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Abstract: This paper is concerned with diagnosability analysis, which proves
a requisite for several tasks during the system’s life cycle. The Model-Based
Diagnosis (MBD) community has developed specific approaches for Continuous
Systems (CS) and for Discrete Event Systems (DES) in two distinct and parallel
tracks. In this paper, the correspondences between the concepts used in CS and
DES approaches are clarified and it is shown that the diagnosability problem can
be brought back to the same formulation using the concept of signatures. These
results bridges CS and DES diagnosability and open perspectives for hybrid model
based diagnosis.

Keywords: Diagnosis, Diagnosability, Discrete event systems, Continuous systems

1. INTRODUCTION

Diagnosis is an increasingly active research do-
main, which can be approached from different
perspectives according to the type of system
at hand and the required abstraction level. Al-
though some recent works have considered di-
agnosis based on hybrid models (Williams and
Nayak, 1996; Bénazéra et al., 2002; Bénazéra and
Travé-Massuyès, 2003), the Model-Based Diag-
nosis (MBD) community has developed specific
approaches for Continuous Systems (CS) and for
Discrete Event Systems (DES) in two distinct
and parallel tracks. Algorithms for monitoring,
diagnosis and diagnosability analysis have been
proposed (Sampath et al., 1995; Jiang et al., 2001;
Yoo and Lafortune, 2002; Cimatti et al., 2003;
Rozé and Cordier, 2002; Jeron et al., 2006). The
formalisms and tools are quite different : the CS
community makes use of algebro-differential equa-
tion models or qualitative abstractions whereas
the DES community uses finite-state formalisms.
For diagnosability analysis, the CS approaches
generally adopt a state-based diagnosis point of

view in the sense that diagnosis is performed on a
snapshot of observables, i.e. one observation at a
given time point. The DES approaches perform
event-based diagnosis and achieves state track-
ing, which means dynamic diagnosis reasoning
achieved across time.

This paper is concerned with diagnosability anal-
ysis, which proves a requisite for several tasks
during the system’s life cycle, in particular instru-
mentation design, end-of-line testing, testing for
diagnosis, etc. In spite of quite different frame-
works, it is shown that the diagnosability assess-
ment problem stated on both sides can be brought
back to the same formulation and that common
concepts can be proposed for proving diagnosabil-
ity definitions equivalent.

2. DES AND CS MODELLING APPROACHES

This section presents the different theories used to
model DESs and CSs. The principles underlying
DES and CS model based diagnosis are given and



diagnosability is introduced on both sides. Both
approaches rely on the analysis of the observable
consequences of faults, i.e. symptoms.

The main difference between DES and CS diag-
nosability analysis processes is that the order of
appearance of the symptoms is only taken into
account in the DES approach. In the CS approach,
fault occurrence assumes immediate and simulta-
neous observation of the symptoms, while in the
DES approach diagnosis relies on the observation
of a sequence of symptoms after fault occurrence.
Proof is given that, assuming the system observed
a sufficiently long time, diagnosability conditions
for DES and CS are conceptually equivalent.

2.1 The models

2.1.1. DES model A DES is modelled by a
language Lsys ⊆ E∗ where E is the set of system
events. Lsys is prefix-closed, and can be described
by a regular expression, or generated by a finite
state automaton G = (Q, E, T, q0) where Q is the
set of states, E the set of events, T ⊆ (Q×E×Q)
the transition relation and q0 the initial state.
Each trajectory in the automaton corresponds
to one word of the language, and represents a
sequence of events that may occur in the system.
The set of events E is partitioned into observable
and unobservable events : E = Eo∪Euo, and a set
of faults Ef ⊆ Euo is given. The diagnosis process
aims at detecting and assessing the occurrence
of unobservable fault events from a sequence of
observed events. The set OBS is defined as the
set of all the possible observable events sequences,
i.e, OBS = {(e1e2 . . . en)} where n is any positive
integer.

In this article, it is assumed that the automaton
is deterministic (T : Q → E × Q is a function),
generates a live language (every state has at least
one outgoing transition), and contains no cycle of
unobservable events.

The diagnosis process makes use of a projection
operation that removes all unobservable events
from a trajectory. The inverse operation is applied
to a set of observable events sequences and leads
to the diagnoses. A fault is diagnosable when its
occurrence is always followed by a bounded ob-
servable event sequence that cannot be generated
in its absence (see definition 1).

