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Abstract

Recently, the old logical notion of forgetting proposi-
tional symbols (or reducing the logical vocabulary) has
been generalized to a new notion: forgetting literals.
The aim was to help the automatic computation of var-
ious formalisms which are currently used in knowledge
representation, particularly for nonmonotonic reason-
ing. We develop here a further generalization, allowing
propositional symbols to vary while forgetting literals.
We describe the new notion, on the syntactical and the
semantical side. We provide various manipulations over
the basic definitions involved, including for the original
version, which hopefully should help improving again
the efficiency of the computation. This work concerns
especially circumscription, since it is known that one
way of computing circumscription uses the forgetting
of literals.

Introduction
The well-known notion of forgetting propositional symbols,
which is known at least since a 1854 paper by Boole un-
der the name “elimination of middle terms”, has been used
for a long time in mathematical logic and in its applications
for knowledge representation (see e.g. (Lin & Reiter 1994;
Lin 2001; Su, Lv, & Zhang 2004)). It is a reduction of the
vocabulary, thanks to the suppression of some propositional
symbols. Let us consider the formula

(bird ∧ ¬exceptional → flies) ∧ ¬exceptional.

We may want to “forget” the symbol exceptional, consid-
ered here as “auxiliary”, then we get the formula

bird→ flies.

Recently, Lang et al. (Lang, Liberatore, & Marquis 2003)
have extended this notion in a significant manner, by allow-
ing the forgetting of literals. In above example, it happens
that in fact what has been done is equivalent to forgetting
the literal ¬exceptional. In the general case, forgetting a
literal is more precise than forgetting its propositional sym-
bol: we get a formula standing “somewhere between” the
original formula and the formula obtained by forgetting the
propositional symbol.

This new definition is a natural extension of the classical
definition of forgetting propositional symbols. Lang et al.

have shown that this new notion also is useful for knowl-
edge representation and particularly for nonmonotonic
reasoning. In some cases, this provides a simplification of
the computations, and the authors provide various ways
for computing the forgetting of literals, in order to obtain
concrete examples of simplification of the computation of
some already known formalism.

We extend the notion by allowing some propositional
symbols to vary when forgetting literals. The new defini-
tions are a simple and natural extension of the original ones,
and they have the same kind of behavior

We describe various ways for computing these notions
(including the original ones, without varying symbols), and
we provide hints showing that the complexity of the new
notion should be comparable to the complexity of the notion
without variable symbols. This is of some importance in
order to apply the results given in (Lang, Liberatore, &
Marquis 2003) to the new notion, since this should simplify
significantly the overall computation. The main application
example of the interest of these methods for computing
already known formalisms given in (Lang, Liberatore, &
Marquis 2003) concerns circumscription, and (Moinard
2005) has shown how the new notion with varying symbols
allows to reduce a two stage method to a single stage one.

Firstly, we give the preliminary notations and definitions.
Then we remind the notion of propositional symbol forget-
ting, with a few more technical tools. Then we remind the
notion of literal forgetting as introduced by Lang et al. Then
we introduce our generalization, allowing symbols to vary
when literals are forgotten. Finally, we detail yet another
method for computing these notions.

Technical preliminaries
We work in a propositional language PL. As usual, PL

also denotes the set of all the formulas, and the vocabulary
of PL is a set of propositional symbols denoted by V(PL).
We restrict our attention to finite sets V(PL) in this text.

Letters ϕ, ψ denote formulas in PL, > and ⊥ denote re-
spectively the true and the false formulas. Interpretations
for PL, identified with subsets of V(PL), are denoted by
the letter ω. The notations ω |= ϕ and ω |= X for a set X



of formulas are defined classically. For a set E, P(E) de-
notes the set of the subsets of E. The set P(V(PL)) of the
interpretations for PL is denoted by Mod. A model of X is
an interpretation ω such that ω |= X , Mod(ϕ) and Mod(X)
denote respectively the sets of the models of {ϕ} and X .

A literal l is either a symbol p in V(PL) (positive literal)
or its negation ¬p (negative literal). If l is a literal, ∼ l
denotes its complementary literal: ∼ ¬p = p and∼ p = ¬p.
Similarly, we define ∼> = ⊥ and ∼⊥ = >.

A clause (respectively a term) is a disjunction (respec-
tively a conjunction) of literals. Subsets of V(PL) are de-
noted by P,Q, V . P+ (respectively P−) denotes the set of
the positive (respectively negative) literals built on P , and
P± denotes the set P+ ∪ P− of all the literals built on P
(P and P+ can be assimilated). For any (finite) set X of
formulas,

∧

X (respectively
∨

X) denotes the conjunction
(respectively disjunction) of all the formulas in X . We get:
∧

X ≡ X ,
∧

∅ ≡ > and
∨

∅ ≡ ⊥. V(X) denotes the set of
the propositional symbols appearing in X .

A disjunctive normal form or DNF of ϕ is a disjunction
of consistent terms which is equivalent to ϕ. A set L of
literals in V ± (and the term

∧

L) is consistent and complete
in V if each propositional symbol of V appears once and
only once in L; the clause

∨

L is then non trivial and
complete in V . For any set L of literals, ∼ L denotes the
set of the literals complementary to those in L (notice that
∼ P = P−).

We need the following notions and notations, many of
them coming from (Lang, Liberatore, & Marquis 2003):

If ϕ is some formula and p is a propositional symbol in
PL, ϕp:> (respectively ϕp:⊥) is the formula obtained from
ϕ by replacing each occurrence of p by > (respectively ⊥).
If l = p is a positive literal, ϕl:i, denotes the formula ϕp:i

1;
if l = ¬p is a negative literal, ϕl:i denotes the formulaϕp:∼i.

Notations 1 1. If v1, · · · , vn are propositional symbols,
ϕ(v1:ε1,···,vn:εn) with each εj ∈ {⊥,>}, denotes the for-
mula (· · · ((ϕv1:ε1)v2:ε2)· · ·)vn:εn

.
If the vj’s in the list are all distinct, the order of the vj’s is
without consequence for the final result. Thus, if V1 and
V2 are disjoint subsets of V , we may defineϕ[V1:>,V2:⊥] as
ϕ(v1:>,···,vn:>,vn+1:⊥,···,vn+m:⊥), where (v1, · · · , vn) and
(vn+1, · · · , vn+m) are two orderings of all the elements
of V1 and V2 respectively.

2. If L = (l1, · · · , ln) is a list of literals, ϕ(l1:ε1···ln:εn) de-
notes the formula (· · · ((ϕl1:ε1)l2:ε2)· · ·)ln:εn

.

