
Towards data mining without information on

knowledge structure

Alexandre Vautier1, Marie-Odile Cordier1, and René Quiniou2

1 Irisa - Université de Rennes 1
2 Irisa - Inria

Campus de Beaulieu 35042 Rennes Cedex, France
{Alexandre.Vautier}@irisa.fr

Abstract. Most knowledge discovery processes are biased since some
part of the knowledge structure must be given before extraction. We
propose a framework that avoids this bias by supporting all major model
structures e.g. clustering, sequences, etc., as well as specifications of data
and DM (Data Mining) algorithms, in the same language. A unification
operation is provided to match automatically the data to the relevant
DM algorithms in order to extract models and their related structure.
The MDL principle is used to evaluate and rank models. This evaluation
is based on the covering relation that links the data to the models. The
notion of schema, related to the category theory, is the key concept of
our approach. Intuitively, a schema is an algebraic specification enhanced
by the union of types, and the concepts of list and relation. An example
based on network alarm mining illustrates the process.

1 Introduction

Frawley et al. [5] have introduced the well-known definition of Knowledge Dis-
covery: “Knowledge discovery is the non trivial extraction of implicit, previously
unknown, and potentially useful information from data. Given a set of facts
(data) F , a language L, and some measure of certainty C, we define a pattern

as a statement S in L that describes relationships among a subset FS of F with
a certainty c, such that S is simpler (in some sense) than the enumeration of all
facts in FS”.

In most DM (Data Mining) tasks, the language drives the pattern search.
This is the case in inductive databases [6], for instance: the user who mines
the data has to query a database by using a language L. In other words, he
has to define, to some extent, the structure of the “unknown” information. By
structure, we mean a decision tree, a clustering, frequent itemsets, etc. So the
information is not completely unknown, the structure is at least guessed by the
user even if the data inside the structure are unknown.

It is usual to handle data without any idea on their underlying structure. It
is the case when you have to mine alarms from a telecommunication network
to detect intrusion without a priori knowledge on them. To choose the relevant

DM algorithm to run on a set of alarms is a challenge since even DM specialists
are not familiar with the full range of DM algorithms.

The key idea is to propose a framework which provides a specification lan-
guage called Schema in which the user can describe his data and which automat-
ically builds models from various DM algorithms and evaluate them. This point
of view is different from the data mining formalization by inductive databases
[6] where the DM task is defined as an inductive query to a database. The query
contains the “unknown” structure. This inductive database scheme has been in-
stantiated in specific fields: association rules, frequent itemsets, decision trees,
etc. However a common framework for inductive databases is still missing.

Our approach is closer to the 3W model [7] that proposes a language to
unify DM processes. However, we focus on the automatic computation of models
from data whereas the 3W model supports DM as a multi-step process correctly
specified. The same authors have proposed later a method [9] to find constrained
regions (sets of data cube) that summarize data. The evaluation of these regions
relies on the Kolmogorov complexity that we use also to evaluate models.

Bernstein et al. [2] introduce the concept of Intelligent Discovery Assistants
(IDAs) “which provide systematic enumeration of valid DM processes and an
effective ranking of these valid processes by different criteria to facilitate the
choice of DM processes to execute”. We use also data description in the form
of a specification to find DM algorithms. For the time being, we do not rank
DM processes and propose instead an execution of all of them to extract many
models. However, we propose a generic rank of extracted models.

The evaluation scores the relevance of a model relatively to the data and a
specification (a schema). We do not use classic model evaluation methods since
they are not homogeneous and cannot be compared. We introduce a generic
evaluation function based on the Kolmogorov complexity and more precisely on
MDL [11] (Minimum Description Length). The more a model and a representa-
tion of the data in the model are short, the more the model is interesting. The
covering relation between a model and the data is used to find different ways to
encode data knowing a model.

Back to the example above, the system can extract different structures of
models. The network alarms can be viewed as network links in which a DM
algorithm looks for frequently used links. Another DM algorithm can extract
frequent sequence patterns from an alarm sequence. Finally, alarms can be clus-
tered on their severity and their date. The system has to rank these models in
order to present them to the user.

