L_{2}=\emptyset\right)\right\} .
\end{aligned}
$$

This is equivalent to:

$$
\begin{aligned}
& \operatorname{Mod}(F \operatorname{ForgetLitVar}(\varphi, L, V))=\operatorname{Mod}(\varphi) \cup \\
& \left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / \omega \models \varphi, \omega \not \models L_{1},\right. \\
& \left.L_{1} \subseteq \sim L, L_{2} \subseteq \text { cons } V^{ \pm}\right\} .
\end{aligned}
$$

Notice the notation $\subseteq_{\text {cons }} V^{ \pm}$for "included in $V^{ \pm}$and consistent".
Since $\omega \models L_{2}$ iff $\operatorname{Force}\left(\omega, L_{2}\right)=\omega$, the condition " $\left(\omega \not \equiv L_{1}\right.$ or $\left.L_{2}=\emptyset\right)$ " can be replaced by "($\omega \not \vDash L_{1}$ or $\left.\omega \models L_{2}\right)$ ", and then we can replace everywhere here " L_{2} consistent" by " L_{2} consistent and complete in V " (there are $3^{\operatorname{card}(V)}$ consistent sets L_{2} and "only" $2^{\operatorname{card}(V)}$ consistent and complete sets).

We could be more general, by allowing to forget some propositional symbols, which amounts to allow non consistent sets L. This generalization does not present diffi culties, however, since we have not found any application for it till now, we leave it for future work.
With respect to Defi nition 7, what happens here is that the non consistent part of the set of literals, which allowed to forget some set V of propositional symbols altogether, has been replaced by a set of varying propositional symbols.

Remark 12 Since ForgetLit $\left(L_{1}, \varphi\right) \models$ ForgetLit $\left(L_{1} \cup\right.$ L_{2}, φ) holds from (Lang, Liberatore, \& Marquis 2003) ("the more we forget, the less we know"), we get:

$$
\varphi \models \operatorname{Forget} V(\varphi, V) \models \operatorname{ForgetLit}\left(\varphi, L \cup V^{ \pm}\right) .
$$

Similarly, it is clear that the new definition allows a finer (more cautious) forgetting than ForgetLit:

$$
\varphi \models \operatorname{ForgetLitVar}(\varphi, L, V) \models \operatorname{ForgetLit}\left(\varphi, L \cup V^{ \pm}\right) .
$$

Remind the motivations for introducing ForgetLitVar: we want to "forget" the literals in L, even at the price of modifying the literals in $V^{ \pm}$: if we effectively forget at least one literal in L, then, we allow any modifi cation for the literals in $V^{ \pm}$. However, we do not want to modify the literals in $V^{ \pm}$"for nothing" our aim being to forget as many literals in L as possible. This justifi es the appearance of the condition " $\omega \not \vDash L_{1}$ " in the defi nition and in the alternative formulation.

The syntactical aspect is slightly more tricky, but it remains rather simple and it allows to revisit and improve
already known results. As with the original notion (see Proposition 8), the simplest way is to start from a DNF.

Since L is consistent, without loss of generality and in order to simplify the notations, we can consider that L is a set of negative literals (otherwise, replace any $p \in \mathcal{V}(L)$ such that $p \in L$ by $\neg p^{\prime}, p^{\prime}$ being a new propositional symbol, then after the computations, replace p^{\prime} by $\neg p$). Thus, till the end of this section, we will consider two disjoint subsets P and V of $\mathcal{V}(\mathbf{P L})$, and $L=P^{-}$with $Q=\mathcal{V}(\mathbf{P L})-V-P$ denoting the set of the remaining propositional symbols.

Proposition 13 (See proof in Appendix) Let $\varphi=t_{1} \vee \cdots \vee t_{n}$ be a DNF, with

$$
t_{i}=\left(\bigwedge P_{i, 1}\right) \wedge\left(\bigwedge \neg\left(P_{i, 2}\right)\right) \wedge\left(\bigwedge V_{i, l}\right) \wedge\left(\bigwedge Q_{i, l}\right)
$$

where $P_{i, 1} \subseteq P, P_{i, 2} \subseteq P-P_{i, 1}$, with $V_{i, l} \subseteq V^{ \pm}$ and $Q_{i, l} \subseteq Q^{ \pm}$being consistent sets of literals. Then ForgetLitVar $\left(\varphi, P^{-}, V\right) \equiv t_{1}^{\prime} \vee \cdots \vee t_{n}^{\prime}$ where

$$
\begin{gathered}
t_{i}^{\prime}=\left(\bigwedge P_{i, 1}\right) \wedge\left(\bigwedge Q_{i, l}\right) \wedge\left[\left(\bigvee\left(P-P_{i, 1}\right)\right) \vee\left(\bigwedge V_{i, l}\right)\right], i . e . \\
t_{i}^{\prime}=\left(\bigwedge P_{i, 1}\right) \wedge\left(\bigwedge Q_{i, l}\right) \wedge\left[\bigwedge_{l \in V_{i, l}}\left(l \vee\left(\bigvee\left(P-P_{i, 1}\right)\right)\right)\right] .
\end{gathered}
$$

Thus, t_{i}^{\prime} is t_{i} except that the literals in P^{-}are suppressed while each literal in $V^{ \pm}$must appear in disjunction with the clause $\bigvee\left(P-P_{1}\right)$, this clause denoting the disjunction of all the literals in P^{+}which do not appear (positively) in t_{i}. Naturally, the literals of $L=P^{-}$appearing in t_{i} disappear. Moreover, it is important to notice that the literals from $P^{ \pm}=L \cup \sim L$ in t_{i} which remain are those which do not appear positively in t_{i}. This means that t_{i} could be "completed in P " by the conjunction of all the $\neg p$ for each symbol $p \in P$ not appearing in t_{i}, without modifying the "forget" formula.

We have provided the semantical defi nition (in the lines of Defi nition 7) and a characterization from a DNF formulation (in the lines of Proposition 8). Let us provide now other characterizations, and a comparison with ForgetLit.