3. Let V(PL)± be ordered in some arbitrary way. If
L1, · · · , Ln are disjoint sets of literals, ϕ〈L1:ε1,···,Ln:εn〉

denotes the formula ϕ(l1:γ1,···,ln:γn) where (l1, · · · , ln) is
the enumeration of the set L1 ∪ · · · ∪ Ln which respects
the order chosen for the set of all the literals, and where,
for each lj , γj is equal to εr where r ∈ {1, · · · , n} is such
that lj ∈ Lr.

1Notice that in (Lang, Liberatore, & Marquis 2003), “ϕ l:⊥” (re-
spectively “ϕ l:>”) is denoted by “ϕ l←0” (respectively “ϕ l←1”).

Forgetting propositional symbols
Let us remind a possible definition for this well known and
old notion 2.

Definition 2 If V ⊆ V(PL) and ϕ ∈ PL, ForgetV (ϕ, V )
denotes a formula, in the propositional language PL

V
built

on the vocabulary V = V(PL) − V , which is equivalent to
ϕ in this restricted language: ForgetV (ϕ, V ) ≡ Th(ϕ) ∩
PL

V
where Th(ϕ) = {ϕ′ ∈ PL/ϕ |= ϕ′}.

For any ψ ∈ PL
V

, ϕ |= ψ iff ForgetV (ϕ, V ) |= ψ.

Here are two known ways to get ForgetV (ϕ, V ):

1. In a DNF form of ϕ, for each term suppress all the literals
in V ± (“empty terms” being equivalent to > as usual).

2. For any formula ϕ, and any list V of propositional sym-
bols, we get

(a) ForgetV (ϕ, {v} ∪ V ) =
ForgetV (ϕ, V )v:> ∨ ForgetV (ϕ, V )v:⊥,

(b) ForgetV (ϕ, ∅) = ϕ.

The iterative point 2 applies to any formula, and shows that
we can forget one symbol at a time. Also, the order is irrel-
evant: the final formulas are all equivalent when the order
is modified. Here is the corresponding “global formulation”
(cf Notations 1-1):

Definition 3 ForgetV (ϕ, V ) =
∨

V ′⊆V

ϕ[V ′:>,(V −V ′):⊥].

Considering the formulation ForgetV (ϕ, V ) ≡ Th(ϕ)∩
PL

V
, the following obvious technical remark happens to be

very useful:

Remark 4 When considering a formula equivalent to a set
Th(ϕ) ∩ X , the set of formulas X can be replaced by any
set Y having the same ∧-closure: {

∧

X ′/X ′ ⊆ X} =
{
∧

X ′/X ′ ⊆ Y }. Indeed, we have:

• If X and Y have the same ∧-closure, then Th(ϕ) ∩X ≡
Th(ϕ) ∩ Y .

• The converse is true, provided that we assimilate equiv-
alent formulas: if Th(ϕ) ∩ X ≡ Th(ϕ) ∩ Y for any
ϕ ∈ PL, then X and Y have the same ∧-closure.

Since we work in finite propositional languages, there ex-
ists a unique smallest (for set inclusion, and up to logical
equivalence) possible set, the ∧-reduct of X , equal to the
set X − {ϕ ∈ X/ϕ is in the ∧-closure of X − {ϕ}}. Thus,
X can be replaced by any set containing the ∧-reduct of X
and included in the ∧-closure of X .

Thus, instead of considering the whole set PL
V

in
ForgetV (ϕ, V ) ≡ Th(ϕ) ∩ PL

V
(Definition 2), we can

consider the set of all the clauses built on V , the smallest
(for ⊆) set that can be considered here being the set of these
clauses which are non trivial and complete in V .

2“V” in ForgetV stands for “[propositional] variable”, mean-
ing “propositional symbol”, and is in accordance with the notations
of (Lang, Liberatore, & Marquis 2003), even if using term “vari-
able” here could provoke confusions with the notions described
later in this text.



On the semantical side, the set of the models of
ForgetV (ϕ, V ) is the set of all the interpretations for PL

which coincide with a model of ϕ for all the propositional
symbols not in V : Mod(ForgetV (ϕ, V )) =

{ω ∈ Mod / ∃ω′, ω′ |= ϕ and ω ∩ V = ω′ ∩ V }.
These syntactical and semantical characterizations justify

the name “Forget”.

Example 1 Here V(PL) = {a, b, c, d}, and
ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

DNF rule: ForgetV (ϕ, {b, c}) ≡ (¬a) ∨ (a ∧ ¬d)
≡ ¬a ∨ ¬d.

iteratively: ForgetV (ϕ, {c}) ≡ (¬a∧b)∨(a∧¬b∧¬d).
ForgetV (ForgetV (ϕ, {c}), {b}) ≡
ForgetV (ϕ, {b, c}).

semantics:
Starting with Mod(ϕ) = {{a}, {b, c}, {b, c, d}}, we get
the twelve models of ForgetV (ϕ, {b, c}) by adding all
the interpretations varying on {b, c}, which gives the
twelve interpretations: ∅ ∪ E, {a} ∪ E, {d} ∪ E, for any
subset E of the set of the forgotten symbols {b, c}.

Remind that for any formulas ϕ1 and ϕ2,
we get ForgetV (ϕ1 ∨ ϕ2, V ) ≡

ForgetV (ϕ1, V ) ∨ ForgetV (ϕ2, V ),
and ForgetV (ϕ1 ∧ ϕ2, V ) |=

ForgetV (ϕ1, V ) ∧ ForgetV (ϕ2, V ).
Here is counter-example for the converse entailment:

ϕ1 = a ∨ ¬b, ϕ2 = b, thus ϕ1 ∧ ϕ2 = a ∧ b and
we get ForgetV (ϕ1, {b}) = ForgetV (ϕ2, {b}) = >,
while ForgetV (ϕ1 ∧ ϕ2, {b}) = a.

We need now another definition:

Definition 5 (Lang, Liberatore, & Marquis 2003, pp. 396–
397) Let ω be an interpretation for PL, p be a propositional
symbol in PL and L be a consistent set of literals in PL.

We define the interpretations
Force(ω, p) = ω ∪ {p} and
Force(ω,¬p) = ω − {p} and more generally,
Force(ω,L) = ω ∪ {p/p ∈ V(PL), p ∈ L}

− {p/p ∈ V(PL),¬p ∈ L}.

Thus, Force(ω,L) is the interpretation for PL equal to
ω for all the propositional symbols in V(PL) − V(L) and
which satisfies all the literals of L.

An immediate consequence of the definition of ϕl:> is
that we get: Mod(ϕl:>) =
{ω/ω |= ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |= ϕ, ω |= l} =
{Force(ω, l), F orce(ω,∼ l)/ω |= ϕ, ω |= l} (Modl:>).