In this paper, we focus on the power and the versatility of the proposed
specification language. A prototype implementation exists and is currently ap-
plied on the detection of DDoS (Distributed Denial of Service) attacks from an
alarm stream. Due to lack of space, we will not develop those computational
aspects nor present experiments. The rest of the paper is organized as follows.
Section 2 motivates our approach on an example on network alarms that will be
used throughout the paper. Section 3 describes our DM framework. Section 4
gives details on the specification of data, models and DM algorithms. It shows

how specifications can be unified to execute automatically DM algorithms on
data and introduce schema foundations. Furthermore, it presents the specifica-
tion of covering relations used in the Section 5 to rank models from Kolmogorov
complexity. We end with concluding remarks and directions for future work.

2 Motivating example

To illustrate our method, we show an example where the goal is to extract
knowledge from a set of network alarms. An alarm corresponds to a suspicious
flow from a source actor to a target actor. An alarm is formally a triple (d, e, s)
where d represents the date, e is the link (source, destination) associated to
the alarm and s is the severity (1 - low to 3 - high). The graph of Figure 1(a)
represents the dataset A. A node represents an actor and an edge labeled by
(d, s) represents an alarm occurring at date d with severity s.

a
(1,2)

(8,3)

b

(11,1)

(5,3)

(9,3)

(2,1)

e
(12,2)

f
(3,1)

(6,1)

c d

(4,3)
(7,1)

(10,2)

(a)

Generalized links:

m1 = [b → ∗, ∗ → c]

m2 = [b → ∗, d → ∗, ∗ → c, ∗ → e]

Sequences of two links:

m3 = [a → b > b → c, b → c > d → e]

Clustering on date and severity:

m4 = [((1 . . . 3), (1 . . . 2)), ((8 . . . 11), (2 . . . 3))]

m5 = [((1 . . . 7), (1 . . . 2)), ((8 . . . 11), (2 . . . 3))]

(b)

Fig. 1. (a) Example set A of network alarms. (b) Models extracted from data A.

Without any information on the structure of knowledge, knowing which DM
algorithm to execute on data A is difficult. In the example of Figure 1, models
in the form of generalized links, sequences and clusters could be extracted, as
depicted in Figure 1(b). The models m1 and m2 are generalized links (links with
the symbol ∗). They can be extracted from the alarms in A by searching nodes
with high degree. The model m3 is composed of 2 sequences of 2 events (an event
is a link) and could be extracted by the algorithm of Srikant and Agrawal [12].
The models m4 and m5 are two partial clusterings of alarms from A on the date
and the severity. They can be generated by algorithm k-means, for instance.

Firstly, the diversity of DM algorithms and the numerous different ways
they can be executed on data make it very difficult for a user to choose DM
computation on a given dataset. That is why we provide an automatic way to
connect DM algorithms and data. Secondly, the many results of DM algorithm

executions on data require a generic evaluation of the resulting models so they
could be ranked before being displayed to the user. These two important points
are developed in the sequel.

3 A general Data Mining Framework

The framework associated to Data Mining is illustrated in Figure 2. 1, The first
component is a database that contains the specification of DM algorithms. Each
DM algorithm is described by a unique schema. The structure of the model
that the algorithm outputs is also described by a schema. 2, The user provides
also the specification of data in a schema. 3, The system finds the relevant DM
algorithms by matching data and algorithm specifications. The corresponding
schemas are unified in a new operational schema. 4, Each valid DM algorithm
is executed and outputs one or several models. 5, Each model is ranked on the
MDL principle. This evaluation corresponds to minimize the size of the data
according to a model and the covering relation between the model and the data.
6, The score of the model is the minimal size found at the previous step.

Data Algo ModelData ModelAlgo Data

Covering relation
decomposition

Model
quality

Algo

Data

Data Algo

Model
quality...

1

2

3

4

Data Mining
Algorithms DataBase

Algo

Algo

Algo

ModelModel

ModelModel

Model

Model
5 6

Fig. 2. Framework for mining data without information on knowledge structure

4 A specification language based on schemas

To begin with, the foundations of schemas are discussed. Instead of giving a for-
mal description of schemas, the grounding elements of the specification language
based on schemas are illustrated on the specification of data and the specifica-
tion of three DM algorithms. Finally, we show how a data schema and a DM
algorithm schema can be unified to yield an operational specification.

