
Reasoning by cases without contraposition in
default logic

or the Birth of Pre-requisite free Defaults

(Version légèrement remaniée, le 24 avril 1995, de [13])

Yves Moinard 1

Abstract. Default logic, one of the best known formalisms to
express common sense reasoning, does not allow to reason by
cases in its standard formulations. We propose a natural and
easy way of translating rules with exceptions into standard
defaults, which allows to reason by cases without giving any
unwanted contraposition. This solution is the simplest possi-
ble extension to the first coming idea consisting in taking the
defaults by sets. Thus we keep the attractive simplicity of de-
fault logic basically intact. Our solution is independant of the
notion of “commitment” and can as well be applied to the ver-
sions of default logic caring about commitment. We provide
several examples in order to make precise what is wanted. We
study various other proposals in the literature, showing that
either they give some kind of unwanted contraposition or that
they need a new and non standard form of disjunction and
that they greatly modify the notion of default reasoning.

1 Introduction

Default logic as defined in [15] is a very appealing formalism
to express common sense reasoning and mainly rules with
exceptions, being natural and powerful. One problem is that
it does not deal correctly with reasoning by cases: Given that
1) Tweety is a bird or a bat, 2) birds fly (with exceptions),
and 3) bats fly (with exceptions); we cannot conclude that
Tweety flies. Several propositions allow to reason by cases
[3, 2, 14, 4, 18] but they also give the contraposition of the
rules involved, and this may be unexpected. Knowing that
birds fly (with exceptions), we do not always want to conclude
that non flying animals are not birds (with exceptions). For
instance, imagine we are writing a field guide about birds and
bats, then we are describing a world in which: 1) birds fly
(with exceptions), 2) bats fly (with exceptions), and 3) a
non flying animal is a bird (with exceptions); which cannot
be done naturally if every rule comes with its contraposition.

We modify Reiter’s definition in order to be able to rea-
son by cases, without giving unwanted contrapositions of the
rules. We precise in the next two sections what we want ex-
actly, thanks to basic examples and thanks to the oldest pro-

1 IRISA, Campus de Beaulieu, 35042 RENNES-Cedex, FRANCE
tel.: (33) 99 84 73 13, E-mail: moinard@irisa.fr

posals (which use defaults without prerequisite). The most
natural way of modifying default logic in order to be able to
reason by cases is to allow to take the defaults by sets, instead
of individually. Several authors have proposed such a solution,
but generally only in a few lines at the end of a paper, stating
that this a good idea but that there was not enough space
left in the paper to develop it. In section 3 we study this
option, showing why the näıve way is highly unsatisfactory.
Then, we propose what we think are the most natural im-
provements of this simple idea which give more satisfactory
results. We show that this solution is in fact equivalent to a
solution using (individually) a new kind of defaults without
pre-requisite. Thus, this solution is simpler yet that the usual
way of using defaults. After having motivated our solution,
we verify that our formal definitions comply with our require-
ments, thanks to representative exemples. In section 4, we
show what is wrong with the solutions suggested by several
authors. Particularly we show why the proposal of [6, 9, 20]
is not completely satisfying. Firstly, we must accept to live
with two different kinds of disjunctions. These two distinct
disjunctions can be bewildering for the user. Secondly this
solution restricts default reasoning to its “skeptical” or “cau-
tious” form, which is not a harmless restriction.

2 The motivating examples

Let us first remind the classical definition of Reiter’s exten-
sions. W is a set of formulas in a propositional language LL. D

is a set of defaults, that is “rules” written
a : b1, . . . , bn

c , where
a, bi and c are formulas in LL. A default may be understood as:
“If a is assumed, and if each bi is possible, then let us assume
c”. a is the prerequisite, bi a justification and c the conclu-
sion of the default. A default such as a : c

c is called normal

and
a : b1 ∧ c, . . . , bn ∧ c

c is semi-normal (every justification
implies the consequent).