It is then interesting to relate ForgetV (ϕ, v) [v ∈
V(PL)] to the formulas ϕv:> and ϕv:⊥:

ϕv:> ≡ ForgetV (v ∧ ϕ, v);
ϕv:⊥ ≡ ForgetV (¬v ∧ ϕ, v).

F orgetV (ϕ, v) ≡ ϕv:> ∨ ϕv:⊥.

Indeed, ForgetV (ϕ, v) ≡ ϕv:> ∨ ϕv:⊥ and ϕ ≡ (v ∧
ϕv:>) ∨ (¬v ∧ ϕv:⊥) are obvious, while choosing l = v in
result (Modl:>) gives: ϕv:> ≡ ForgetV (v ∧ ϕ, v).

Thus, we get, for each ε ∈ {⊥,>}:
(ϕ ∨ ψ)l:ε ≡ ϕl:ε ∨ ψl:ε, and also (ϕ ∧ ψ)l:ε ≡ ϕl:ε ∧ ψl:ε.

Remark 6 Let ϕ be any formula and l some literal with vl

as its propositional symbol. Then, the following six formulas
are all equivalent:

ForgetV (l ∧ ϕ, vl) ∨ ϕ ≡
(¬l ∧ ForgetV (l ∧ ϕ, vl)) ∨ ϕ ≡
ϕl:> ∨ (¬l ∧ ϕ) ≡ ϕl:> ∨ (¬l ∧ ϕl:⊥) ≡
ϕl:> ∨ ϕ ≡ ϕ ∨ (¬l ∧ ϕl:⊥).

Indeed, the set of the models of each of these formulas
is {Force(ω, l)/ω |= ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |=
ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |= ϕ, ω |= ¬l}.

Forgetting literals
Variable forgetting as been generalized as detailed now, be-
ginning with the semantical side.

Definition 7 (Literal forgetting) (Lang, Liberatore, &
Marquis 2003, Prop. 15) If ϕ is a formula and L a set of
literals in PL, ForgetLit(ϕ,L) is a formula having for
models the set of all the interpretations for PL which can
be turned into a model of ϕ when forced by a consistent
subset of L:

Mod(ForgetLit(ϕ,L)) = {ω/Force(ω,L1) |= ϕ
and L1 is a consistent subset of L}.

Thus, the models of ForgetLit(ϕ,L) are built from the
models of ϕ by allowing to “negate” (or “complement”) an
arbitrary number of values of literals in L:

Mod(ForgetLit(ϕ,L)) = {Force(ω′, L′
1) /ω

′ |= ϕ
and L′

1 is a consistent subset of ∼ L}.

Let us consider the syntactical side now. One way is to
start from a DNF formulation of ϕ:

Proposition 8 (Lang, Liberatore, & Marquis 2003) If ϕ =
t1 ∨ · · · ∨ tn is a DNF, ForgetLit(ϕ,L) is equivalent to
the formula t′1 ∨ · · · ∨ t′n where t′i is the term ti without the
literals in L.

The similar method for obtaining ForgetV (ϕ, V ) when
ϕ is a DNF has been reminded in point 1 following Defini-
tion 2. Similarly, the following syntactical definition, analo-
gous to Definition 3, can be given:

Definition 9 If L is a set of literals in PL, then

ForgetLit(ϕ,L) =
∨

L′⊆L

((

∧

∼ L′
)

∧ ϕ〈(L−L′):>〉

)

.

This is a “global formulation”, easily shown to be equiva-
lent to the following iterative definition (Lang, Liberatore,
& Marquis 2003, Definition 7):

1. ForgetLit(ϕ, ∅) = ϕ.



2. ForgetLit(ϕ, {l}) = ϕl:> ∨ ϕ.

3. ForgetLit(ϕ, {l} ∪ L) =
ForgetLit(ForgetLit(ϕ,L), l).

We refer the reader to (Lang, Liberatore, & Marquis
2003) which shows the adequacy with Definition 7 and
Proposition 8, and also that choosing any order of the
literals does not modify the meaning of the final formula (cf
Notations 1-3). It follows that this independence from the
order of the literals also applies to the global formulation
in Definition 9. The fact that, exactly as with the notion
of forgetting symbols (cf Definition 2 and following com-
ment), the notion of forgetting literals has such an iterative
definition is important from a computational point of view
(Lang, Liberatore, & Marquis 2003).

Notice that (Lang, Liberatore, & Marquis 2003) uses the
formula ϕl:> ∨ (¬l ∧ ϕ) in point 2, and also the variant
ϕl:> ∨ (¬l ∧ ϕl:>), instead of ϕl:> ∨ ϕ. Remark 6 shows
that any of the six formulas given there could be used
here, which could marginally simplify the computation,
depending on the form in which ϕ appears.

The presence of
(
∧

l′∈L′ ¬l′
)

in Definition 9, which is
what differentiatesForgetLit(ϕ, ...) fromForgetV (ϕ, ...),
comes from the fact that here we forget l ∈ L but we do not
forget l′ ∈ ∼ L.

A proof in (Lang, Liberatore, & Marquis 2003), using
Proposition 8, shows that we get ForgetLit(ϕ, V ±) ≡
ForgetV (ϕ, V ). This proof is easily extended to get the
following result:

Remark 10 Since any set of literals can be written as a dis-
joint union between a consistent set L′ and a set V ± of com-
plementary literals, here is a useful formulation:

ForgetLit(ϕ,L′∪V ±) ≡ ForgetLit(ForgetV (ϕ, V ), L′).

Notice that we could also forget the literals first, i.e. con-
sider the formula ForgetV (ForgetLit(ϕ,L′), V ), even if
it seems likely that this is less interesting from a computa-
tional point of view.

This remark has the advantage of separating clearly the
propositional symbols into three kinds. Let V ′ denote the
set V(L′) of the propositional symbols in L′, and V ′′ =
V(PL)−V −V ′ be the set of the remaining symbols. Then
we get:

1. The propositional symbols in V are forgotten.

2. The propositional symbols in V ′′ are fixed, since the liter-
als in V ′′± are not forgotten.

3. The remaining symbols, in V ′, are neither forgotten nor
fixed, since only the literals in L′ are forgotten, but not
the literals in ∼ L′.

Thus, ForgetLit(ϕ,L1) can be defined as: forgetting lit-
erals with some propositional symbols fixed. It is then natu-
ral to generalize the notion, by allowing some propositional
symbols to vary in the forgetting process.

Forgetting literals with varying symbols
As done with the original notion, let us begin with the se-
mantical definitions.

Definition 11 Let ϕ be a formula, V a set of propositional
symbols, and L a consistent set of literals, in PL, with V
and V(L) disjoint in V(PL). ForgetLitV ar(ϕ,L, V ) is a
formula having the following set of models:

Mod(ForgetLitV ar(ϕ,L, V )) =
{ω /Force(ω,L1 ∪ L2) |= ϕ,L1 ⊆ L,

L2 ⊆ V ±, L2 consistent, and (ω 6|= L1 or L2 = ∅)}.