4.1 Schema theory

Algebraic specification [4] is based on notions from universal algebras in pure
mathematics and on concepts of abstract data types and software specification
in computer science. An algebraic specification is composed of a set of sorts (also
called type), a set of operations on sorts and a set of equations on operations.
The domain of an operation is a cartesian product of sorts and its codomain is
a unique sort. Three additional concepts are needed to specify a DM problem:
powerset, relation and union of types. Powersets are included in the form of lists,
relation and union of types will be introduced in the next sections.

The union of types enables a very precise type specification. The concept
of sketch, later introduced by Ehresmann [3], includes a definition of union of
types. Further, this notion of sketch was particularly well described by Barr and
Wells [1]. Intuitively a sketch (precisely a finite discrete sketch) is an algebraic
specification using the union of types in the form of a graph. The nodes represent
the type and the edges represent the operations. To add the notions of relation
and powerset, we have extended the concept of sketch to the concept of schema.
Intuitively, a schema is an algebraic specification where the concepts of relation,
list of types and union of types can be expressed.

4.2 Data specification

The specification of network alarms is depicted in the schema Sd of Figure 3.
This specification corresponds to the step 2, of the general framework. In such
a schema, a node represents a type (in the sequel, a type is viewed as a set)
and an edge represents a function (→) or a relation (). The symbol (↔) that
is traditionally used to describe a relation is not employed since the relations
are represented by lists instead of sets. The green dotted lines represent
projections and the red dashed lines represent inclusions. Functions and
relations on some path in the graph can be composed by the operator ◦ . To
each node T is associated an edge, named identity, written idT : T → T. This
edge represents the identity function and is not drawn on a schema, it is implicit.

The type alarm is the cartesian product of the types date, link and sever-
ity. The edges d, e and s represent projection functions from the type alarm
to the types date, link and severity, respectively. In the same way, the type
link is the cartesian product actor × actor associated to the two projection
functions source : link → actor and target : link → actor.

The type 1 (named terminal object in category theory) is used to define
constants. An edge e from the type 1 to the type T represents a set of constants
of type T. For example, the edge Σactor : 1 actor represents the six constants:
a, b, c, d, e and f of the type actor. We also assume that each type T can be
enumerated, i.e. for all type T, there is a unique edge ΣT : 1 T . For example,
the edge Σlink : 1 link enumerates the elements {(x, y)|x, y ∈ actor}.

From each node there is an edge, named ∅, to the terminal object. Thus from
every node, one can access any constant by the composition ◦ . For example,

L(alarm)

exa

alarm
d

e
s

date link

source target

severity

actor

1

Σdate

Σseverity

Σactor

Sd

Σdate = {1 → 1,1 → 2, . . . ,1 → 12}

Σactor = {1 → a,1 → b, . . . ,1 → f}

Σseverity = {1 → 1,1 → 2,1 → 3}

Fig. 3. The schema Sd of the network alarms

the relation Σactor ◦ ∅ : severity actor gives an access from a severity to
any actor. The edges ∅ are not represented in a schema, they are implicit.

The edge Σactor represents an inclusion relation. It means that the type
actor represents a set that contains only the constants defined by the inclusions
that arrives to actor: the type actor contains only the elements a, b, c, d, e and
f . In the same manner, the type date is composed of integers from 1 to 12 and
the type severity is composed of the integers 1, 2 and 3. The type L(alarm)
represents the set of lists composed of elements of type alarm. The relation
exa : L(alarm) alarm associates a list of alarms with the alarms of the list.

4.3 DM algorithm and model specification

The DM algorithms stored in the database 1, are specified in the same speci-
fication language as data. In order to show the versatility of schemas, we give
the description of three DM algorithms that can extract the five models in the
Figure 1(b): the schemas Sg,Sc and Ss of Figures 4, 6 and 8. The specifica-
tion of covering relations in schemas is particularly emphasized: it explicits the
relationship between models and data, and it is useful for model evaluation.