Definition 2.1 [15] A set E is an extension (here called R-
extension) of a default theory (W,D) iff there exists (Ei)
with E = ∪Ei, where E0 = Th(W) and Ei+1 = Th(Ei ∪
{c /

a : b1, · · · , bn
c ∈ D, a ∈ Ei,¬bj 6∈ E (1 ≤ j ≤ n)}).

Here is the fundamental example, introducing the problem.

c© 1994 Y. Moinard
ECAI 94. 11th European Conference on Artificial Intelligence Edited by A. Cohn
Published in 1994 by John Wiley & Sons, Ltd.

Example 2.1 W = {a ∨ b}, D = {d1 = a : c
c , d2 = b : c

c }.
This default theory has one extension E = Th(a∨b): the de-

faults are of no use. You may think in a as meaning “Tweety is
a bird”, b meaning “Tweety is a bat”, and c meaning “Tweety
can fly”. This behavior is a serious drawback of default logic:
reasoning by cases is not allowed. From W only we cannot
conclude a (or b), and default theory allows to consider only
one default at a time.

One default is enough to exhibit this problem:

Example 2.2 W = {a ∨ c}, D = {a : c
c }. (W,D) has one

extension Th(a∨ c). Again, the expected conclusion would be
c: knowing “Tweety is a bird or Tweety can fly” and “if Tweety
is a bird then he can fly (if Tweety is not an exception)”, it
seems natural to conclude that “Tweety can fly”.

Remark 2.1 A proposition which concludes c in ex. 2.1 and
not in ex. 2.2 must be rejected. Indeed, from {a : c

c , ¬a : c
c },

we would conclude c, even with W = ∅. Now, when the de-
fault ¬a : c

c is replaced by the corresponding “rule” without
exception ¬a ⇒ c (standard implication), we should a for-
tiori conclude c (a rule without exception should be at least
as powerful as the corresponding rule with exceptions).

Some solutions have been given. First came the defaults
without prerequisite, introduced in [3] and regularly redis-
covered since (see e.g. [14, 4]). A rule such as “a’s are b’s

(with exceptions)” is not translated by d = a : b
b

, but by

d′ = : a ⇒ b
a ⇒ b

. Examples 2.1 and 2.2 become respectively:

Example 2.3 W = {a ∨ b}, D = { : a ⇒ c
a ⇒ c , : b ⇒ c

b ⇒ c
}

There is one extension Th(a∨b, a ⇒ c, b ⇒ c), which means
that the defaults can be used here (c ∈ E), as expected.

Example 2.4 W = {a ∨ c}, D = {d = : a ⇒ c
a ⇒ c }.

Again, the only extension Th(a ∨ c, a ⇒ c) contains c.

So far, so good; however this translation gives the contrapo-
sition of every rule with exceptions:

Example 2.5 W = {¬c}, D = {d = : a ⇒ c
a ⇒ c }.

The only extension Th(¬c, a ⇒ c) contains ¬a, which could
be unexpected.

Generally, authors agree in thinking that an appropriate
translation of rules with exceptions should not give the au-
tomatic contraposition of the rules. Thus, this solution is not
appropriate in every situation. [7] made an improvement: the
rule “a’s are b’s (with exceptions)” is translated into the semi-

normal default without prerequisite: : b
a ⇒ b

. In [14], the same
trick is used, except that the justifications are conjuncted, not
only juxtaposed as in Reiter’s definition. Let us look what
happens to our basic examples with [7]’s solution.

Example 2.6 D = {d1 = : c
a ⇒ c , d2 = : c

b ⇒ c
}.

a) W = {a ∨ b}: the only extension contains c.
b) W={¬c}: the only extension Th(¬c) does not contain ¬a.

Example 2.7 D = {d = : c
a ⇒ c}

a) W={a∨c}: the only extension Th(a∨c, a⇒c) contains c.

b) W={¬c}: the only extension Th(¬c) does not contain ¬a.