This is equivalent to:

Mod(ForgetLitV ar(ϕ,L, V )) = Mod(ϕ) ∪
{Force(ω,L1 ∪ L2) / ω |= ϕ, ω 6|= L1,

L1 ⊆∼ L, L2 ⊆cons V
±}.

Notice the notation ⊆cons V
± for “included in V ± and

consistent”.
Since ω |= L2 iff Force(ω,L2) = ω, the con-

dition “(ω 6|= L1 or L2 = ∅)” can be replaced by
“(ω 6|= L1 or ω |= L2)”, and then we can replace every-
where here “L2 consistent” by “L2 consistent and complete
in V ” (there are 3card(V ) consistent sets L2 and “only”
2card(V ) consistent and complete sets).

We could be more general, by allowing to forget some
propositional symbols, which amounts to allow non consis-
tent sets L. This generalization does not present difficulties,
however, since we have not found any application for it till
now, we leave it for future work.

With respect to Definition 7, what happens here is that
the non consistent part of the set of literals, which allowed
to forget some set V of propositional symbols altogether,
has been replaced by a set of varying propositional symbols.

Remark 12 Since ForgetLit(L1, ϕ) |= ForgetLit(L1 ∪
L2, ϕ) holds from (Lang, Liberatore, & Marquis 2003) (“the
more we forget, the less we know”), we get:

ϕ |= ForgetV (ϕ, V ) |= ForgetLit(ϕ,L ∪ V ±).

Similarly, it is clear that the new definition allows a finer
(more cautious) forgetting than ForgetLit:

ϕ |= ForgetLitV ar(ϕ,L, V ) |= ForgetLit(ϕ,L ∪ V ±).

Remind the motivations for introducing ForgetLitV ar:
we want to “forget” the literals in L, even at the price of
modifying the literals in V ±: if we effectively forget at
least one literal in L, then, we allow any modification for
the literals in V ±. However, we do not want to modify the
literals in V ± “for nothing” our aim being to forget as many
literals in L as possible. This justifies the appearance of the
condition “ω 6|= L1” in the definition and in the alternative
formulation.

The syntactical aspect is slightly more tricky, but it
remains rather simple and it allows to revisit and improve



already known results. As with the original notion (see
Proposition 8), the simplest way is to start from a DNF.

Since L is consistent, without loss of generality and in
order to simplify the notations, we can consider that L is
a set of negative literals (otherwise, replace any p ∈ V(L)
such that p ∈ L by¬p′, p′ being a new propositional symbol,
then after the computations, replace p′ by ¬p). Thus, till the
end of this section, we will consider two disjoint subsets P
and V of V(PL), and L = P− with Q = V(PL) − V − P
denoting the set of the remaining propositional symbols.

Proposition 13 (See proof in Appendix) Letϕ = t1∨· · ·∨tn
be a DNF, with

ti = (
∧

Pi,1) ∧ (
∧

¬(Pi,2)) ∧ (
∧

Vi,l) ∧ (
∧

Qi,l),

where Pi,1 ⊆ P , Pi,2 ⊆ P − Pi,1, with Vi,l ⊆ V ±

and Qi,l ⊆ Q± being consistent sets of literals. Then
ForgetLitV ar(ϕ, P−, V ) ≡ t′1 ∨ · · · ∨ t′n where

t′i = (
∧

Pi,1)∧(
∧

Qi,l)∧ [(
∨

(P −Pi,1))∨(
∧

Vi,l)], i.e.

t′i = (
∧

Pi,1) ∧ (
∧

Qi,l) ∧ [
∧

l∈Vi,l

(l ∨ (
∨

(P − Pi,1)))].

Thus, t′i is ti except that the literals in P− are suppressed
while each literal in V ± must appear in disjunction with the
clause

∨

(P − P1), this clause denoting the disjunction of
all the literals in P+ which do not appear (positively) in ti.
Naturally, the literals of L = P− appearing in ti disappear.
Moreover, it is important to notice that the literals from
P± = L ∪ ∼L in ti which remain are those which do
not appear positively in ti. This means that ti could be
“completed in P ” by the conjunction of all the ¬p for each
symbol p ∈ P not appearing in ti, without modifying the
“forget” formula.

We have provided the semantical definition (in the lines of
Definition 7) and a characterization from a DNF formulation
(in the lines of Proposition 8). Let us provide now other
characterizations, and a comparison with ForgetLit.

Proposition 14 Let ϕ be a formula in PL, and P,Q and V
be three pairwise disjoint sets of propositional symbols such
that P ∪Q ∪ V = V(PL).

1. ForgetLit(ϕ, P−∪V ±) is equivalent to the set Th(ϕ)∩
X where X is the set of the formulas in PL which are
disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) with P1 ⊆ P and Ql ⊆ Q±.
2. ForgetLitV ar(ϕ, P−, V ) is equivalent to the set
Th(ϕ) ∩ X where X is the set of the formulas in PL

which are disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) ∧ [
∧

l∈Vl
(l ∨ (

∨

(P − P1)))] ,
where P1 ⊆ P , Vl ⊆cons V

± and Ql ⊆ Q±.

(We can clearly consider consistent sets Ql only.)

These two results are immediate consequences of
Propositions 8 and 13 respectively. We get the following
alternative possibilities for the sets X’s, firstly by boolean

duality from the preceding results, then by considering
some set having the same ∧-closure as X (Remark 4):

Proposition 14 (following)
1.(a) For ForgetLit(ϕ, P− ∪ V ±), X is the set of the con-

junctions of the clauses of the kind (
∨

P1) ∨ (
∨

Ql)
with P1 ⊆ P and Ql ⊆ Q± (we can clearly consider
consistent sets Ql only).

(b) We can also consider the set X of the clauses (
∨

P1)∨
(
∨

Ql) with P1 ⊆ P and Ql ⊆ Q±.
(c) The smallest set X possible is the set of the clauses

(
∨

P1)∨(
∨

Ql) with P1 ⊆ P ,Ql ⊆ Q±,Ql consistent
and complete in Q.

2.(a) For ForgetLitV ar(ϕ, P−, V ), X is the set of the con-
junctions of the formulas flv(P1, Ql, Vl) = (

∨

P1) ∨
(
∨

Ql) ∨
∨

l∈Vl
(l ∧ (

∧

(P − P1))), where P1 ⊆ P ,
Vl ⊆cons V

± and Ql ⊆cons Q
±.

(b) We can also consider the set X of all the formulas
flv(P1, Ql, Vl) of this kind.