Proposition 14 Let φ be a formula in $\mathbf{P L}$, and P, Q and V be three pairwise disjoint sets of propositional symbols such that $P \cup Q \cup V=\mathcal{V}(\mathbf{P L})$.

1. ForgetLit $\left(\varphi, P^{-} \cup V^{ \pm}\right)$is equivalent to the set $T h(\varphi) \cap$ X where X is the set of the formulas in PL which are disjunctions of terms of the kind
$\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right)$ with $P_{1} \subseteq P$ and $Q_{l} \subseteq Q^{ \pm}$.
2. ForgetLitVar $\left(\varphi, P^{-}, V\right)$ is equivalent to the set $T h(\varphi) \cap X$ where X is the set of the formulas in $\mathbf{P L}$ which are disjunctions of terms of the kind
$\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right) \wedge\left[\bigwedge_{l \in V_{l}}\left(l \vee\left(\bigvee\left(P-P_{1}\right)\right)\right)\right]$,
where $P_{1} \subseteq P, V_{l} \subseteq_{\text {cons }} V^{ \pm}$and $Q_{l} \subseteq Q^{ \pm}$.
(We can clearly consider consistent sets Q_{l} only.)
These two results are immediate consequences of Propositions 8 and 13 respectively. We get the following alternative possibilities for the sets X 's, fi rstly by boolean
duality from the preceding results, then by considering some set having the same \wedge-closure as X (Remark 4):

Proposition 14 (following)

1.(a) For ForgetLit $\left(\varphi, P^{-} \cup V^{ \pm}\right), X$ is the set of the conjunctions of the clauses of the kind $\left(\bigvee P_{1}\right) \vee\left(\bigvee Q_{l}\right)$ with $P_{1} \subseteq P$ and $Q_{l} \subseteq Q^{ \pm}$(we can clearly consider consistent sets Q_{l} only).
(b) We can also consider the set X of the clauses $\left(\bigvee P_{1}\right) \vee$ $\left(\bigvee Q_{l}\right)$ with $P_{1} \subseteq P$ and $Q_{l} \subseteq Q^{ \pm}$.
(c) The smallest set X possible is the set of the clauses $\left(\bigvee P_{1}\right) \vee\left(\bigvee Q_{l}\right)$ with $P_{1} \subseteq P, Q_{l} \subseteq Q^{ \pm}, Q_{l}$ consistent and complete in Q.
2.(a) For ForgetLitVar $\left(\varphi, P^{-}, V\right), X$ is the set of the conjunctions of the formulas flv $\left(P_{1}, Q_{l}, V_{l}\right)=\left(\bigvee P_{1}\right) \vee$ $\left(\bigvee Q_{l}\right) \vee \bigvee_{l \in V_{l}}\left(l \wedge\left(\bigwedge\left(P-P_{1}\right)\right)\right)$, where $P_{1} \subseteq P$, $V_{l} \subseteq_{\text {cons }} V^{ \pm}$and $Q_{l} \subseteq_{\text {cons }} Q^{ \pm}$.
(b) We can also consider the set X of all the formulas flv $\left(P_{1}, Q_{l}, V_{l}\right)$ of this kind.
(c) The smallest set X possible is the set of the formulas $f l v\left(P_{1}, Q_{l}, V_{l}\right)$ with $P_{1} \subseteq P, Q_{l}$ and V_{l} being sets of literals consistent and complete in Q and V respectively.
These results provide the analogous, for ForgetLit and ForgetLitVar, of the results for ForgetV reminded in Defi nition 2, and in Remark 4.

The next defi nition is analogous to Defi nitions 3 and 9 (see appendix for a proof of the adequacy with Defi nition 11):

Definition 15 If φ is a formula and P and V are two disjoint subsets of $\mathcal{V}(\mathbf{P L})$, then

ForgetLitVar $\left(\varphi, P^{-}, V\right)$ is the formula

$$
\begin{aligned}
& \bigvee_{P_{1} \subseteq P}\left(\bigwedge P _ { 1 } \wedge \left(\varphi_{\left[P_{1}: \top,\left(P-P_{1}\right): \perp\right]} \vee\right.\right. \\
& \left.\left.\quad\left(F \operatorname{orget} V\left(\varphi_{\left[P_{1}: \top,\left(P-P_{1}\right): \perp\right]}, V\right) \wedge\left(\bigvee\left(P-P_{1}\right)\right)\right)\right)\right)
\end{aligned}
$$

Example 2 Here $P=\{a, b\}, V=\{c\}, Q=\{d\}$, with $\varphi=(\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge \neg c \wedge \neg d)$.

Syntactical side:
Since φ is a DNF, the rules from a DNF after Definition 2 (for ForgetV), in Proposition 8 (for ForgetLit) and Proposition 13 (for ForgetLitVar), give the three results:

- Forget $V(\varphi, V) \equiv(\neg a \wedge b) \vee(a \wedge \neg b \wedge \neg d)$.
- ForgetLit $\left(\varphi, P^{-} \cup V^{ \pm}\right) \equiv b \vee(a \wedge \neg d)$.
- ForgetLitVar $\left(\varphi, P^{-}, V\right) \equiv$ $(a \wedge b) \vee(a \wedge \neg c \wedge \neg d) \vee(b \wedge c) . \quad F L V 1$
Definitions 9 and 15 can be used also, as shown now for Definition 15 where, in each case, $\psi=\varphi_{\left[P_{1}: T,\left(P-P_{1}\right): \perp\right]}$:
$P_{1}=\emptyset: \psi \vee(F o r g e t V(\psi, c) \wedge(a \vee b)) \equiv$ $\perp \vee(\perp \wedge(a \vee b)) \equiv \perp$.
$P_{1}=\{a\}: a \wedge(\psi \vee($ Forget $V(\psi, c) \wedge b)) \equiv$ $a \wedge((\neg c \wedge \neg d) \vee(\neg d \wedge b))$.

$$
\begin{aligned}
P_{1}=\{b\}: b \wedge(\psi \vee(\text { ForgetV }(\psi, c) \wedge a)) \equiv \\
b \wedge(c \vee(\top \wedge a)) . \\
P_{1}=\{a, b\}: a \wedge b \wedge(\psi \vee(\text { Forget } V(\psi, c) \wedge \perp)) \underset{\left(\varphi_{3}\right)}{ } \\
a \wedge b \wedge(\perp \vee \perp) \equiv \perp .
\end{aligned}
$$

The disjunction $\bigvee_{i=1}^{4} \varphi_{i}$ is equivalent to $F L V 1$.
Semantical side:
We get $\operatorname{Mod}(\varphi)=\{\{a\},\{b, c\},\{b, c, d\}\}$.