Thus it seems that this is the ideal solution: we do not get
the contraposition (the justification c is stronger now, and it
prevents the use of the rule when we know ¬c) while reason-
ing by cases is possible. The problem is that some “shadow
contraposition” remains, as the following two examples show:

Example 2.8 W = {¬b ∨ ¬c}, D = { : b
a ⇒ b

, : c
a ⇒ c}.

The only extension Th(¬b ∨ ¬c, a ⇒ b, a ⇒ c) contains
an unwanted answer ¬a. Again, one default is enough to
provoque this shadow contraposition:

Example 2.9 W = {¬a ∨ ¬c}, D = { : c
a ⇒ c}:

¬a ∈ Th(¬a ∨ ¬c, a ⇒ c).

In example 2.8, Poole’s solution does not give the unwanted
¬a. This is due to the particular treatment of the justifications
in [14]: the two defaults d1 and d2 cannot be applied simulta-
neously without contradicting ¬b∨¬c. However, Poole’s solu-
tion also falls pray to example 2.9, and thus it does not avoid
the shadow contraposition problem. We have to find a bet-
ter solution. Also, Pooles treatment of the justification is not
classical, even if some “representational” grounds have been
given to this conjunction of justifications (see papers about
“commitment” in default logic). The primary aim of such a
modification was apparently not to improve the expressivity,
but to simplify the complexity of the search for extensions (a
very desirable goal indeed).

3 The quest for a natural solution

A lot of authors (among them is [21]) have tried to include
reasoning by cases in default logic with the natural solution
allowing sets of defaults instead of isolated defaults only. Def-

inition 2.1 is thus modified: let us say that a default a : b
c ∈ D

is applicable at stage i if and only if2: Ei ` a and E 6` ¬b, and
that when a default is applied at stage i, then we add c to Ei.
Here is definition 2.1 when sets of defaults are allowed:

Definition 3.1 A finite set of defaults {aα : bα
cα

}α∈I ⊆ D is

applicable at stage i if and only if: Ei ` ∨
α∈I

aα and E 6` ¬bα

for every α ∈ I . When a set of defaults is applied at stage i,
we add ∨

α∈I
cα to Ei.

In the basic situation for reasoning by cases, example 2.1,
we get the expected answer c, using the set D. Here is the
behavior of this definition with the other typical examples.

Example 3.1 (Contraposition, cf examples 2.5 and 2.7).

D = {a : b
c }, W = {¬c}. We do not get the unwanted ¬a.

Example 3.2 (Shadow contraposition, cf example 2.8).

W = {¬c′ ∨ ¬c}, D = {a : b
c , a : b′

c′
}. We do not get the

unwanted answer ¬a: we cannot use the set D, as W 6` (a∨a).

However, things get not so good with the other examples:

2 For the sake of simplicity in notations, we use defaults with only
one justification b. Remind that for the same reason, we restrict
ourselves to propositional formulas.

Knowledge Representation 382 Y. Moinard

Example 3.3 (cf ex. 2.2, 2.4 and 2.7.a)

W = a ∨ c ∨ e, D = {d = a : b
c }. The only extension is

nothing more than Th(W), as d is not applicable. This is con-

testable, if we consider that from (W, D′ = {d, c : b
c , e : b

e })
we would deduce c∨e. A default such as c : b

c provoques some
effects, which is a major drawback.

Example 3.4 W = ¬c, D = {d1 = a : b
c , d2 = ¬a : b¬a }.

From ¬a ∨ a, using the set {d1, d2}, we get c ∨ ¬a, which,
with ¬c, gives ¬a. However, if d2 is removed from D, we do not
get anything more than Th(¬c), as d1 is not applicable. Here

the effect of the default ¬a : b¬a is that we get an unwanted
“contraposition”.

We solve the problem of the last two examples with two mod-
ifications:

1) We add the (generally infinite) set of defaults {a :
a /

for any sentence a in the language LL}.
2) We strengthen the justifications. Several arguments jus-

tify this. Firstly, as we had to weaken the conditions on the
prerequisite, it seems judicious to strengthen the conditions
on the justifications. Konolige has solved part of the problem
in this way. Secondly, when the prerequisite a must be estab-
lished, it is useless to add that a must be “possible”. But now,
it is important to add this condition, if we want to keep the
original spirit of defaults with prerequisite, as far as possible.