(c) The smallest set X possible is the set of the formulas
flv(P1, Ql, Vl) with P1 ⊆ P , Ql and Vl being sets
of literals consistent and complete in Q and V respec-
tively.

These results provide the analogous, for ForgetLit and
ForgetLitV ar, of the results for ForgetV reminded in
Definition 2, and in Remark 4.

The next definition is analogous to Definitions 3 and 9
(see appendix for a proof of the adequacy with Definition
11):

Definition 15 If ϕ is a formula and P and V are two dis-
joint subsets of V(PL), then
ForgetLitV ar(ϕ, P−, V ) is the formula

∨

P1⊆P

(

∧

P1 ∧ (ϕ[P1:>,(P−P1):⊥] ∨

(ForgetV (ϕ[P1:>,(P−P1):⊥], V ) ∧ (
∨

(P − P1))))
)

.

Example 2 Here P = {a, b}, V = {c}, Q = {d}, with
ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

Syntactical side:

Since ϕ is a DNF, the rules from a DNF after Definition
2 (for ForgetV ), in Proposition 8 (for ForgetLit) and
Proposition 13 (for ForgetLitV ar), give the three results:

• ForgetV (ϕ, V ) ≡ (¬a ∧ b) ∨ (a ∧ ¬b ∧ ¬d).
• ForgetLit(ϕ, P− ∪ V ±) ≡ b ∨ (a ∧ ¬d).
• ForgetLitV ar(ϕ, P−, V ) ≡

(a ∧ b) ∨ (a ∧ ¬c ∧ ¬d) ∨ (b ∧ c). FLV 1

Definitions 9 and 15 can be used also, as shown now for
Definition 15 where, in each case, ψ = ϕ[P1:>,(P−P1):⊥]:
P1 = ∅ : ψ ∨ (ForgetV (ψ, c) ∧ (a ∨ b)) ≡

⊥ ∨ (⊥ ∧ (a ∨ b)) ≡ ⊥. (ϕ1)

P1 = {a} : a ∧ (ψ ∨ (ForgetV (ψ, c) ∧ b)) ≡
a ∧ ((¬c ∧ ¬d) ∨ (¬d ∧ b)). (ϕ2)



P1 = {b} : b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ a)) ≡
b ∧ (c ∨ (> ∧ a)). (ϕ3)

P1 = {a, b} : a ∧ b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ ⊥)) ≡
a ∧ b ∧ (⊥ ∨⊥) ≡ ⊥. (ϕ4)

The disjunction
∨4

i=1 ϕi is equivalent to FLV 1.

Semantical side:

We get Mod(ϕ) = {{a}, {b, c}, {b, c, d}}.

• The six models of ForgetV (ϕ, V ) are obtained by adding
the three interpretations differing from the three models of
ϕ by the value attributed to c (cf example 1):
{a, c}, {b}, and {b, d}.

• The ten models of ForgetLit(ϕ, P− ∪ V ±) are obtained
by adding to the models of ϕ the seven interpretations dif-
fering from these models by adding any subset of {a, b}
and by either do nothing else or modify the value of c
(adding c if it is not present and removing c if it is present).
This gives the six models of ForgetV (ϕ, V ) plus the four
interpretations including {a, b}.

• The seven models of ForgetLitV ar(ϕ, P−, V ) are ob-
tained by adding to the three models of ϕ the four inter-
pretations differing from these models by adding a non
empty subset of {a, b} and by either do nothing else or
modify the value of c, which gives here the four interpre-
tations including {a, b}.

Here is a technical result which can be drawn from this
example, and which may have a computational interest:

Remark 16 1. For any formula ϕ we get:
ForgetV (ϕ, V ) ∨ ForgetLitV ar(ϕ, P−, V ) ≡
ForgetLit(ϕ, P− ∪ V ±)

2. For any formulaϕ which is uniquely defined in P , we get:
ForgetV (ϕ, V ) ∧ ForgetLitV ar(ϕ, P−, V ) ≡ ϕ.
By formula uniquely defined in P we mean a formula

which is equivalent to a conjunction ϕ1 ∧ ϕ2, where ϕ1 is a
term complete in P and ϕ2 is without symbol of P .

See the Appendix for a proof. This remark can be
compared with Remark 12. Notice that in Example
2, the formula ϕ is uniquely defined in P [indeed,
ϕ ≡ (¬a ∧ b) ∧ (c ∨ (¬c ∧ ¬d))], thus points 1. and 2. of
this Remark are satisfied. Here is a simple counter-example
(where the important fact to notice is that ϕ is a term which
is not complete in P , i.e. Pi,1 ∪ Pi,2 6= P ) showing that the
second equivalence does not hold for any formula.

Example 3 P, V,Q, and PL as in example 2, ϕ = t = a∧c.
We get:

• ForgetV (t, V ) ≡ a.
• ForgetLit(t, P− ∪ V ±) ≡ a.
• ForgetLitV ar(t, P−, V ) ≡

ForgetLitV ar(a ∧ ¬b ∧ c, P−, V ) ≡ a ∧ (b ∨ c).

Notice also that, once we have all the models of ϕ,
the complexity of the construction of all the models
of ForgetLitV ar(ϕ, P−, V ) is not greater than the

complexity of the construction of all the models of
ForgetLit(ϕ, P− ∪ V ±).

More about the computation of these notions
On the syntactical side, we have the same kind of iterative
definition than we had for ForgetV and ForgetLit (cf the
two “iterative definitions”, in Point 2 just before Definition
3 for ForgetV , and after Definition 9 for ForgetLit):

Remark 17 Let us suppose that V is a set of propositional
symbols and thatL∪{l} is a consistent set of literals without
symbol in V and such that l /∈ L.

1. ForgetLitV ar(ϕ, ∅, V ) = ϕ;

2. ForgetLitV ar(ϕ, {l}, V ) =
ϕ ∨ ForgetV (¬l ∧ ForgetV (l ∧ ϕ, vl), V )
(where vl denotes the symbol of l).

3. ForgetLitV ar(ϕ, {l} ∪ L, V ) =
ForgetLitV ar(ForgetLitV ar(ϕ,L, V ), {l}, V ).

We get equivalent formulas for each order of appearance of
the literals in the iterative process. The complexity of the
computation of ForgetLitV ar(· · · , L, V ) should be only
slightly harder than for the computation of ForgetLit. In-
deed, we have to “forget V ” for each new literal, which in-
troduces a rather small new complication, otherwise, com-
puting¬l∧ForgetV (l∧ForgetLitV ar(ϕ,L, V ), vl) is not
harder than computing ForgetLit(ForgetLit(ϕ,L), l).

See the appendix for the proof of the equivalence
with Definition 15. Notice already that the formula
(¬l ∧ ForgetV (l ∧ Φ, vl)) has for models the models of
Φ which are actively forced by ¬l (l was true in the initial
model, and l is forced to be false).