- The six models of Forget $V(\varphi, V)$ are obtained by adding the three interpretations differing from the three models of φ by the value attributed to c (cf example 1):
$\{a, c\},\{b\}$, and $\{b, d\}$.
- The ten models of ForgetLit $\left(\varphi, P^{-} \cup V^{ \pm}\right)$are obtained by adding to the models of φ the seven interpretations differing from these models by adding any subset of $\{a, b\}$ and by either do nothing else or modify the value of c (adding c if it is not present and removing c if it is present). This gives the six models of Forget $V(\varphi, V)$ plus the four interpretations including $\{a, b\}$.
- The seven models of ForgetLitVar $\left(\varphi, P^{-}, V\right)$ are obtained by adding to the three models of φ the four interpretations differing from these models by adding a non empty subset of $\{a, b\}$ and by either do nothing else or modify the value of c, which gives here the four interpretations including $\{a, b\}$.
Here is a technical result which can be drawn from this example, and which may have a computational interest:
Remark 16 1. For any formula φ we get:
ForgetV $(\varphi, V) \vee$ ForgetLitVar $\left(\varphi, P^{-}, V\right) \equiv$
ForgetLit $\left(\varphi, P^{-} \cup V^{ \pm}\right)$

2. For any formula φ which is uniquely defi ned in P, we get: $\operatorname{Forget} V(\varphi, V) \wedge \operatorname{ForgetLitVar}\left(\varphi, P^{-}, V\right) \equiv \varphi$.
By formula uniquely defi ned in P we mean a formula which is equivalent to a conjunction $\varphi_{1} \wedge \varphi_{2}$, where φ_{1} is a term complete in P and φ_{2} is without symbol of P.
See the Appendix for a proof. This remark can be compared with Remark 12. Notice that in Example 2 , the formula φ is uniquely defi ned in P [indeed, $\varphi \equiv(\neg a \wedge b) \wedge(c \vee(\neg c \wedge \neg d))]$, thus points 1. and 2. of this Remark are satisfi ed. Here is a simple counter-example (where the important fact to notice is that φ is a term which is not complete in P, i.e. $P_{i, 1} \cup P_{i, 2} \neq P$) showing that the second equivalence does not hold for any formula.

Example $3 P, V, Q$, and $\mathbf{P L}$ as in example $2, \varphi=t=a \wedge c$. We get:

- ForgetV $(t, V) \equiv a$.
- ForgetLit $\left(t, P^{-} \cup V^{ \pm}\right) \equiv a$.
- ForgetLitVar $\left(t, P^{-}, V\right) \equiv$ ForgetLitVar $\left(a \wedge \neg b \wedge c, P^{-}, V\right) \equiv a \wedge(b \vee c)$.

Notice also that, once we have all the models of φ, the complexity of the construction of all the models of ForgetLitVar $\left(\varphi, P^{-}, V\right)$ is not greater than the
complexity of the construction of all the models of $F \operatorname{Forget} \operatorname{Lit}\left(\varphi, P^{-} \cup V^{ \pm}\right)$.

More about the computation of these notions

On the syntactical side, we have the same kind of iterative defi nition than we had for ForgetV and ForgetLit (cf the two "iterative defi nitions", in Point 2 just before Defi nition 3 for Forget V, and after Defi nition 9 for ForgetLit):

Remark 17 Let us suppose that V is a set of propositional symbols and that $L \cup\{l\}$ is a consistent set of literals without symbol in V and such that $l \notin L$.

1. ForgetLitVar $(\varphi, \emptyset, V)=\varphi$;
2. ForgetLitVar $(\varphi,\{l\}, V)=$
$\varphi \vee F$ orget $V\left(\neg l \wedge\right.$ Forget $\left.V\left(l \wedge \varphi, v_{l}\right), V\right)$
(where v_{l} denotes the symbol of l).
3. ForgetLitVar $(\varphi,\{l\} \cup L, V)=$

ForgetLitVar(ForgetLitVar $(\varphi, L, V),\{l\}, V)$.
We get equivalent formulas for each order of appearance of the literals in the iterative process. The complexity of the computation of ForgetLitVar (\cdots, L, V) should be only slightly harder than for the computation of ForgetLit. Indeed, we have to "forget V " for each new literal, which introduces a rather small new complication, otherwise, computing $\neg l \wedge$ Forget $V\left(l \wedge\right.$ ForgetLitVar $\left.(\varphi, L, V), v_{l}\right)$ is not harder than computing ForgetLit $(\operatorname{ForgetLit}(\varphi, L), l)$.

See the appendix for the proof of the equivalence with Defi nition 15. Notice already that the formula $\left(\neg l \wedge \operatorname{Forget} V\left(l \wedge \Phi, v_{l}\right)\right)$ has for models the models of Φ which are actively forced by $\neg l$ (l was true in the initial model, and l is forced to be false).

$$
\begin{aligned}
& \text { Formally, } \operatorname{Mod}\left(\neg l \wedge \operatorname{Forget} V\left(l \wedge \Phi, v_{l}\right)\right)= \\
& \quad\{\operatorname{Force}(\omega, \sim l) / \omega \models \Phi \wedge l\} .
\end{aligned}
$$

It seems important, from a computational point of view, to describe an alternative syntactical way to compute this formula (besides the possibility of using the formulation in Forget V given above). Here is a syntactical method.