2.1.2. CS model The behavior model of a CS
Σ = (R, V ) is generally described by a set of n
relations R, which relate a set of m variables V .
In a component-oriented model, these relations
are associated to the system physical components,
including the sensors. The set R is partitioned into
behavioral relations which correspond to the inter-
nal components and observation relations which

correspond to the sensors. The set of variables V is
also partitioned into the set of observed variables
O, whose corresponding value tuples are called
observations, and the set of unobserved variables
noted X .

Observation values, possibly processed into fault
indicators, provide a means to characterize the
system at a given time. In a pure consistency-
based approach, in which only the normal behav-
ior of the system is modelled, the designer may
use the model to establish a set of Analytical
Redundant Relations, which can be expressed as
a set of residuals. In that case, the observations
result in a boolean fault indicator tuple. In the fol-
lowing, we will refer without loss of generality to
the observation tuples and define the set OBS as
the set of all the possible observation tuples, i.e.,
OBS = {(o1, o2, ..., ok)} where k is the number of
sensors. The observation value pattern is referred
to as the observed signature whereas the expected
value patterns for a given fault, obtained from
the behavioral model, provide the fault signature.
Note that several value patterns may correspond
to the same fault, for example when the system
undergoes several operating modes. The fault sig-
nature is hence defined as the set of all possible ob-
servable variable value tuples under the fault. The
diagnosis process relies on comparing the observed
signature with fault signatures. Fault signatures
also allow one to test fault detectability.

2.2 The set of observables

In the case of DES, observations consist in a
sequence of observable events, while in the case
of CS, observations consist in a set of values for
observable variables, with no ordering.

This paper focuses on comparing the notions
based on observations that lead to diagnosability,
making abstraction of the nature of the observa-
tions. It is shown that the concept of signatures
can be defined in a way allowing to prove the
equivalence of definitions. However, it does not
imply that any system being diagnosable when
modelled as a DES is diagnosable as a CS, due
to the difference in the observations nature. The
set of observables OBS is defined as the set
containing all the observations that are possible
for the system. It may represent the observations
obtained from a DES (a set of ordered observable
events) as well as those from a CS (a set of ob-
servable values).

3. FAULTS, DIAGNOSES AND FAULT
SIGNATURES

This section contains formal definitions of faults,
diagnoses, and fault signatures. The definitions of
diagnosability rely on these (see next section).



3.1 Faults and diagnoses

The set of faults Fsys associated to a system is
partitioned into n types of faults, the partition is
noted F . The following properties hold :
- ∀Fi, Fj ∈ F, Fi ∩ Fj 6= ∅ ⇒ i = j
-

⋃n

i=0
Fi = Fsys

The occurrence of one or several faults of one type
is called a single fault. When faults of several types
have occurred, the system is said to be under a
multiple fault. The set of possible faults that may
occur in a system is the power set of F , noted
P(F ). For example, ∅ describes the absence of
faults, {Fi} a single fault, and {Fi, Fj} a multiple
fault. All three examples are elements of P(F ).
Faults are assumed to be permanent.

A diagnosis consists in a set of fault candidates.
When a diagnosis contains only one fault, it is
said to be determinate, while if it contains sev-
eral faults it is indeterminate. The set of all
possible diagnoses is the power set of the set of
faults, noted P(P(F )). For example, {∅},

{

{Fi}
}

and
{

{Fi, Fj}
}

are determinate diagnoses, while
{

∅, {Fi}, {Fj , Fk}
}

is an indeterminate diagnosis
indicating that one of the three diagnosis candi-
dates ∅, {Fi} and {Fj , Fk} have occurred.

3.2 Fault signatures

Establishing fault signatures is the main part of
our diagnosability analysis process. This concept
is commonly used in the CS approach, but less
in DES. The CSs’ notion of fault signature is
generalized and extended to DESs, allowing one
to write diagnosability criterions in a unified way.

In a general way, one can consider a fault signature
as a function Sig associating a set of observables
to each fault. Sig : P(F ) → P(OBS)

3.2.1. Continuous systems The fault signature
is a classical concept in the CS approach usually
defined as follows. For a fault f of P(F ), let
OBSf be the set of all possible tuples consisting
of observed variable values under the fault f ,
regardless of time 1 . Then :

Sig(f) = OBSf ∈ P(OBS)

3.2.2. Discrete event systems Fault signatures
are based upon the projection over observable
events, which are defined in a first step. They
correspond to what is usually known as observable
trajectories in the DES community.