Formally, Mod(¬l ∧ ForgetV (l ∧ Φ, vl)) =
{Force(ω,∼ l)/ω |= Φ ∧ l}. (M¬lFVl)

It seems important, from a computational point of view,
to describe an alternative syntactical way to compute this
formula (besides the possibility of using the formulation in
ForgetV given above). Here is a syntactical method.

From (M¬lFVl), we get

¬l ∧ ForgetV (l ∧ Φ, vl) ≡ ¬l ∧ [l ∧ Φ]l:>. (F¬lFVl)

An interesting point in the proof of the equivalence
between Remark 17 and Definition 15 is that it shows how
to improve the computation a bit. Indeed, once a model
has been modified by some l′ ∈ L, the set of all its variant
in V (i.e. the set {Force(ω,L2)/L2 ⊆cons V±}) is
already computed. Thus, for such a model, it is useless to
compute again all the variants in V , since they are already
present, and forgetting one more literal in L will have no
consequence to that respect: since we had already all the
variants in V , modifying a new symbol brings only one
more model (at most, it was not already present) without the
need to consider again all the variants in V for this model.

This gives rise to the following iterative process:



1. ForgetLitV ar(ϕ, ∅, V ) = ϕ;

2. ForgetLitV ar(ϕ, {l} ∪ L, V ) =
Φ ∨ Φl:> ∨ ForgetV (¬l ∧ [l ∧ ϕ]l:>, V )

where Φ = ForgetLitV ar(ϕ,L, V ).

Remind that ¬l ∧ [l ∧ ϕ]l:> can be replaced by
¬l ∧ ForgetV (l ∧ ϕ, vl) (see formula (F¬lFVl).

The simplification with respect to Remark 17 comes from
the fact that only the “fixed” formula ϕ is considered when
forgetting the symbols in V , instead of the “moving” for-
mula ForgetLitV ar(ϕ,L, V ). This can be interesting,
since ϕ can be simplified before the computations, which
will then be facilitated.

Let us apply this improved iterative method to Example 2:

Example 4 cf Example 2: P = {a, b}, V = {c}, Q = {d},
with ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

• We compute ForgetLitV ar(ϕ, P, V ) again:

1. Φ0 = ForgetLitV ar(ϕ, ∅, {c}) = ϕ;
2. Φ1 = Φ0 ∨ Φ0

¬a:> ∨ ForgetV (a ∧ [¬a ∧ ϕ]¬a:>, c) ≡
((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d)) ∨
(b ∧ c) ∨ ForgetV (a ∧ (b ∧ c), {c}) ≡
(¬a∧ b∧ c)∨ (a∧¬b∧¬c∧¬d))∨ (b∧ c)∨ (a∧ b) ≡
(a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (a ∧ b) ∨ (b ∧ c);

3. ForgetLitV ar(ϕ, P, V ) = Φ2 =
Φ1 ∨ Φ1

¬b:> ∨ ForgetV (b ∧ [¬b ∧ ϕ]¬b:>, c)) ≡
((a∧¬b∧¬c∧¬d)∨ (a∧ b)∨ (b∧ c))∨ (a∧¬c∧¬d)∨
ForgetV (b ∧ (a ∧ ¬c ∧ ¬d), {c}) ≡
(a∧¬b∧¬c∧¬d) ∨ (a∧ b)∨ (b∧ c)∨ (a∧¬c∧¬d)∨
(a ∧ b ∧ ¬d) ≡
(a ∧ b) ∨ (b ∧ c) ∨ (a ∧ ¬c ∧ ¬d) (cf Example 2).

Conclusion and perspectives
Why could this work be useful:

The notion of forgetting literals consists in small manip-
ulations of propositional formulas. This notion can help
the effective computation of various useful already known
knowledge representation formalisms. As shown in (Lang,
Liberatore, & Marquis 2003), we cannot hope that this will
solve all the problems, but it should help in providing signif-
icant practical improvements. And the introduction of vary-
ing symbols while forgetting literals should enhance these
improvements in a significant way. However, the present
text has not developed this applicative matter. Let us just re-
mind a few indications on this subject now [see (Lang, Lib-
eratore, & Marquis 2003; Moinard 2005) for more details].
Various knowledge representation formalisms are known to
be concerned, we will only evoke circumscription.

Circumscription (McCarthy 1986) is a formalism aimed
at minimizing some set of propositional symbols. For
instance, circumscribing the symbol exceptional in the
sub-formula bird ∧ ¬exceptional → flies of our intro-
ductory example would conclude ¬exceptional since it
is compatible with the sub-formula that “no exception”
happens. Notice that even on this simple example a com-
plication appears: we cannot “circumscribe” exceptional

alone, if we want the expected minimization to hold here.
Instead, we must also allow at least one other symbol to vary
during the circumscription (e.g. we could allow flies to
vary while exceptional is circumscribed). Circumscription
is used in action languages and other formalizations of
common sense reasoning, but a key and limiting issue is
the efficient computation. The notion of forgetting literals
provides a (limited, but real) progress on the subject. The
main result is the following one:

Circ(P,Q, V )(ϕ) |= ψ iff
ϕ |= ForgetLitV ar(ϕ ∧ ψ, P−, V ).

The propositional symbols in P, V,Q are respectively cir-
cumscribed, varying, and fixed in the “circumscription of the
formula ϕ” here.

This result is known to improve (from a computational
perspective) previously known results, mainly a result from
(Przymusinski 1989). The notion of varying symbols allows
some simplification with respect to Przymunsinski’s method
and even with respect to the computational improvements
of this method discovered by (Lang, Liberatore, & Marquis
2003).

What has been done here:
We have provided the semantical and several syntactical

characterizations for a new notion, extending the notion of
literal forgetting introduced in (Lang, Liberatore, & Mar-
quis 2003) to the cases where some propositional symbols
are allowed to vary. These results show that the new no-
tion is not significantly harder than literal forgetting with-
out varying symbols. The various characterizations provide
effective ways for computing the results, depending on the
form in which the formulas appear. These different ways
for computing the notions introduced should help the ef-
fective computation in many cases. This is why we have
provided several equivalent formulas for the main formulas
introduced here, and also for some important auxiliary for-
mulas involved in the definitions. This kind of work is abso-
lutely necessary when coming to the effective computation.
Indeed, as shown in (Lang, Liberatore, & Marquis 2003), no
formulation can be considered as the best one in any case.

Hopefully, the various ways of defining the formulas and
notions introduced here could also help getting a better grasp
of these notions, since they are not very well known till now.