From ($\mathrm{M} \neg \mathrm{lFV}$), we get

$$
\neg l \wedge \operatorname{Forget} V\left(l \wedge \Phi, v_{l}\right) \equiv \neg l \wedge[l \wedge \Phi]_{l: \mathrm{T}} \quad(\mathrm{~F} \neg \mathrm{IFVl})
$$

An interesting point in the proof of the equivalence between Remark 17 and Defi nition 15 is that it shows how to improve the computation a bit. Indeed, once a model has been modifi ed by some $l \in L$, the set of all its variant in V (i.e. the set $\left\{\operatorname{Force}\left(\omega, L_{2}\right) / L_{2} \subseteq_{\text {cons }} V \pm\right\}$) is already computed. Thus, for such a model, it is useless to compute again all the variants in V, since they are already present, and forgetting one more literal in L will have no consequence to that respect: since we had already all the variants in V, modifying a new symbol brings only one more model (at most, it was not already present) without the need to consider again all the variants in V for this model.

This gives rise to the following iterative process:

1. $\operatorname{ForgetLitVar}(\varphi, \emptyset, V)=\varphi$;
2. $\operatorname{ForgetLitVar}(\varphi,\{l\} \cup L, V)=$
$\Phi \vee \Phi_{l: T} \vee \operatorname{Forget} V\left(\neg l \wedge[l \wedge \varphi]_{l: T}, V\right)$
where $\Phi=\operatorname{ForgetLitVar}(\varphi, L, V)$.

Remind that $\neg l \wedge[l \wedge \varphi]_{l: T \text { can be replaced by }}$ $\neg l \wedge \operatorname{Forget} V\left(l \wedge \varphi, v_{l}\right)$ (see formula $(\mathrm{F} \neg \mathrm{FVl})$.

The simplifi cation with respect to Remark 17 comes from the fact that only the "fi xed" formula φ is considered when forgetting the symbols in V, instead of the "moving" formula ForgetLitVar (φ, L, V). This can be interesting, since φ can be simplifi ed before the computations, which will then be facilitated.

Let us apply this improved iterative method to Example 2:
Example 4 cf Example 2: $P=\{a, b\}, V=\{c\}, Q=\{d\}$, with $\varphi=(\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge \neg c \wedge \neg d)$.

- We compute ForgetLitVar (φ, P, V) again:

1. $\Phi^{0}=$ ForgetLitVar $(\varphi, \emptyset,\{c\})=\varphi$;
2. $\Phi^{1}=\Phi^{0} \vee \Phi_{\neg a: \top}^{0} \vee$ Forget $V\left(a \wedge[\neg a \wedge \varphi]_{\neg a: \top}, c\right) \equiv$ $((\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge \neg c \wedge \neg d)) \vee$ $(b \wedge c) \vee \operatorname{Forget} V(a \wedge(b \wedge c),\{c\}) \equiv$ $(\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge \neg c \wedge \neg d)) \vee(b \wedge c) \vee(a \wedge b) \equiv$ $(a \wedge \neg b \wedge \neg c \wedge \neg d) \vee(a \wedge b) \vee(b \wedge c) ;$
3. ForgetLitVar $(\varphi, P, V)=\Phi^{2}=$
$\Phi^{1} \vee \Phi_{\neg b: \top}^{1} \vee \operatorname{Forget} V\left(b \wedge[\neg b \wedge \varphi]_{\neg b: T, c)}\right) \equiv$ $((a \wedge \neg b b: \neg c \wedge \neg d) \vee(a \wedge b) \vee(b \wedge c)) \vee(a \wedge \neg c \wedge \neg d) \vee$ ForgetV $(b \wedge(a \wedge \neg c \wedge \neg d),\{c\}) \equiv$ $(a \wedge \neg b \wedge \neg c \wedge \neg d) \vee(a \wedge b) \vee(b \wedge c) \vee(a \wedge \neg c \wedge \neg d) \vee$ $(a \wedge b \wedge \neg d) \equiv$ $(a \wedge b) \vee(b \wedge c) \vee(a \wedge \neg c \wedge \neg d)(c f$ Example 2).

Conclusion and perspectives

Why could this work be useful:

The notion of forgetting literals consists in small manipulations of propositional formulas. This notion can help the effective computation of various useful already known knowledge representation formalisms. As shown in (Lang, Liberatore, \& Marquis 2003), we cannot hope that this will solve all the problems, but it should help in providing significant practical improvements. And the introduction of varying symbols while forgetting literals should enhance these improvements in a signifi cant way. However, the present text has not developed this applicative matter. Let us just remind a few indications on this subject now [see (Lang, Liberatore, \& Marquis 2003; Moinard 2005) for more details]. Various knowledge representation formalisms are known to be concerned, we will only evoke circumscription.

Circumscription (McCarthy 1986) is a formalism aimed at minimizing some set of propositional symbols. For instance, circumscribing the symbol exceptional in the sub-formula bird $\wedge \neg$ exceptional \rightarrow flies of our introductory example would conclude \neg exceptional since it is compatible with the sub-formula that "no exception" happens. Notice that even on this simple example a complication appears: we cannot "circumscribe" exceptional
alone, if we want the expected minimization to hold here. Instead, we must also allow at least one other symbol to vary during the circumscription (e.g. we could allow flies to vary while exceptional is circumscribed). Circumscription is used in action languages and other formalizations of common sense reasoning, but a key and limiting issue is the effi cient computation. The notion of forgetting literals provides a (limited, but real) progress on the subject. The main result is the following one:

$$
\begin{aligned}
& \operatorname{Circ}(P, Q, V)(\varphi) \models \psi \text { iff } \\
& \varphi \models F \operatorname{ForgetLitVar}\left(\varphi \wedge \psi, P^{-}, V\right) .
\end{aligned}
$$

The propositional symbols in P, V, Q are respectively circumscribed, varying, and fixed in the "circumscription of the formula φ " here.