Language projection The language projection over
the set of observable events Eo, noted Pobs, to

1 Note that “under the fault f” means that exactly all the
faults in f occured, and no faults out of f occured.

a language L, associates the language formed
by the words of L restricted to the letters
that are elements of Eo. For example if L =
{e1, e1e3, e1e2, e2e3, e1e2e3} and Eo = {e1, e2},
then Pobs(L) = {e1, e1e2, e2}. The inverse pro-
jection P−1

obs , defined on P(OBS), to a set of ob-
servable events sequences, associates the set of tra-
jectories (which is a language) whose projections
belong to the antecedent set :

∀O ∈ P(OBS),
P−1

obs(O) =
{

s ∈ Lsys, Pobs({s}) ∩ O 6= ∅
}

Fault language For each fault f ∈ P(F ), the
f -language, or Lf , describes all possible trajec-
tories in which f occurs. Lf is defined as the
subset of the system’s automaton’s language Lsys

, restricted to the words containing at least one
occurrence of every single fault event composing
f , and no occurrence of any other fault event.
Lf describes all possible scenarios in which f
occurs. The words of the f -language are called
f -trajectories.

Fault signature Because of our particular interest
for diagnosability, among the set of f -trajectories,
we pay special attention to those that can be
obtained when the observation temporal window
can be arbitrarily extended. This is done by con-
sidering, in Lf , only words that end in an infinite
cycle. They are defined as the maximal words, and
form the maximal f -language Lmax

f of the fault.
Formally, a trajectory s of Lf belongs to Lmax

f

if and only if ∃t, u ∈ E∗, s = tu∞. Notation u∞

refers to the word built as an infinite concatena-
tion of word u, i.e., every un ∈ u∗ is a prefix of
u∞.

For each fault f ∈ P(F ), the projection of the
maximal f -language Lmax

f over the set of ob-
servable events is called the f -signature. Any f -
signature is a subset of OBS as it is solely com-
posed of observable events. With the above defini-
tions, it is possible to define the signature function
Sig as the function associating its f -signature to
any fault f ∈ P(F ) :

∀f ∈ P(F ) , Sig(f) = f -signature ∈ P(OBS)

4. DIAGNOSABILITY

Formal definitions of diagnosability according to
the DES and CS approaches are now given.

4.1 Discrete Event Systems

We rely here on the (strong) 2 diagnosability defi-
nition as defined by (Sampath et al., 1995).

2 A definition for weak diagnosability is given in (Rozé
and Cordier, 2002) for DES and in (Travé-Massuyès et
al., 2004) for CS



DES (strong) Diagnosability : a DES is (strongly)
diagnosable if and only if 3 :

∀Fi ∈ F, ∃ni ∈ N, ∀s ∈ Lsys/(Fi ∈ s),
∀t ∈ E∗/(st ∈ Lsys),

‖t‖ ≥ ni ⇒ ∀u ∈ P−1

obs

(

Pobs(st)
)

, Fi ∈ u
(1)

One can notice that the definitions are stated with
respect to elements of F . The system is required to
be diagnosable for each fault type, independently
of the fact that they are single or multiple faults.

4.2 Continuous systems

In the CS approach, the classical definition of
diagnosability is already given in terms of the fault
signature concept as follows (Travé-Massuyès et
al., 2004).

CS (Strong) Diagnosability : a CS is (strongly)
diagnosable if and only if :

∀f1, f2 ∈ P(F ), f1 6= f2, Sig(f1) ∩ Sig(f2) = ∅ (2)

This definition applies to single or multiple faults
and differs from the DES definitions in this re-
spect. It is shown in the next section that this
difference is not relevant and that the fault signa-
ture concept is a unifying concept allowing one to
formally compare the two approaches.

5. FORMAL COMPARISON

In this section, we give the proof of equivalence
between the diagnosability definition in the DES
and CS approaches. We first prove that the DES
definition can be extended to multiple faults,
which provides a better insight into the definition
interpretation.

As noted before, definition (1) is stated for ele-
ments of F , which corresponds to consider single
faults. Let us extend it to multiple faults. The
occurrence of a multiple fault f in a trajectory s is
noted ∀Fi ∈ f, s∩Fi 6= ∅. The diagnosability con-
dition (1) is verified for each Fi ∈ f with possibly
different ni values. Taking the largest value of all
these ni values as nf , it can be easily shown that
definition (1) is equivalent to definition (1′), which
accounts explicitely for multiple faults f = {Fi}.