Definition 3.2 Let T = (W,D) be a default theory, we de-
fine the set DLL = D ∪ {a :

a / for any sentence a in LL}.
A finite set of defaults {aα : bα

cα
}α∈I ⊆ DLL is applicable at

stage i iff: Ei ` ∨
α∈I

aα and E 6` ¬(aα ∧ bα), for any α ∈ I .

When a finite set of defaults is applied at stage i, then we
add ∨

α∈I
cα to Ei.

Examples 2.1 and 2.2 behave nicely with this definition, how-
ever, with the next example, we get into troubles.

Example 3.5 (cf example 2.9) W = {¬a∨¬c}, D = {a : b
c }.

There is no extension here. The set D ∪ {¬a :¬a }, should
be applicable, as neither ¬(a∧b) nor a is in Th(W). However,
when we apply this set, we get ¬a ∨ c and thus ¬a: this set
should not have been applied.

This classical behavior with non normal defaults is unaccept-
able here, being a consequence of our definitions of applica-
bility of sets of defaults. While trying to solve the problem
of reasoning by cases, we fell into the more serious prob-
lem of inexistence of extensions. For solving this problem, we
strengthen again the justification, adding the condition that
the consequent must also be possible. This can be done in
various ways, we choose the simplest, and most fruitful one.

Definition 3.3 • A finite set of defaults {aα : bα
cα

}α∈I ⊆ DLL
is applicable at stage i if and only if: Ei ` ∨

α∈I
aα and E 6`

¬(aα∧bα∧cα), for any α ∈ I . When a set of defaults is applied
at stage i, we add ∨

α∈I
cα to Ei. Precisely:

T = (W,D), DLL = {aα : bα
cα

}α∈J . E is a set of sentences in

LL. We define: E0 = Th(W), Ei+1 = Th(Ei∪{ ∨
α∈I

cα / there

is a finite I⊆J such that Ei ` ∨
α∈I

aα and E 6` ¬(aα ∧ bα ∧ cα)

for any α ∈ I}). E is a C-extension of T iff E = ∪Ei.

One argument against this definition is that it “semi-
normalizes” every default, thus modifying somehow its in-
tended meaning. This is necessary to avoid unexpected inex-
istency of extensions. Moreover, the non semi-normal defaults
have a rather strange behavior and semi-normal defaults are
expressive enough and allow modularity.

We sum up the modifications made from definition 2.1:

1) The “implicit defaults”
φ :

φ
are useless in definition 2.1

but they must be added when sets of defaults are allowed.
2) When a default is taken in combination with other de-

faults, it becomes necessary to precise that its pre-requisite
must be possible. Also the consequent must be possible, oth-
erwise cases of inexistence of extensions would become too
numerous and unforeseeable.

This new definition can be given a much simpler form:

Definition 3.4 Let (W,D) be a default theory. D′ is the set

of defaults { : a ∧ b ∧ c
a ⇒ c / a : b

c ∈ D}. E is a C’-extension
of (W, D) iff E is a R-extension of (W,D′).

This definition greatly reduces the complexity of the search
for the extensions. C-extensions are more complex than ordi-
nary R-extensions: we add an infinite set of defaults and at
each stage i we check the applicability of every subset of de-
faults. With C’-extensions, we get a much simpler notion than
ordinary R-extensions. Indeed, defaults without pre-requisite
simplify considerably the search for extensions:

Property 3.1 Let D′={ : aj ∧ bj ∧ cj
aj ⇒ cj

}j∈I , D={aj : bj
cj

}j∈I ,

E′
1 = Th(W ∪ {aj ⇒ cj / j ∈ I and E 6` ¬(aj ∧ bj ∧ cj)}).

E is a C’-extension of (W,D) iff E = E′
1.

This is definition 2.1 applied to defaults without pre-requisite.