What remains to be done:
Various knowledge representation formalisms are known

to be concerned (Lang, Liberatore, & Marquis 2003). More-
over, it is highly probable that these notions of forgetting
literals for themselves can give rise to new useful formaliza-
tions of old problems in knowledge representation. It seems
even likely that new knowledge representation formalisms
could emerge from these enhanced notions of “forgetting”.

More concretely, the notion of “forgetting” can still be
generalized: we could directly “forget formulas” (instead of
just “literals”), in the lines of what has been done with for-
mula circumscription with respect to predicate circumscrip-
tion.



Again more concretely, the present work [after the initiat-
ing work of (Lang, Liberatore, & Marquis 2003)] has given
a preliminary idea on what kind technical work can be done
for simplifying the effective computation of the formulas in-
volved in the forgetting process. It is clear that a lot of im-
portant work should still be done on the subject.

Also, the complexity results, which have been described
in (Lang, Liberatore, & Marquis 2003), should be extended
to the new notion, and to the new methods of computation.
This is far from simple since, as shown in (Lang, Libera-
tore, & Marquis 2003), it seems useless to hope for a general
decrease of complexity with respect to the already known
methods. So, the methods should be examined one by one,
and for each method, its range of utility (the particular for-
mulations for a given formula ϕ for which the method is
interesting) should be discovered and discussed.

Appendix
Proof of Proposition 13:

Let us consider complete terms first, such as

ti = t = (
∧

P1) ∧ (
∧

¬(P − P1)) ∧ (
∧

Vl) ∧ (
∧

Ql),

where P1 ⊆ P , Vl and Ql being consistent
and complete sets of literals in V and Q respec-
tively. t corresponds to an interpretation ω. The set
F (ω) = {Force(ω,L1 ∪ L2) / L1 ⊆ P, L2 ⊆
V ±, L2 consistent and complete in V, and ω 6|= L1 or ω |=
L2} is the set of the models of the formula t1 ∧ t2 where
t1 = (

∧

P1) ∧ (
∧

Ql) and t2 = ¬(
∧

¬(P − P1)) ∨ (
∧

Vl),
i.e. t2 ≡ (

∨

(P − P1)) ∨ (
∧

Vl)).
Indeed, for each ω′ ∈ F (ω), t1 holds since it holds in

ω, and the symbols in P − P1 and V can take any value
satisfying the condition ω 6|= L1 or ω |= L2. Since ω |= t,
this means L1 ∩ (P − P1) 6= ∅ or L2 ⊆ Vl, which is
equivalent to ω′ |= t2. Conversely, any model ω′′ of t1 ∧ t2
is easily seen to be in F (ω).

The same result holds for any (consistent) term
t = ti = (

∧

P1) ∧ (
∧

¬(P2)) ∧ (
∧

Vl) ∧ (
∧

Ql), where
P1 ⊆ P , P2 ⊆ P − P1, Vl and Ql being consistent subsets
of V ± and Q± respectively: Let us first consider separately
the cases where some symbols in P are missing, then
symbols in V , then symbols in Q.

(1) If p ∈ P does not appear in t, for any model ω′ of
t, ω′′ = Force(ω′, {¬p}) and Force(ω′′, {p}) are two
models of t (one of these is ω′). By considering all the
missing p’s, we get that the set {Force(ω′, L1 ∪ L2)/ω

′ |=
t, L1⊆P−, L2⊆consV

±, ω′ 6|=L1 or L2 =∅} is included in
the set {Force(ω′′, L1 ∪ L2)/ω

′′ |= t ∧
∧

¬(P − P1),
L1 ⊆ P−, L2 ⊆cons V ±, ω′′ 6|= L1 or L2 = ∅}.
Thus any missing p in t behaves as if the negative
literal ¬p was present: we get a term “completed
in P ” satisfying ForgetLitV ar(t, P−, V ) ≡
ForgetLitV ar(t ∧ ¬(P − P1), P

−, V ).

(2) The reasoning for a missing q in t (q ∈ Q) is simpler
yet: if some q ∈ Q does not appear in t, it can be interpreted
as false or true for any model of ForgetLitV ar(t, L,Q),

which means that we keep the part
∧

Ql unmodified,
exactly as in the case where Ql is complete in Q.

(3) The case for V is similar (the disjunction of all the
formulas with all the possibilities for the missing symbols
gives the formula where these symbols are missing): If some
v ∈ V is missing in t, then any model ω′ of t has its counter-
part where the value for v is modified. Let us call Vm the set
of the symbols in V which are absent in t. By considering
the disjunctions of all the possibilities, we get the formula
∨

V ′

l
∈Lm

((
∧

P1)∧(
∧

Ql)∧((
∨

(P−P1))∨(
∧

Vl∧
∧

V ′
l ))),

where Lm is the set of all the sets of literals consistent
and complete in Vm. This is equivalent to the formula
(
∧

P1) ∧ (
∧

Ql) ∧ ((
∨

(P − P1)) ∨ (
∧

Vl)).

Combining “the three incompleteness” (1)–(3) gives:
ForgetLitV ar(ti, P

−, V ) ≡ (
∧

P1) ∧ (
∧

Ql) ∧
((

∨

(P − P1)) ∨ (
∧

Vl)).
The disjunction for all the ti’s gives the result. 2

Proof of the adequacy of Definition 15 with Definition 11:

Each model ω of ϕ gives rise to the following models of
ForgetLitV ar(ϕ, P−, V ):

• ω itself, model of ψ1 =
∧

P1 ∧
∧

¬(P − P1) ∧
ϕ[P1:>, (P−P1):⊥] where P1 = ω ∩ P ,
together with

• all the interpretations differing from ω in that they have
at least one more p ∈ P , and no constraint holds for the
symbols in V ; this set of interpretations being the set of
models of the formula ψ2 =
∧

P1 ∧ ForgetV (ϕ[P1:>, (P−P1):0], V ) ∧
∨

(P − P1).

Since ϕ[P1:>,(P−P1):⊥] |= ForgetV (ϕ[P1:>,(P−P1):⊥], V )
and

∧

¬(P − P1) ≡ ¬(
∨

(P − P1)), when considering the
disjunction ψ1 ∨ ψ2, we can suppress ∧

∧

¬(P − P1) in
ψ1. The disjunction of all these formulas ψ1 ∨ ψ2 for each
model ω of ϕ, gives the formula as written in this definition.
2

Proof of Remark 16:

1. For any formula ϕ, Mod(ForgetV (ϕ, V )) =
{Force(ω,L2)/L2 ⊆cons V ±} = {Force(ω,L1 ∪
L2)/L1 ⊆ P−, L2 ⊆cons V ±, ω |= L1}
and Mod(ForgetLitV ar(ϕ, P−, V )) =
{Force(ω,L1 ∪ L2)/L1 ⊆ P−, L2 ⊆cons V ±, [ω 6|=
L1 or L2 = ∅]}. Thus, Mod(ForgetV (ϕ, V ) ∨
ForgetLitV ar(ϕ, P−, V )) = Mod(ForgetV (ϕ, V )) ∪
Mod(ForgetLitV ar(ϕ, P−, V )) = {Force(ω,L1 ∪
L2)/L1 ⊆ P−, L2 ⊆cons V ±} =
Mod(ForgetLit(ϕ, P− ∪ V ±)).