∀f ∈ P(F ), ∃nf ∈ N,
∀s ∈ Lsys/

(

∀Fi ∈ f, Fi ∈ s
)

,
∀t ∈ E∗/(st ∈ Lsys), ‖t‖ ≥ nf ⇒
∀u ∈ P−1

obs

(

Pobs(st)
)

, ∀Fi ∈ f, Fi ∈ u �

(1′)

This result shows that the DES diagnosability
definition can be formulated in terms of faults (in-
stead of fault types), whether single or multiple,
like the CS diagnosability definition.

3 The notation Fi ∈ s means that s contains at least one
fault event of Fi.

The equivalence between diagnosibility definitions
is now proved by considering the assessment upon
absence of faults in a diagnosable discrete events
system.

Let us consider a diagnosable system, thus ver-
ifying (1), and trajectories of arbitrary length,
in particular maximal trajectories which corre-
spond to maximal words as defined in section
3.2.2. Let us consider such a maximal trajectory
s belonging to the f -language Lf . It means that
s contains at least one occurrence of every sin-
gle fault event composing f and no occurrence
of any other fault. s belongs thus to Lmax

f and
its projection over the set of observable events
belongs to the f -signature. Now suppose that
there exists a (maximal) trajectory u such that
Pobs({u}) equals Pobs({s}) and that u contains at
least one occurrence of a fault Fj which does not
belong to f . By (1), it implies that all trajectories
sharing the observable projection of u contain Fj ,
which is contradictory with our hypothesis about
s. Thus, there does not exist any trajectory having
the same observable projection as s and contain-
ing a fault not belonging to f . This proves that
∀f1, f2 ∈ P(F ), f1 6= f2, Sig(f1) ∩ Sig(f2) = ∅
which is exactly the definition (2) given in 4.2 for
the Continous Systems. �

6. OPERATIONAL COMPARISON

This section contains an example that illustrates
the concepts introduced before and compare the
DES and CS diagnosability results.

6.1 Example

Tank 1

Tank 2

y1

y2

c1

c2

Pump

delay τ1 delay τ2

Fig. 1. A water flow system

The system represented in figure 1 is inspired
of (Puig et al., 2005). It is composed of two
water tanks with heights y1 and y2, and a pump
connected by a water flow channel. Both tanks
supply consumers c1 and c2. It has two operating
modes : pump on and pump off. We consider faults
in sensors y1, y2, c1 and c2, named respectively
Fy1, Fy2, Fc1 and Fc2.



To simplify, the example is limited to single faults
and assume the system does not switch its oper-
ating mode between the occurrence of a fault and
the appearance of its symptoms.

6.2 Continuous model, state-based diagnosis

The discretized and linearized non-linear dynamic
equations are described in (Puig et al., 2005).
From these equations, it is possible to derive two
analytical redundancy relations of the form :

r1(t + ∆t) = f1

(

y1(t), y1(t + ∆t), c1(t), y2(t− τ2)
)

r2(t + ∆t) = f2

(

y2(t), y2(t + ∆t), c2(t), y1(t− τ1)
)

From these relations and considering when pump
is off, r1 is independent of y2, the fault signature
matrices shown in Figure 2 are deduced.

Fy1 Fy2 Fc1 Fc2

r1 1 1 1 0

r2 1 1 0 1

Fy1 Fy2 Fc1 Fc2

r1 1 0 1 0

r2 1 1 0 1

Pump on mode Pump off mode

Fig. 2. Fault signature matrices for the system

From the fault signature matrices, the system
is not diagnosable (for example, the observable
(pon, r1 = 1, r2 = 1) belongs to two fault signa-
tures).

6.3 Discrete event model, dynamic diagnosis

For the DES model of the system, the following
events are used : pon,poff , fired when the pump is
turned on or off ; FS fired when a fault occurs on
sensor S ; r1, r2 fired when analytical redundancy
relations r1 and r2, are violated.

The automaton is shown in figure 3. An arc
labelled a.b represents two arcs labelled a and b,
a leading to a state in which only b may occur.

a.b
⇐⇒

a b

pon poff pon poff

Fy1.r1.r2

Fy2.r2.r1

Fc1.r1

Fc2.r2

Fy1.r1.r2

Fc1.r1

Fc2.r2

Fy2.r2.pon.r1

Fig. 3. Automaton describing the system

From the automaton and following section 3.2.2,
it is possible to build the signatures for all the
faults (see Figure 4). Recall that all the events
except faults are observable. The fault signatures
are disjoint sets, the system is hence diagnosable.