In the schema Sg, L(edge) is the type of graphs which is represented by
edge lists. The function mine graph extracts a list of generalized edges (type
L(edgeG)) from an element of L(edge). The type node is considered as ab-

stract since the relation Σnode can be only partly specified. An element of nodeG
is either an element of type node or the constant ∗ which stands for any ele-
ment of node. This is expressed by the two inclusions i : node nodeG
and gen : 1 → nodeG. These inclusions enable the construction of the relation
cn = 〈Σnode; idnode〉. cn is the covering relation between a generalized node and
a node. Precisely, cn is a cofactorisation of the relations Σnode : 1 node and
idnode : node node. It corresponds to the construction “if-then-else”: for all
x ∈ nodeG, if x ∈ node then cn(x) = idnode(x) else (x = ∗) cn(x) = Σnode(x).

edgeG is the cartesian product nodeG×nodeG and edge is the cartesian
product node × node. The relation ce : edgeG edge is the covering rela-
tion between generalized edges and edges. ce is a factorisation of the relation
cn ◦ sourceG : edgeG node and the relation cn ◦ targetG : edgeG
node. Since an element of edge is defined by two elements of node, ce “cre-
ates” several elements of edge from an element of edgeG. Finally the relation
cle is the covering relation between a list of generalized edges and the edges.

L(edge)

exe

mine graph
L(edgeG)

exeG

cle

edge

source

target

edgeG
sourceG

targetG

ce

node
i

nodeG

cn

1
gen

gen = {1 → ∗}

cn = 〈Σnode; idnode〉

ce = 〈cn ◦ sourceG, cn ◦ targetG〉

cle = ce ◦ exeG

Fig. 4. The schema Sg corresponding to
the mine graph algorithm

L(alarm)

exa

mine graph
L(edgeG)

exeG

cle

alarm

e

link

source

target

edgeG
sourceG

targetG

ce

cge

actor
i

nodeG

cn

1
gen

gen = {1 → ∗} cn = 〈Σactor; idactor〉

ce = 〈cn ◦ sourceG, cn ◦ targetG〉

cge = 〈Σdate ◦ ∅, ce, Σseverity ◦ ∅〉

cle = cge ◦ exeG

Fig. 5. The schema S ′

g corresponding to a
unification of Sg with Sd.

The schema Sc (Figure 6) describes a 2-dimensional clustering. In the 2-
dimensional space, a cluster can be approximated to a rectangle which can be
represented by an horizontal and a vertical interval. A clustering is a list of clus-
ters and the clustering algorithm is represented by the function mine cluster :
L(point) → L(clusterP). The considered clustering algorithms are parameter
free since we assume that we have no knowledge about the data.

The schema Ss (Figure 8) describes an algorithm that extract 2-event se-
quences. An event (event) is composed of a time (time) and a type (eventType).
A sequence (seq) is composed of two event types. In order to specify the cover-
ing relation between a list of events (L(event)) and a list of sequences (L(seq))
we need to convert an event into a 2-event (two successive events). This en-
coding expresses the event succession relation by chained 2-events. For exam-
ple, the event list (1, A), (2, B), (3, A), (4, A) is converted into the 2-event list
(1, A,B), (2, B,A), (3, A,A). This way, the covering relation cs between a se-
quence and a 2-event list can be specified.

L(point)

exp

point
x y

tX tY

intervalX

cixbeginX endX

intervalY

ciybeginY endY

clusterP

cc

dX dY

L(clusterP)

exc

cc = 〈cix ◦ dX, ciy ◦ dY 〉

clc : L(clusterP) point = cc ◦ exc

mine cluster : L(point) → L(clusterP)

Fig. 6. The schema Sc corresponding to
the mine cluster algorithm

L(alarm)

exa

alarm
d s

e
link

date severity

intervalD

cidbeginD endD

intervalS

cisbeginS endS

clusterA

cc

dD dS

L(clusterA)

exc

cc = 〈cid ◦ dD, cis ◦ dS, Σlink ◦ ∅〉

clc : L(clusterA) alarm = cc ◦ exc

mine cluster : L(alarm) → L(clusterA)

Fig. 7. The schema S ′

c corresponding to a
unification of Sc with Sd.