This result is known to improve (from a computational perspective) previously known results, mainly a result from (Przymusinski 1989). The notion of varying symbols allows some simplifi cation with respect to Przymunsinski's method and even with respect to the computational improvements of this method discovered by (Lang, Liberatore, \& Marquis 2003).

What has been done here:

We have provided the semantical and several syntactical characterizations for a new notion, extending the notion of literal forgetting introduced in (Lang, Liberatore, \& Marquis 2003) to the cases where some propositional symbols are allowed to vary. These results show that the new notion is not signifi cantly harder than literal forgetting without varying symbols. The various characterizations provide effective ways for computing the results, depending on the form in which the formulas appear. These different ways for computing the notions introduced should help the effective computation in many cases. This is why we have provided several equivalent formulas for the main formulas introduced here, and also for some important auxiliary formulas involved in the defi nitions. This kind of work is absolutely necessary when coming to the effective computation. Indeed, as shown in (Lang, Liberatore, \& Marquis 2003), no formulation can be considered as the best one in any case.

Hopefully, the various ways of defi ning the formulas and notions introduced here could also help getting a better grasp of these notions, since they are not very well known till now.

What remains to be done:

Various knowledge representation formalisms are known to be concerned (Lang, Liberatore, \& Marquis 2003). Moreover, it is highly probable that these notions of forgetting literals for themselves can give rise to new useful formalizations of old problems in knowledge representation. It seems even likely that new knowledge representation formalisms could emerge from these enhanced notions of "forgetting".

More concretely, the notion of "forgetting" can still be generalized: we could directly "forget formulas" (instead of just "literals"), in the lines of what has been done with formula circumscription with respect to predicate circumscription.

Again more concretely, the present work [after the initiating work of (Lang, Liberatore, \& Marquis 2003)] has given a preliminary idea on what kind technical work can be done for simplifying the effective computation of the formulas involved in the forgetting process. It is clear that a lot of important work should still be done on the subject.

Also, the complexity results, which have been described in (Lang, Liberatore, \& Marquis 2003), should be extended to the new notion, and to the new methods of computation. This is far from simple since, as shown in (Lang, Liberatore, \& Marquis 2003), it seems useless to hope for a general decrease of complexity with respect to the already known methods. So, the methods should be examined one by one, and for each method, its range of utility (the particular formulations for a given formula φ for which the method is interesting) should be discovered and discussed.

Appendix

Proof of Proposition 13:

Let us consider complete terms first, such as

$$
t_{i}=t=\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge \neg\left(P-P_{1}\right)\right) \wedge\left(\bigwedge V_{l}\right) \wedge\left(\bigwedge Q_{l}\right),
$$

where $\quad P_{1} \subseteq P, \quad V_{l}$ and Q_{l} being consistent and complete sets of literals in V and Q respectively. t corresponds to an interpretation ω. The set $F(\omega)=\left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / L_{1} \subseteq P, \quad L_{2} \subseteq\right.$ $V^{ \pm}, L_{2}$ consistent and complete in V, and $\omega \not \models L_{1}$ or $\omega \models$ $\left.L_{2}\right\}$ is the set of the models of the formula $t^{1} \wedge t^{2}$ where $t^{1}=\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right)$ and $t^{2}=\neg\left(\bigwedge \neg\left(P-P_{1}\right)\right) \vee\left(\bigwedge V_{l}\right)$, i.e. $\left.t^{2} \equiv\left(\bigvee\left(P-P_{1}\right)\right) \vee\left(\Lambda V_{l}\right)\right)$.

Indeed, for each $\omega^{\prime} \in F(\omega)$, t^{1} holds since it holds in ω, and the symbols in $P-P_{1}$ and V can take any value satisfying the condition $\omega \not \models L_{1}$ or $\omega \models L_{2}$. Since $\omega \models t$, this means $L_{1} \cap\left(P-P_{1}\right) \neq \emptyset$ or $L_{2} \subseteq V_{l}$, which is equivalent to $\omega^{\prime} \models t_{2}$. Conversely, any model $\omega^{\prime \prime}$ of $t_{1} \wedge t_{2}$ is easily seen to be in $F(\omega)$.