Property 3.2 E is a C−extension of (W,D) if and only if
E is a C′−extension of (W,D).

(Proof somehow tedious, but without real difficulties.)

Thus, after [3, 14, 7] we have rediscovered again defaults
without pre-requisite (however there is some mild kind of pre-
requisite as a takes place in the justification and thus plays a
role, enhenced by the presence of c). The filiation between our
proposal and those of [3, 7] is obvious. The filiation from [14]
is less obvious, due to the different nature of Poole’s defaults.
We give only the idea, providing a modification to Poole’s
method: Instead of taking only b ∧ c as justification, we take
a ∧ b ∧ c. In Poole’s term, this amount to take the constraint
¬d ⇐ (¬a ∨ ¬c) instead of ¬d ⇐ ¬c as given in [14]. This
modification solves the problem of example 2.9 with Poole’s
definition exactly as modifying the default : c

a ⇒ c of [7] into
: a ∧ c

a ⇒ c solves this problem with Konolige’s defaults.
Now, we examine how our definitions behave with the basic

examples (we may use either C-extensions or C’-extensions):

Example 3.6 (cf ex. 3.2) W={¬c′∨¬c}, D={a : b
c , a : b′

c′
}.

We do not get the unwanted ¬a. We cannot use the set D ∪
{¬a :¬a }, as W ∪ {¬a ∨ c,¬a ∨ c′} ` ¬a. There are two C-
extensions: Th(¬c′ ∨ ¬c,¬a ∨ c) and Th(¬c′ ∨ ¬c,¬a ∨ c′).

Example 3.7 (cf ex. 3.5) W = {¬a ∨ ¬c}, D = {d1 =
a : b

c , d2 = ¬a : b′

c′
}. We do not get the unwanted result

c′ (or any unwanted result). Indeed, the only C-extension is
Th(¬a ∨ ¬c, a ∨ c′). No set including d1 is applicable.

Knowledge Representation 383 Y. Moinard

Example 3.8 (cf ex. 3.1 and 3.4) W = ∅, D = {d1 =
a : b

c } (or equivalently now D = {d1,
¬a : b¬a }). We get one

C-extension Th(¬a ∨ c).

Example 3.9 W = ∅, D = { : b
c , : ¬b

c′
}. We get one C-

extension Th(c, c′). The two defaults have been used (individ-
ually) even if one justification contradicts the other one. This
is what happens with the original definitions 2.1. We want to
stay as close as possible to these definitions.

Example 3.10 W ={a∨a′}, D={a : b
c , a′ : ¬b

c′
}.

We get one C-extension Th(a∨a′, c∨ c′) (cf above comment).

Example 3.11 W={¬(b ∧ a ∧ a′), a ∨ a′}.
• D1={a : b

c , a′ : b
c }: one C-extension Th(¬(b∧a∧a′), a∨a′, c).

• D2 = {a ∨ a′ : b
c }: we get exactly the same C-extension.

However, with e.g. W = {¬a∨¬b∨¬c}, the two sets of de-
faults would give different results: (a∨a′) ⇒ c would be in the
extension for D2, while only a′ ⇒ c would be in the extension
for D1, and not a ⇒ c. This feature seems acceptable.

Example 3.12 W = {a∨c,¬a∨¬b}, D = {a : b
c }. We get

one C-extension Th(W). If you are not conviced by abstract
propositions, think in a as “Tweety is a bird”, b as “Tweety
has normal wings” and c as “Tweety can fly”. Then, knowing
that “Tweety is a bird or Tweety can fly”, “Tweety is not a
bird having normal wings” and that “Any bird can fly, except
if we know that it does not have normal wings”, it does not
seem judicious to conclude that “Tweety can fly”.

4 Comparison with other proposals

Konolidge’s solution came from a modal translation of default
logic. Another proposal of this kind comes in [18] (or slightly
modified in [17], these differences may be ignored here):

Definition 4.1 [18] Every default a : b
c ∈ D is translated

into a formula a∧Hb ⇒ Lc, H and L being two modal opera-
tors, L obeying to the rules of the system T : if ` α, then ` Lα
(necessitation rule), Lp ⇒ p (axiom schema of necessity) and
L(p ⇒ q) ⇒ (Lp ⇒ Lq) (axiom schema of consequence).