4.4 Schema unification

In this section, we detail the mechanism of schema unification 3,. It is illustrated
by unifying each of the three DM algorithm schemas Sg,Sc and Ss to the data
schema Sd. The resulting unified schemas S ′

g,S
′
c and S ′

s are presented in Figures
5, 7 and 9. They are used to extract models automatically.

In order to simplify the presentation of unified schemas, all the types are
not represented in Figures. For example in the schema S ′

g, the type actor is not
completely defined since the relation Σactor is not written. By convention, a type
that is not written in bold is defined in the schema Sd. This is formally supported
by the notion of morphism of schemas close to the morphism of sketches in
category theory. This corresponds intuitively to type inheritance.

The unification SU of two schemas SA and SB is obtained by matching edges
and rewriting composed relations (composition, factorisation and cofactorisa-
tion). The unification of two schemas is not unique. However, in the DM context
of this proposed framework, several constraints have to be respected which de-
crease the number of potential unifications. Firstly, the type corresponding to
the inputs of the DM algorithm and the type corresponding to the type of data
specified by the user must be unified. Secondly, the unified schema SU should not
contain any abstract type. This reflects the fact that mining algorithms works
on completely defined inputs and outputs.

The schema S ′
g (Figure 5) is constructed from schemas Sd and Sg according

to these constraints. mine graph, the graph DM algorithm, is instantiated by the
type of data, network alarms in this case. This way, the type nodeG represents

L(event)

exev

mine seq

event
t p

time eventType

event2

t′

e′
2

e′
1

seq

e2
e1

cs

L(event2)

exe2

L(seq)

exs
cls

cs = 〈Σtime ◦ ∅, e1, e2〉

cls = cs ◦ exs

convert : L(event) → L(event2)

Fig. 8. The schema Ss related to
the mine sequence algorithm.

L(alarm)

exev

mine seq

severity alarm
d

s

e

date link

alarm2

s1 s2

t′

e′
2

e′
1

seq

e2
e1

cs

L(alarm2)

exe2

L(seq)

exs
cls

cs = 〈Σdate ◦ ∅, Σseverity ◦ ∅, Σseverity ◦ ∅, e1, e2〉

cls = cs ◦ exs

convert : L(alarm) → L(alarm2)

Fig. 9. The schema S ′

s corresponding to a unifi-
cation of Ss with Sd.

the set {a, b, c, d, e, f, ∗}. The rewriting of the relation cle is a little bit more
complex. The types edge and L(edge) are unified with types link and L(alarm)
respectively. This way, the mine graph views an alarm as a link. The forgotten
attributes date and severity must, however, be taken into account in the covering
relation. A new covering relation cge between edgeG and alarm is added where
cge is defined by the factorisation 〈Σdate ◦ ∅, ce, Σseverity ◦ ∅〉. The old covering
relation cle = ce ◦ exeG is rewritten by replacing ce by cge.

The schema S ′
c (Figure 7) is constructed from schemas Sd and Sc. The func-

tion mine cluster views a list of alarms as a list of pairs (date, severity). The
relation cc is rewritten in order to include the forgotten information represented
by the link element of an alarm. Other unifications could be proposed for clus-
tering network alarms, the only constraint being that the types Tx and Ty have
to be unified with completely ordered types.

The schema S ′
s (Figure 9) is constructed from schemas Sd and Ss. The event

type is the link element of an alarm. The type alarm2 needs two projections s1

and s2 to represent two consecutive alarms.

The unification can result in many schemas. Some of these schemas would
turn to be meaningless if the DM algorithm schema is not well specified. In
practice, the number of unifications can be reduced by the use of heuristics and
constraints. For example, every abstract relations of a DM algorithm schema
must be unified with implemented relations of a data schema. Furthermore equa-
tions between relations can be expressed in a schema. These equations constrain
also the unification. As a result, after stating such constraints, the number of
unifications is reduced to two in the case of the generalized edges example.

5 Generic Evaluation

This section shows how to compute a generic evaluation of models relatively to
data. First we describe the principles on which this evaluation is grounded. Next,
we take as example how to evaluate the model m1 (Figure 1(b)).