The same result holds for any (consistent) term $t=t_{i}=\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge \neg\left(P_{2}\right)\right) \wedge\left(\wedge V_{l}\right) \wedge\left(\bigwedge Q_{l}\right)$, where $P_{1} \subseteq P, P_{2} \subseteq P-P_{1}, V_{l}$ and Q_{l} being consistent subsets of $V^{ \pm}$and $Q^{ \pm}$respectively: Let us first consider separately the cases where some symbols in P are missing, then symbols in V, then symbols in Q.
(1) If $p \in P$ does not appear in t, for any model ω^{\prime} of t, $\omega^{\prime \prime}=\operatorname{Force}\left(\omega^{\prime},\{\neg p\}\right)$ and Force $\left(\omega^{\prime \prime},\{p\}\right)$ are two models of t (one of these is ω^{\prime}). By considering all the missing p 's, we get that the set $\left\{\operatorname{Force}\left(\omega^{\prime}, L_{1} \cup L_{2}\right) / \omega^{\prime} \models\right.$ $t, L_{1} \subseteq P^{-}, L_{2} \subseteq_{\text {cons }} V^{ \pm}, \omega^{\prime} \notin L_{1}$ or $\left.L_{2}=\emptyset\right\}$ is included in the set $\left\{\operatorname{Force}\left(\omega^{\prime \prime}, L_{1} \cup L_{2}\right) / \omega^{\prime \prime} \models t \wedge \wedge \neg\left(P-P_{1}\right)\right.$, $L_{1} \subseteq P^{-}, L_{2} \subseteq_{\text {cons }} V^{ \pm}, \omega^{\prime \prime} \not \vDash L_{1}$ or $\left.L_{2}=\emptyset\right\}$. Thus any missing p in t behaves as if the negative literal $\neg p$ was present: we get a term "completed in $P^{\prime \prime}$ satisfying $\operatorname{ForgetLitVar}\left(t, P^{-}, V\right)$ ForgetLitVar $\left(t \wedge \neg\left(P-P_{1}\right), P^{-}, V\right)$.
(2) The reasoning for a missing q in $t(q \in Q)$ is simpler yet: if some $q \in Q$ does not appear in t, it can be interpreted as false or true for any model of $\operatorname{ForgetLitVar}(t, L, Q)$,
which means that we keep the part $\bigwedge Q_{l}$ unmodifi ed, exactly as in the case where Q_{l} is complete in Q.
(3) The case for V is similar (the disjunction of all the formulas with all the possibilities for the missing symbols gives the formula where these symbols are missing): If some $v \in V$ is missing in t, then any model ω^{\prime} of t has its counterpart where the value for v is modifi ed. Let us call V_{m} the set of the symbols in V which are absent in t. By considering the disjunctions of all the possibilities, we get the formula $\bigvee_{V_{l}^{\prime} \in \mathcal{L}_{m}}\left(\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right) \wedge\left(\left(\bigvee\left(P-P_{1}\right)\right) \vee\left(\bigwedge V_{l} \wedge \wedge V_{l}^{\prime}\right)\right)\right)$, where \mathcal{L}_{m} is the set of all the sets of literals consistent and complete in V_{m}. This is equivalent to the formula $\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right) \wedge\left(\left(\bigvee\left(P-P_{1}\right)\right) \vee\left(\wedge V_{l}\right)\right)$.

Combining "the three incompleteness" (1)-(3) gives:
ForgetLitVar $\left(t_{i}, P^{-}, V\right) \equiv\left(\bigwedge P_{1}\right) \wedge\left(\bigwedge Q_{l}\right) \wedge$ $\left(\left(\bigvee\left(P-P_{1}\right)\right) \vee\left(\bigwedge V_{l}\right)\right)$.
The disjunction for all the t_{i} 's gives the result.

Proof of the adequacy of Definition 15 with Definition 11:

Each model ω of φ gives rise to the following models of ForgetLitVar $\left(\varphi, P^{-}, V\right)$:

- ω itself, model of $\psi_{1}=\wedge P_{1} \wedge \wedge \neg\left(P-P_{1}\right) \wedge$ $\varphi_{\left[P_{1}: T,\left(P-P_{1}\right): \perp\right]}$ where $P_{1}=\omega \cap P$,
together with
- all the interpretations differing from ω in that they have at least one more $p \in P$, and no constraint holds for the symbols in V; this set of interpretations being the set of models of the formula $\psi_{2}=$
$\wedge P_{1} \wedge \operatorname{Forget} V\left(\varphi_{\left[P_{1}: T,\left(P-P_{1}\right): 0\right]}, V\right) \wedge \bigvee\left(P-P_{1}\right)$.
Since $\varphi_{\left[P_{1}: T,\left(P-P_{1}\right): \perp\right]} \models \operatorname{Forget} V\left(\varphi_{\left[P_{1}: T,\left(P-P_{1}\right): \perp\right]}, V\right)$ and $\wedge \neg\left(P-P_{1}\right) \equiv \neg\left(\bigvee\left(P-P_{1}\right)\right)$, when considering the disjunction $\psi_{1} \vee \psi_{2}$, we can suppress $\wedge \wedge \neg\left(P-P_{1}\right)$ in ψ_{1}. The disjunction of all these formulas $\psi_{1} \vee \psi_{2}$ for each model ω of φ, gives the formula as written in this defi nition.

Proof of Remark 16:

1. For any formula $\varphi, \quad \operatorname{Mod}(\operatorname{ForgetV}(\varphi, V))=$ $\left\{\operatorname{Force}\left(\omega, L_{2}\right) / L_{2} \subseteq_{\text {cons }} V^{ \pm}\right\}=\left\{\right.$Force $\left(\omega, L_{1} \cup\right.$ $\left.\left.L_{2}\right) / L_{1} \subseteq P^{-}, L_{2} \quad \complement_{\text {cons }} \quad V^{ \pm}, \omega \quad \vDash \quad L_{1}\right\}$ and $\quad \operatorname{Mod}\left(\operatorname{ForgetLitVar}\left(\varphi, P^{-}, V\right)\right) \quad=$ $\left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / L_{1} \subseteq P^{-}, L_{2} \subseteq\right.$ cons $V^{ \pm},[\omega \mid \vDash$ L_{1} or $\left.\left.L_{2}=\emptyset\right]\right\}$. Thus, $\operatorname{Mod}(\operatorname{Forget} V(\varphi, V) \vee$ $\left.\operatorname{ForgetLitVar}\left(\varphi, P^{-}, V\right)\right)=\operatorname{Mod}(F \operatorname{orget} V(\varphi, V)) \cup$ $\operatorname{Mod}\left(\operatorname{ForgetLitVar}\left(\varphi, P^{-}, V\right)\right)=\left\{\operatorname{Force}\left(\omega, L_{1} \cup\right.\right.$ $\left.\left.L_{2}\right) / L_{1} \quad \subseteq \quad P^{-}, L_{2} \quad \complement_{\text {cons }} \quad V^{ \pm}\right\} \quad=$ $\operatorname{Mod}\left(\right.$ ForgetLit $\left.\left(\varphi, P^{-} \cup V^{ \pm}\right)\right)$.
2. We get $\operatorname{Mod}(\operatorname{Forget} V(\varphi, V) \wedge$ ForgetLitVar $\left.\left(\varphi, P^{-}, V\right)\right)=\operatorname{Mod}(\operatorname{Forget} V(\varphi, V)) \cap$ $\operatorname{Mod}\left(\right.$ ForgetLitVar $\left(\varphi, P^{-}, V\right)$). Let us suppose now that φ is a formula uniquely defi ned in P. This means that the set $\operatorname{Mod}(\varphi) \cap P$ is a singleton. Then, if $L_{1} \subseteq P^{-}$, $\omega \models \varphi$ and $\omega \not \vDash L_{1}$, we get $\operatorname{Force}\left(\omega, L_{1}\right) \notin \operatorname{Mod}(\varphi)$,
and also, for any $\omega^{\prime} \in \operatorname{Mod}(\varphi)$ and any consistent subsets L_{2}, L_{2}^{\prime} of $V^{ \pm}, \operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) \neq \operatorname{Force}\left(\omega^{\prime}, L_{2}^{\prime}\right)$. Thus, for any element Force $\left(\omega, L_{1} \cup L_{2}\right)$ of $\operatorname{Mod}\left(\right.$ ForgetLitVar $\left.\left(\varphi, P^{-}, V\right)\right)$ which is also in $\operatorname{Mod}\left(F \operatorname{orget} V(\varphi, V)\right.$, we get $\omega \models L_{1}$, thus also $L 2=\emptyset$, thus $\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right)=\omega$, thus this element is in $\operatorname{Mod}(\varphi)$. Thus we get $\operatorname{Forget} V(\varphi, V) \wedge$ ForgetLitVar $\left(\varphi, P^{-}, V\right) \models \varphi$, and, by Remark 12, $\operatorname{Forget} V(\varphi, V) \wedge \operatorname{ForgetLitVar}\left(\varphi, P^{-}, V\right) \equiv \varphi$.