An S-extension E is a set, including all the translated de-
faults, all the formulas Lφ where φ ∈ W and all the instances
of the axiom schema: Hp ⇒ ¬L¬p. Finally E must be a min-
imal set verifying the following properties:
– closed for consequence in T ;
– completed in Hφ (for every Hφ appearing in some trans-
lated default, either Hφ is in E or ¬Hφ is in E);
– maximal in {Hφ}: there exists no E′ verifying the above
conditions and such that {Hφ/Hφ appears in some translated
default and Hφ ∈ E} ⊂ {Hφ/Hφ appears in some translated
default and Hφ ∈ E′}.

In S-extensions we are only interested with the non modal
formulas φ such that Lφ ∈ E. This set corresponds roughly to
an extension of (W, D). Also, as there are quite a lot of such
extensions, there is an optional test: we may consider only the
S-extensions E in which L¬p ∈ E whenever ¬Hp ∈ E.

In [18], the standard definition translates a : b
c into La ∧

Hb ⇒ Lc. The translation given here is also presented (ex.

6 in [17, 18]), as a convenient way of introducing reasoning
by cases in default reasoning, without the contraposition. We
develop this point, showing that even if this formalism solves
some of the problems listed above, it is not really satisfactory.

Example 4.1 (cf ex. 2.5, 2.6.b, 2.7.b) D={a : b
c , a′ : b′

c }.
a) W = {a ∨ a′} gives one extension which contains the ex-
pected answer c (Lc ∈ E, because E contains a ∧ Hb ⇒
Lc, a′ ∧ Hb′ ⇒ Lc and a ∨ a′).
b) If W = {¬c}, then we cannot derive the unwanted result
¬a. More precisely, we may derive ¬a (and ¬a′ as well), from
L¬c which gives ¬Lc and from a ∧ Hb ⇒ Lc, but we cannot
derive L¬a (or L¬a′) so, by definition 4.1 we conclude that
¬a is not in the “extension”.

Example 4.2 (cf ex. 2.1, 2.3, 2.7.a) W={a ∨ c}, D={a : b
c }.

We cannot get the expected result c, i.e. no extension E
contains Lc. Indeed, we have L(a∨c) (thus a∨c), and a ⇒ Lc,
but this does not give Lc. This is a first serious drawback.

Example 4.3 (cf ex. 2.8) W={¬c′∨¬c}, D={a : b
c , a : b′

c′
}.

We do not get the unwanted answer ¬a. Indeed, from
L(¬c′ ∨ ¬c), a ∧ Hb ⇒ Lc and a ∧ Hb′ ⇒ Lc′, we get ¬a
(assuming as usual Hb and Hb′), but we cannot get L¬a.

We do not get the bewildering “shadow contraposition” in
this example. However, examples 4.1.b and 4.3 are rather in-
triguing, because even if we do not get L¬a, we get ¬a, which
means that a default with ¬a as prerequisite can be used

(thus adding ¬a : b′¬a will modify the extension!). The follow-
ing example, where we get a kind of “shadow contraposition”,
confirms that this can give unwanted results.

Example 4.4 W = {¬a ∨ ¬c}, D = {a : b
c , ¬a : b′

c′
}.

We get the unwanted result c′ (Lc′ is in the only extension).

Another modal proposal needs some development. [9, 20, 6]’s
proposal has three variants, a modal one, a default logic one
and an “extended logic programming” one [5]. A new kind
of disjunction (called “effective” or “constructive” in [20]) is
defined. a|b|c means informally that we “must have” a, or
b, or c. This disjunction is itself a new kind of default. This
new disjunction may only appear in the consequent of the
defaults, and cannot be combined with the other logical con-
nectors. However, defaults without prerequisite and without
justification are allowed, so that a|b|c is indeed :

a|b|c ([6]).