The Kolmogorov complexity [10] measures the complexity of an object from
the “absolute” length of a program executed on a “universal” machine (an equiv-
alent of the Turing machine) that outputs this object. In our context of data
mining, we use the MDL principle [11]. Some approaches [8] use compression to
minimize the length of data description. In our case, given a unified schema, the
data complexity relatively to a model is the cost of the model plus the cost of
accessing the data from the model by the covering relation.

Definition 1 (Generic measure for model evaluation). Let S be a schema,

c : M D the covering relation of S, d ⊆ D a set of data, m ∈ M a model,

and k(x) the cost in bits of representing the input3 x. The complexity of the data

d in the schema S relatively to the model m is:

K(d,m,S) = k(m|M) + k(d|m, c,D)

For each model m extracted from the data d, the system has to compute
K(d,m,S) where S contains the specification of m. We illustrate the com-
putation of K(A,m1,S

′
g) where m1 = [eg1, eg2] (Figure 1), eg1 = (b, ∗) and

eg2 = (∗, c). Firstly, k(m1|L(edgeG)) is computed. A generalized edge egi is
composed of two generalized actors. The type actorG is composed of 7 con-
stants. Thus the size (a size is a number of bits) of an edgeG is 2× log2(7) and
the size of m1 is k(m1|L(edgeG)) = 4 × log2(7) = 11.2.

Secondly, k(A|m1, cle,L(alarm)) is computed. There are many different ways
to retrieve the data from the model. Each corresponds to some data encodings
according to the model. The covering relation is composed of relations, factorisa-
tions and cofactorisations. To each decomposition of the covering relation corre-
sponds a data encoding. The evaluation leads to finding the decomposition that
minimizes the size of the data encoding. Three among many possible decomposi-
tions of cle decompositions are shown. To each decomposition i of cle corresponds
a cost ki. Recall that cle = cge ◦ exeG where cge = 〈Σdate ◦ ∅, ce, Σseverity ◦ ∅〉
and where ce = 〈cn ◦ sourceG, cn ◦ targetG〉.

1. cle is not decomposed. The set cle(m1) is computed and the twelve alarms of

A are found in this set: log2(C
|A|
|cle(m1)|

), Ck
n is the number of subsets of size k

in a subset of size n. The size of |cle(m1)| is easily computed by enumerating
all the edges covered by eg1 and eg2. The alarms not covered by m1 needs
also to be represented: k(A \ cle(m1)|L(alarm)) noted k′ in the sequel.

⇒ k1 = log2(C
|A|
|cle(m1)|

) + k′ = log2(C
12
432) + k′ = 76.0 + k′.

2. cle is decomposed into cge ◦ exeG. The cost to find eg1 and eg2 in m1 is
2 × log2(2). The size to find the alarms of A in cge(eg1) and cge(eg2) is:

3 k(d|m, c,D) means the cost to represent d knowing m, c and D

– Aeg1
= [(9, (b, c), 3), (2, (b, c), 1), (5, (b, e), 3), (11, (b, f), 1)] ⊆ cge(eg1)

⇒ log2(C
|Aeg1|

|cge(eg1)|
)

– Aeg2
= [(6, (f, c), 1), (3, (f, c), 1), (10, (d, c), 2), (12, (e, c), 2),(9, (b, c), 3),

(2, (b, c), 1)] ⊆ cge(eg2)

⇒ log2(C
|Aeg2|

|cge(eg2)|
)

⇒ k2 = 2 × log2(2) + log2(C
|Aeg1

|

|cge(eg1)|
) + log2(C

|Aeg2
|

|cge(eg2)|
) + k′

⇒ k2 = 2 × log2(2) + log2(C
4
216) + log2(C

6
216) + k′ = 65.3 + k′

3. cle is decomposed as the second decomposition plus the relation Σseverity ◦ ∅.
It means that only the elements of cge(eg1) and cge(eg2) that have a severity
of at least one element of Aeg1

and Aeg2
respectively are selected. In other

words, the elements c′ge(eg1) ⊆ cge(eg1) of severities 1 and 3 and the elements
c′ge(eg2) ⊆ cge(eg2) of severities 1 and 2 are retained. 2× 2× log2(3) bits are
required to represent these severities.