Proof of the adequacy of Remark 17 with Definition 15:

Let V be a set of propositional symbols and $L \cup\{l\}$ be a consistent set of literals without symbol in V such that $l \notin L$.

For any formula Φ, we have $\operatorname{Mod}(\neg l \wedge \operatorname{Forget} V(l \wedge$ $\left.\left.\Phi, v_{l}\right)\right)=\{\operatorname{Force}(\omega, \sim l) / \omega \models \Phi, \omega \models l\}$.
This is the set of all the models of Φ actively forced by $\sim l$: l was satisfi ed by ω while $\operatorname{Force}(\omega, \sim l)$ differs from ω in that it satisfi es $\neg l$. Then we get
$\operatorname{Mod}\left(F \operatorname{orget} V\left(\neg l \wedge \operatorname{Forget} V\left(l \wedge \Phi, v_{l}\right), V\right)\right)=$
$\left\{\operatorname{Force}\left(\operatorname{Force}(\omega, \sim l), L_{2}\right) / \omega \models \Phi, \omega \models l, L_{2} \subseteq_{\text {cons }}\right.$ $V \pm\}=$
$\left\{\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{2}\right) / \omega \models \Phi, \omega \models l, L_{2} \subseteq_{\text {cons }} V \pm\right\}$.
Thus, from Defi nition 11, wet get
$\operatorname{Mod}($ ForgetLitVar $(\varphi, L, V))=\operatorname{Mod}_{1} \cup \operatorname{Mod}_{2}$ and $\operatorname{Mod}(F$ orget $V(\neg l \wedge$ Forget $V(l \wedge$
$\left.\left.\left.\operatorname{ForgetLitVar}(\varphi, L, V), v_{l}\right), V\right)\right)=\operatorname{Mod}_{3} \cup \operatorname{Mod}_{4}$ where

1. $\operatorname{Mod}_{1}=\{\omega / \omega \models \varphi\}$;
2. $\operatorname{Mod}_{2}=\left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / \omega \models \varphi\right.$,

$$
\left.\omega \not \models L_{1}, L_{1} \subseteq \sim L, L_{2} \subseteq_{\text {cons }} V \pm\right\}
$$

3. $\operatorname{Mod}_{3}=$
$\left\{\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{2}\right) / \omega \models \varphi, \omega \models l, L_{2} \subseteq_{\text {cons }} V \pm\right\} ;$
4. $\operatorname{Mod}_{4}=$
$\left\{\operatorname{Force}\left(\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right),\{\sim l\} \cup L_{2}^{\prime}\right) / \omega \models \varphi, \omega \models l\right.$, $\left.\omega \not \vDash L_{1}, L_{1} \subseteq \sim L, L_{2} \subseteq_{\text {cons }} V \pm, L_{2}^{\prime} \subseteq_{\text {cons }} V \pm\right\}$.
Notice that we get: $v_{l} \notin L, v_{l} \notin V$ and $\mathcal{V}(L \cup\{l\}) \cap V=$
\emptyset. Thus we get
$\operatorname{Mod}_{4}=$
$\left\{\operatorname{Force}\left(\omega,\{\neg l\} \cup L_{1} \cup L_{2}^{\prime} \cup\left(L_{2}-\sim L_{2}^{\prime}\right)\right) / \omega \models \varphi, \omega \models l\right.$, $\left.\omega \not \vDash L_{1}, L_{1} \subseteq \sim L, L_{2} \subseteq_{\text {cons }} V \pm, L_{2}^{\prime} \subseteq_{\text {cons }} V \pm\right\}$.