Fault Signature
∅ (pon.poff )∞

Fc1 (pon.poff )∗.r1.(pon.poff )∞

(pon.poff )∗.pon.r1.(poff .pon)∞

Fc2 (pon.poff )∗.r2.(pon.poff )∞

(pon.poff )∗.pon.r2.(poff .pon)∞

Fy1 (pon.poff )∗.r1.r2.(pon.poff )∞

(pon.poff )∗.pon.r1.r2.(poff .pon)∞

Fy2 (pon.poff )∗.r2.pon.r1.(poff .pon)∞

(pon.poff )∗.pon.r2.r1.(poff .pon)∞

Fig. 4. Fault signatures (discriminant subwords
are bolded).

6.4 Results

This example shows that, although DES and CS
diagnosability definitions are formally equivalent,
operationnal diagnosability assesment critically
depends on the nature of observables.

In the CS approach, diagnosability is not achieved,
as fault signatures are not disjoint. (pon, r1 =
1, r2 = 1) is a signature for both Fy1 and Fy2,
and (poff , r1 = 0, r2 = 1) is a signature for both
Fy2 and Fc2.

In the DES model, in the pump on mode, the
symptoms r1 = 1 and r2 = 1 appear in the
order (r1r2) for Fy1 and in reverse order (r2r1) for
Fy2. Taking this order into account permits fault
discrimination between Fy1 and Fy2 in dynamic
diagnosis. In addition, in the pump off mode, both
Fy2 and Fc2 are followed by the r2 symptom,
but only in the case of Fy2, a pon command
will be followed by the r1 symptom. Notice that
diagnosability stands on the assumption that the
pump will be turned on some time : it is only
after the pon command that the faults can be
discriminated.

7. RELATED WORKS

In the context of continuous systems, diagnosabil-
ity analysis is stated in terms of detectability and
isolability (Chen and Patton, 1994). (Basseville,
2001) reviews several definitions of fault de-
tectability and isolability and distinguishes two
types of definitions, namely intrinsic definitions
that do not make any reference to a particular
residual generator and performance-based defini-
tions. In (Staroswiecki and Comtet-Varga, 1999),
the conditions for sensor, actuator and component
fault detectability are given for algebraic dynamic
systems and isolability is discussed. Diagnosabil-
ity analysis for continous systems is often focussed
on finding the optimal sensor placement as (Travé-
Massuyès et al., 2001), proposing a structural ap-
proach, or (Yan, 2004), and (Tanaka, 1989). (Frisk
et al., 1993) also follow a structural approach and
show how different levels of knowledge about the



faults may influence the fault isolability properties
of the system. In (Travé-Massuyès et al., 2004),
a definition for diagnosability in terms of fault
signatures is proposed and is the one used in this
paper.

In the DES context, the first definitions have
been proposed in (Sampath et al., 1995). Check-
ing diagnosability is computationally complex and
polynomial time algorithms have been designed to
cope with this problem (Jiang et al., 2001; Yoo
and Lafortune, 2002). In (Cimatti et al., 2003),
formal verification of diagnosability is based on
model-checking techniques. More recently, (Jeron
et al., 2006) propose a generalization of diagnos-
ability properties to supervision patterns (describ-
ing various patterns involving fault events).

To our knowledge, there is no existing work com-
paring and/or unifying diagnosability approaches
coming from the CS and DES communities. Some
diagnosis algorithms have been proposed for hy-
brid systems but diagnosability conditions have
not been exhibited for such systems and this is one
of our goals for future work. This paper is a direct
continuation of the work done with the Imalaia
group and devoted to bridge the gap between
the two communities (Cordier et al., 2004) by
comparing their respective approaches to model-
based diagnosis.

8. CONCLUSION

In this paper, we propose a formal framework to
compare in an adequate way the diagnosability
definitions from the CS and DES community. The
signature concept is generalized to trajectories
and allows to prove equivalence of the diagnos-
ability definitions. The main point is the way
observations are defined, in a static way in the
CS approach and as partially ordered sets (se-
quences) in the DES approach. In one hand, when
temporal information is necessary to discriminate
faults, the DES approach gives better results. In
another hand, it requires to wait a certain amount
of time, before having the result. In practical ap-
plications, this delay has to be estimated and must
be realistic wrt existing risks and decisions to be
taken. Another view is to enrich CS signatures
with temporal information (Puig et al., 2005).

Having a common diagnosability analysis ap-
proach for both state-based and dynamic diag-
nosis also opens perspective for analysing hybrid
systems diagnosability.
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