⇒ k3 = 2 × log2(2) + 4 × log2(3) + log2(C
|Aeg1

|

|c′ge(eg1)|
) + log2(C

|Aeg2
|

|c′ge(eg2)|
) + k′

⇒ k3 = 2 × log2(2) + 4 × log2(3) + log2(C
4
144) + log2(C

6
144) + k′

⇒ k3 = 2 + 6.3 + 24 + 33.4 + k′ = 65.7 + k′

All the decompositions of the covering relation cle can be enumerated by
analyzing its formal expression in the unified schema. Then, the system chooses
the decomposition that minimizes the cost of the access to data A. This minimal
cost plus the cost of the model gives the evaluation of the model.

6 Conclusion and future work

We have presented a framework for mining data without any information on
the knowledge structure present in the data. Instead of seeing DM as several ad
hoc processes, we have shown that DM algorithms, DM models and data can be
unified by the same specification language, based on schemas. The schema ex-
pressiveness, due to its grounds in category theory, is the major contribution of
this paper. Moreover, several kinds of computations can be performed on speci-
fications, such as unification or evaluation of models. The unification formalizes
how to interface data and DM algorithms. This step releases the user from the
burden of describing exhaustively this interface in order to run manually DM
algorithms on specific data. The formalization of the covering relation is the key
concept to evaluate models by using the Kolmogorov complexity.

We chose to illustrate the major aspects through an example. The approach
and the language of schema are very general. Until now, we have used schemas to
represent two mining processes concerning two very different datasets related to
network alarms: DDoS attacks (the example of the paper) and intrusion detection
in a virtual private network (VPN). However, the approach should be applied
to other domains to fully assess its generality.

The presented framework is being developed in Prolog and Java. Experiments
on real network alarms provided by France-Telecom have been undertaken. Fur-

thermore, as DM algorithms are automatically executed in the proposed frame-
work, we are working also on how resulting models can be displayed to the user
and, furthermore, how they could be visualized directly on data. Finally, the
user should be able to explicit what is the “useful information” of the Frawley et
al. Knowledge Discovery definition. Thus, the user should be able to adapt the
evaluation method, for instance, by restricting the enumeration of covering rela-
tion decompositions or by suggesting other ways to encode data from a model.

Acknowledgements
Special thanks to Dominique Duval from LMC-Grenoble for numerous discus-
sions on Category Theory. This work is part of the CURAR Project (CRE
#171938) supported by France-Telecom R&D. Thanks to the other project mem-
bers: Mireille Ducassé from INSA-Rennes and Christophe Dousson and Pierre Le
Maigat from France Telecom-Lannion. Thanks also to the anonymous referees.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall,
1990.

[2] A. Bernstein, F. Provost, and S. Hill. Towards intelligent assistance for a data
mining process: An ontology-based approach for cost-sensitive classification. IEEE

Transactions on Knowledge and Data Engineering, 17(4):503–518, 2005.
[3] C. Ehresmann. Catégories et structures. Dunod, Paris, 1965.
[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1985.
[5] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in

databases: an overview. AI Mag., 13(3):57–70, 1992.
[6] T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Communications of the ACM, 39:58–64, 1996.
[7] T. Johnson, L. V. S. Lakshmanan, and R. T. Ng. The 3w model and algebra for

unified data mining. In VLDB’00: Proc. 26th International Conference on Very

Large Data Bases, pages 21–32, USA, 2000. Morgan Kaufmann Publishers Inc.
[8] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free

data mining. In KDD’04: Proc. 10th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 206–215, USA, 2004. ACM Press.
[9] L. V.S. Lakshmanan, R. T. Ng, C. Xing Wang, X. Zhou, and T. Johnson. The

generalized MDL approach for summarization. In VLDB’02 : Proc. 28th Interna-

tional Conference on Very Large Data Bases, pages 766–777, China, 2002.
[10] M. Li and P. Vitanyi. Introduction to Kolmogorov complexity and its applications.

Springer, 1997.
[11] J. Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific

Publishing Co., Inc., River Edge, NJ, USA, 1989.
[12] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-

formance improvements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin,
editors, Proc. 5th Int. Conf. Extending Database Technology, EDBT, volume 1057,
pages 3–17. Springer-Verlag, 1996.