When the sets L_{2} and L_{2}^{\prime} run over the set of the consistent subsets of $V^{ \pm}$, the set $L_{2}^{\prime \prime}=L_{2}^{\prime} \cup\left(L_{2}-\sim L_{2}^{\prime}\right)$ also runs over the same set and we get:

$$
\begin{aligned}
& \operatorname{Mod}_{4}=\left\{\text { Force }\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}^{\prime \prime}\right) / \omega \models \varphi,\right. \\
& \\
& \left.\omega \models l, \omega \not \models L_{1}, L_{1} \subseteq \sim L, L_{2}^{\prime \prime} \subseteq \text { cons } V \pm\right\} .
\end{aligned}
$$

If $L_{1} \subseteq \sim L$ and $\omega \models L_{1}$, we get
$\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{2}\right)=\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}\right)$.
Thus we get $\operatorname{Mod}_{3} \cup \operatorname{Mod}_{4}=\operatorname{Mod}_{34}=$
$\left\{\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}\right) / \omega \models \varphi, \omega \models l\right.$,

Similarly, if $\omega \not \vDash l$ (i.e. $\omega \models \neg l$), we get
$\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right)=\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}\right)$.
Thus we get $\operatorname{Mod}_{2}=\operatorname{Mod}_{2 a} \cup \operatorname{Mod}_{2 b}$ where:
$\operatorname{Mod}_{2 a}=\left\{\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}\right) / \omega \models \varphi\right.$,
$\left.\omega \not \vDash l, \omega \not \vDash L_{1}, L_{1} \subseteq \sim L, L_{2} \subseteq_{\text {cons }} V \pm\right\} \quad$ and
$\operatorname{Mod}_{2 b}=\left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / \omega \models \varphi, \omega \not \models L_{1}\right.$,
$\left.L_{1} \subseteq \sim L, L_{2} \subseteq_{\text {cons }} V \pm\right\}=$
$\left\{\operatorname{Force}\left(\omega, L_{1}^{\prime} \cup L_{2}\right) / \omega \models \varphi, \omega \not \models L_{1}^{\prime}, \neg l \notin L^{\prime} 1\right.$, $\left.L_{1}^{\prime} \subseteq\{\sim l\} \cup \sim L, L_{2} \subseteq_{\text {cons }} V \pm\right\}$.

Since $\omega \not \vDash\{l\} \cup L_{1}$ iff $\omega \not \vDash l$ or $\omega \not \vDash \cup L_{1}$, we get: $\operatorname{Mod}_{2 a} \cup \operatorname{Mod}_{34}=\operatorname{Mod}_{2 a 34}=$
$\left\{\operatorname{Force}\left(\omega,\{\sim l\} \cup L_{1} \cup L_{2}\right) / \omega \models \varphi, \omega \not \vDash\{\sim l\} \cup L_{1}\right.$,

$$
\left.L_{1} \subseteq \sim L, L_{2} \subseteq \text { cons } V \pm\right\}=
$$

$\left\{\operatorname{Force}\left(\omega, L_{1}^{\prime} \cup L_{2}\right) / \omega \models \varphi, \omega \not \models L_{1}^{\prime}\right.$,

$$
\left.L_{1}^{\prime} \subseteq\{\sim l\} \cup \sim L, \sim l \in L_{1}^{\prime}, L_{2} \subseteq_{\text {cons }} V \pm\right\}
$$

Thus we get $\operatorname{Mod}_{2 a 34} \cup \operatorname{Mod}_{2 b}=$
$\operatorname{Mod}_{234}=\left\{\operatorname{Force}\left(\omega, L_{1} \cup L_{2}\right) / \omega \models \varphi, \omega \not \models L_{1}\right.$, $\left.L_{1} \subseteq\{\sim l\} \cup \sim L, L_{2} \subseteq_{\text {cons }} V \pm\right\}$.

Finally we get the result which achieves the proof:
$\operatorname{Mod}($ ForgetLitVar $(\varphi, L, V) \vee$ Forget $V(\neg l \wedge$
ForgetV $\left(l \wedge\right.$ ForgetLitVar $\left.\left.\left.(\varphi, L, V), v_{l}\right), V\right)\right)=$
$\operatorname{Mod}_{1} \cup \operatorname{Mod}_{2} \cup \operatorname{Mod}_{3} \cup \operatorname{Mod}_{4}=\operatorname{Mod}_{1} \cup \operatorname{Mod}_{234}=$
$\operatorname{Mod}($ ForgetLitVar $(\varphi,\{l\} \cup L, V))$.
Thus, we have shown:
ForgetLitVar $(\varphi,\{l\} \cup L, V)=$
ForgetLitVar $(\varphi, L, V) \vee$ Forget $V(\neg l \wedge$

$$
\text { ForgetV } \left.\left(l \wedge \text { ForgetLitVar }(\varphi, L, V), v_{l}\right), V\right)
$$

References

Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional Independence - Formula-Variable Independence and Forgetting. (Electronic) Journal of Artificial Intelligence Research 18:391-443. http: / /WWW. JAIR. ORG/.
Lin, F., and Reiter, R. 1994. Forget it! In Mellish, C. S., ed., AAAI Fall Symposium on Relevance, 1985-1991. New Orleans, USA: Morgan Kaufmann.
Lin, F. 2001. On strongest necessary and weakest suffi cient conditions. Artficial Intelligence 128(1-2):143-159.
McCarthy, J. 1986. Application of circumscription to formalizing common sense knowledge. Artificial Intelligence 28(1):89-116.
Moinard, Y. 2005. Forgetting literals with varying propositional symbols. In McIlraith, S.; Peppas, P.; and Thielscher, M., eds., $7^{\text {th }}$ Int. Symposium on Logical Formalizations of Common Sense Reasoning, 169-176.
Przymusinski, T. C. 1989. An Algorithm to Compute Circumscription. Artificial Intelligence 38(1):49-73.
Su, K.; Lv, G.; and Zhang, Y. 2004. Reasoning about Knowledge by Variable Forgetting. In Dubois, D.; Welty, C. A.; and Williams, M.-A., eds., KR'04, 576-586. AAAI Press.

[^0]: ${ }^{1}$ Notice that in (Lang, Liberatore, \& Marquis 2003), " $\varphi_{l: \perp} "$ (respectively " $\varphi_{l: T} T$ ") is denoted by " $\varphi_{l \leftarrow 0}$ " (respectively " $\varphi \varphi_{l \leftarrow 1}$ ").

[^1]: ${ }^{2}$ 'V" in Forget V stands for '[propositional] variable", meaning "propositional symbol", and is in accordance with the notations of (Lang, Liberatore, \& Marquis 2003), even if using term 'variable" here could provoke confusions with the notions described later in this text.