2. We get Mod(ForgetV (ϕ, V ) ∧
ForgetLitV ar(ϕ, P−, V )) = Mod(ForgetV (ϕ, V )) ∩
Mod(ForgetLitV ar(ϕ, P−, V )). Let us suppose now
that ϕ is a formula uniquely defined in P . This means that
the set Mod(ϕ) ∩ P is a singleton. Then, if L1 ⊆ P−,
ω |= ϕ and ω 6|= L1, we get Force(ω,L1) 6∈ Mod(ϕ),



and also, for any ω′ ∈ Mod(ϕ) and any consistent subsets
L2, L

′
2 of V ±, Force(ω,L1 ∪ L2) 6= Force(ω′, L′

2).
Thus, for any element Force(ω,L1 ∪ L2) of
Mod(ForgetLitV ar(ϕ, P−, V )) which is also in
Mod(ForgetV (ϕ, V ), we get ω |= L1, thus also
L2 = ∅, thus Force(ω,L1 ∪ L2) = ω, thus this
element is in Mod(ϕ). Thus we get ForgetV (ϕ, V ) ∧
ForgetLitV ar(ϕ, P−, V ) |= ϕ, and, by Remark 12,
ForgetV (ϕ, V ) ∧ ForgetLitV ar(ϕ, P−, V ) ≡ ϕ. 2

Proof of the adequacy of Remark 17 with Definition 15:

Let V be a set of propositional symbols and L ∪ {l} be
a consistent set of literals without symbol in V such that
l /∈ L.

For any formula Φ, we have Mod(¬l ∧ ForgetV (l ∧
Φ, vl)) = {Force(ω,∼ l)/ω |= Φ, ω |= l}.
This is the set of all the models of Φ actively forced by ∼ l:
l was satisfied by ω while Force(ω,∼ l) differs from ω in
that it satisfies ¬l. Then we get
Mod(ForgetV (¬l ∧ ForgetV (l ∧ Φ, vl), V )) =
{Force(Force(ω,∼ l), L2)/ω |= Φ, ω |= l, L2 ⊆cons

V±} =
{Force(ω, {∼ l} ∪ L2)/ω |= Φ, ω |= l, L2 ⊆cons V±}.

Thus, from Definition 11, wet get
Mod(ForgetLitV ar(ϕ,L, V )) = Mod1 ∪ Mod2 and
Mod(ForgetV (¬l ∧ ForgetV (l ∧

ForgetLitV ar(ϕ,L, V ), vl), V )) = Mod3 ∪ Mod4

where

1. Mod1 = {ω/ω |= ϕ};

2. Mod2 = {Force(ω,L1 ∪ L2)/ω |= ϕ,
ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±};

3. Mod3 =
{Force(ω, {∼ l} ∪ L2)/ω |= ϕ, ω |= l, L2 ⊆cons V±};

4. Mod4 =
{Force(Force(ω,L1 ∪L2), {∼ l}∪L

′
2)/ω |= ϕ, ω |= l,

ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±, L′
2 ⊆cons V±}.

Notice that we get: vl /∈ L, vl /∈ V and V(L∪{l})∩V =
∅. Thus we get

Mod4 =
{Force(ω, {¬l}∪L1 ∪L′

2 ∪ (L2− ∼ L′
2))/ω |= ϕ, ω |= l,

ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±, L′
2 ⊆cons V±}.

When the sets L2 andL′
2 run over the set of the consistent

subsets of V ±, the set L′′
2 = L′

2 ∪ (L2− ∼ L′
2) also runs

over the same set and we get:

Mod4 = {Force(ω, {∼ l} ∪ L1 ∪ L′′
2)/ω |= ϕ,

ω |= l, ω 6|= L1, L1 ⊆∼ L,L′′
2 ⊆cons V±}.

If L1 ⊆∼ L and ω |= L1, we get
Force(ω, {∼ l} ∪ L2) = Force(ω, {∼ l} ∪ L1 ∪ L2).

Thus we get Mod3 ∪ Mod4 = Mod34 =
{Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ, ω |= l,

L1 ⊆∼ L,L2 ⊆cons V±}.

Similarly, if ω 6|= l (i.e. ω |= ¬l), we get
Force(ω,L1 ∪ L2) = Force(ω, {∼ l} ∪ L1 ∪ L2).
Thus we get Mod2 = Mod2a ∪ Mod2b where:
Mod2a = {Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ,

ω 6|= l, ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±} and
Mod2b = {Force(ω,L1 ∪ L2)/ω |= ϕ, ω 6|= L1,

L1 ⊆∼ L,L2 ⊆cons V±} =
{Force(ω,L′

1 ∪ L2)/ω |= ϕ, ω 6|= L′
1,¬l /∈ L′1,

L′
1 ⊆ {∼ l}∪ ∼ L,L2 ⊆cons V±}.

Since ω 6|= {l} ∪ L1 iff ω 6|= l or ω 6|= ∪L1, we get:
Mod2a ∪ Mod34 = Mod2a34 =
{Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ, ω 6|= {∼ l} ∪ L1,

L1 ⊆∼ L,L2 ⊆cons V±} =
{Force(ω,L′

1 ∪ L2)/ω |= ϕ, ω 6|= L′
1,

L′
1 ⊆ {∼ l}∪ ∼ L,∼ l ∈ L′

1, L2 ⊆cons V±}.

Thus we get Mod2a34 ∪ Mod2b =
Mod234 = {Force(ω,L1 ∪ L2)/ω |= ϕ, ω 6|= L1,

L1 ⊆ {∼ l}∪ ∼ L,L2 ⊆cons V±}.

Finally we get the result which achieves the proof:
Mod(ForgetLitV ar(ϕ,L, V ) ∨ ForgetV (¬l ∧

ForgetV (l ∧ ForgetLitV ar(ϕ,L, V ), vl), V )) =
Mod1 ∪ Mod2 ∪ Mod3 ∪ Mod4 = Mod1 ∪ Mod234 =
Mod(ForgetLitV ar(ϕ, {l} ∪ L, V )).

Thus, we have shown:
ForgetLitV ar(ϕ, {l} ∪ L, V ) =

ForgetLitV ar(ϕ,L, V ) ∨ ForgetV (¬l ∧
ForgetV (l ∧ ForgetLitV ar(ϕ,L, V ), vl), V ). 2
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