Definition 4.2 [6] d = a : b
c1| · · · |cn

is a disjunctive default, D

is a set of disjunctive defaults. A disjunctive extension E of
D, is one of the minimal deductively closed sets of sentences
E′ satisfying the condition: For any default d in D, if a ∈ E′

and ¬b 6∈ E, then for some i ∈ {1, · · · , n}, ci ∈ E′.
A disjunctive theorem is a sentence which belongs to all dis-

junctive extensions. Note that there is no W here, the authors
use defaults such as :

a which they assimilate to elements
a ∈ W , to keep the standard writting of default theories.

We give only the flavour of the modal counterpart:
a : b

c1| · · · |cn
is translated by: La∧¬L¬b ⇒ Lc1∨· · ·∨Lcn [6].

Here are some basic examples:

Knowledge Representation 384 Y. Moinard

Example 4.5 (cf ex. 2.1, or (11) in [6]). D={a : b
b

, c : d
d

, a|c},
W = ∅. We get two disjunctive extensions E =Th(a, b) and
E′=Th(c, d), thus E ∩ E′=Th((a∧ b)∨(c ∧ d)) as expected.

Example 4.6 [6] D={ : b
a|b , : a

a|b }, W=∅. We get two disjunc-

tive extensions E=Th(a), E′=Th(b), thus E ∩ E′=Th(a ∨ b).

A solution of this kind is satisfactory in that it allows to
reason by cases as in example 4.5 without any unwanted con-
traposition. However, there are drawbacks:

• Such a definition imposes the introduction of a new con-
nector “|”, which must live together with the standard “∨”.
The real starting motivation for introducing reasoning by
cases, example 2.1, has not been solved: from a∨ b, we do
not conclude anything, we need to know a|b instead. And it
is not easy to determine whether a disjunctive default theory
“entails a|b” or not (i.e. whether adding a|b to D is harmless
or not). Moreover, (a|b) ⇒ (c|d) and ¬(a|b) are not defined.

• Definition 4.2 takes the intersection of all the extensions
(note that taking only the minimal sets is useless in definition
4.2 when we are interested only by the intersection of all the
extensions). The effect is that the notion of default reason-
ing is modified. Only “skeptical” or “cautious” reasoning is
allowed. This not so minor restriction in the way defaults are
used is not always a desirable feature.

5 Conclusion

We have studied the problem of reasoning by cases in default
logic. Thanks to basic examples, we have precised what is
wanted and what is unwanted. This collection of examples
may be used as a benchmark for any proposition of default
logic dealing with reasoning by cases. We have provided a
simple definition which is a natural modification of Reiter’s
definition allowing to reason by cases. In order to do this,
we started from the classical defaults, taking them by sets.
Then we have exhibited some serious drawbacks of this näıve
solution, and, trying to eliminate these drawbacks in the most
natural way, we ended up with our solution. This solution uses
defaults by sets, with some more complications. The good
news is that this natural solution is equivalent to a much
simpler solution, using the defaults in the standard way, and
moreover using only some kind of pre-requisite free defaults.

This definition cannot be implemented as it stands, because
of the tests of unprovability. This proposal is to be under-
stood as a precise formalization of an important expressive-
ness problem in common sense reasoning. It remains to design
a practical approach of this ideal. This is the situation existing
yet with standard default logic, except that standard default
logic cannot be considered as an ideal specification because of
its lack of reasoning by cases. Moreover, our proposal using
only pre-requisite free defaults, its overall complexity is far
inferior to the complexity of standard default logic.

We have also compared our solution to the existing liter-
ature, providing new insights. All the proposals we know of,
either introduce a new kind of disjunction, or fall prey to the
“shadow contraposition” problem.

Deliberately, we wanted to stay as close as possible to stan-
dard default logic. Reasoning by cases is a desirable feature
even if the notion of commitment is not taken into account.

However, our solution could also be applied to some variants
of default logic which care about commitment: we have also
given it using Poole’s formalism.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EC project
DRUMS-II (ESPRIT III BR, project 6156).

REFERENCES
[1] Philippe Besnard. Une procédure décision en logique non

monotone. Thèse de l’Université de Rennes I, Sept 1983.
[2] Philippe Besnard, An Introduction to Default Logic, Springer

Verlag, Heidelberg, 1989.
[3] Philippe Besnard, René Quiniou, and Patrice Quinton, ‘A de-

cidable subset of default logic’, in AAAI, pp. 27–30, Wash-
ington, (August 1983). Morgan Kaufmann.

[4] James P. Delgrande and W. Ken Jackson, ‘Default Logic Re-
visited’, in KR‘91, pp. 118–127. Morgan Kaufmann, (1991).

[5] Michael Gelfond and Vladimir Lifschitz, ‘Classical Negation
in Logic Programs and Disjunctive Databases’, New Genera-
tion Computing, 9, 365–385, (1991).

[6] Michael Gelfond, Vladimir Lifschitz, Halina Przymusinska,
and Miros law Truszczyński, ‘Disjunctive Defaults’, in KR‘91,
pp. 230–237. Morgan Kaufmann, (1991).

[7] Kurt Konolige, ‘On the relation beween default and autoepis-
temic logic’, Artificial Intelligence, 35, 343–382, (1988).

[8] Vladimir Lifschitz and Thomas Y. C. Woo, ‘Answer Sets in
General Nonmonotonic Reasoning (Preliminary Report)’, in
KR’92, pp. 603–614, Cambridge, (1992). Morgan Kaufmann.

[9] Fangzhen Lin and Yoav Shoham, ‘Epistemic semantics for
fixed-point non-monotonic logics’, in TARK-90, pp. 111–120.
Morgan-Kaufmann, (1990).

[10] Witold Lukaszewicz, ‘Minimization of abnormality: A sim-
ple system for default reasoning’, in ECAI, pp. 382–388,
Brighton, (1986).

[11] Witold Lukaszewicz, ‘Considerations on default logic: an
alternative approach’, Computational Intelligence, 4, 1–16,
(1988).

[12] Victor Marek and Miros law Truszczyński, ‘Relating autoepis-
temic and default logics’, in KR‘89, pp. 276–288, (1989).

[13] Yves Moinard, ‘Reasoning by Cases without Contraposition
in Default Logic’, in ECAI, pp. 381–385, 1994.

[14] David L. Poole, ‘A logical framework for default reasoning’,
Artificial Intelligence, 36, 27–47, (1988).

[15] Raymond Reiter, ‘A logic for default reasoning’, Artificial In-
telligence, 13, 81–132, (1980).

[16] Pierre Siegel and Camilla Schwind, ‘Hypothesis theory for
nonmonotonic reasoning’, in Workshop on Non-standard
Queries and Answers, pp. 189–210, Toulouse, (1–3 july 1991).

[17] Pierre Siegel and Camilla Schwind, ‘Modal Semantics for Hy-
pothesis Theory’, in 4th Int. Workshop on Nonmonotonic
Reasoning, pp. 200–217, Plymouth, Vermont, (1992).

[18] Pierre Siegel and Camilla Schwind, ‘Modal logic based the-
ory for non-monotonic reasoning’, Journal of Applied Non-
Classical Logics, 3(1), 73–92, (1993).

[19] Miros law Truszczyński, ‘Embedding default logic into modal
nonmonotonic logics’, in Proc. of the First Int. Workshop on
Logic Programming and Non-monotonic Reasoning, pp. 151–
165, Cambridge, (1991). MIT Press.

[20] Miros law Truszczyński, ‘Modal Interpretations of Default
Logic’, in IJCAI, pp. 393–398, Sydney, (1991). Morgan Kauf-
mann.

[21] Nic Wilson, ‘Default Logic and Belief Functions’, in ESPRIT
Project DRUMS RP1 1st Workshop, Marseille, (February
1990).

Knowledge Representation 385 Y. Moinard

