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Abstract. Monitoring large distributed concurrent systems is a chal-
lenging task. In this paper we formulate (model-based) diagnosis by
means of hidden state history reconstruction, from event (e.g. alarm) ob-
servations. We follow a so-called true concurrency approach: the model
defines explicitly the causal and concurrency relations between the ob-
servable events, produced by the system under supervision on different
points of observation. The problem is to compute on-the-fly the different
partial order histories, which are the possible explanations of the observ-
able events. In this paper we extend our first method based on Petri
nets unfolding to high-level parameterized Petri nets. This allows the
designer to model data aspects (even on infinite domains) and non de-
terministic actions. The observation of such an action gives only partial
information and the supervisor has to introduce parameters to represent
the hidden aspects of the reached state. This supposes that the possible
values for the parameters are symbolically computed and refined during
supervision. In practice, non deterministic actions can also be used as an
approximation to deal with incomplete information about the system. In
this case the refinement of the parameters during supervision improves
the knowledge of the model.

1 Introduction

Concurrent and distributed systems have been at the heart of computer science
and engineering for decades. Formal models and mathematical theories of con-
current systems have been essential to the development of languages, formalisms,
and validation techniques that are needed for a correct design of large distributed
applications.

In this paper, we consider another instance of the use of formal models to
master the complexity of distributed applications, namely the problem of infer-
ring, from measurements, the hidden internal state of a distributed and asyn-
chronous system. An important application is distributed alarm correlation and

fault diagnosis in telecommunications networks, which motivated this work.
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The problem of recovering state histories from observations is pervasive
throughout the general area of information technologies. For instance, estimating
the state trajectory from noisy measurements is central in control engineering,
with the Kalman filter as its most popular instance [8]; the same problem is con-
sidered in the area of pattern recognition, for stochastic finite state automata, in
the theory of Hidden Markov Models [13]. For both cases, however, no extension
exists to handle distributed systems. Finally, fault diagnosis in discrete event
systems (e.g., automata) has been extensively studied [2,15], but the problem of
dealing with concurrent model is just starting.

We follow a so-called true concurrency approach: the model defines explicitly
the causal and concurrency relations between the observable events, produced
by the system under supervision on different points of observation. The prob-
lem is to compute on-the-fly the different partial order histories, which are the
possible explanations of the observable events. A natural candidate to formalize
the approach are 1-safe Petri nets with branching processes and unfoldings. The
previous work of our group used this framework to define the histories and a
distributed algorithm to build them as a collection of consistent local views [1].

In this paper we extend our method to high-level parameterized Petri nets.
This allows the designer to model data aspects (even on infinite domains) and
non deterministic actions. The observation of such an action gives only partial
information and the supervisor has to introduce parameters to represent the
hidden aspects of the reached state. This supposes that the possible values for
the parameters are symbolically computed and refined during supervision. In
practice, non deterministic actions can also be used as an approximation to deal
with incomplete information about the system. In this case the refinement of
the parameters during supervision improves the knowledge of the model. We
think this symbolic approach will be able to deal with more complex distributed
systems. At the heart of our scientific contribution is the definition of a symbolic
unfolding for high-level Petri nets, which combines the traditional unfolding
[10,11] with a kind of α-conversion (λ-calculus) to deal with parameters. Up to
our knowledge, this is original. The idea of using an unknown symbolic initial
marking has already been addressed in [16], but restricted to the framework of
simple Petri nets and their marking graphs.

This paper is organized as follows. We first begin in Section 2 by an informal
presentation of the problem on a toy example, illustrating the high-level Petri
net model we use, its unfolding and the trajectories we want to compute with
respect to a given partially ordered observation. The mathematical background
is recalled in Section 3, following the usual notation for Petri nets, as used for
instance in [10]. In Section 4, we present an original algorithm to compute a
symbolic unfolding. This allows us to formally express the diagnosis problem,
which is done in Section 5 using a composition between the observation and the
model, which can be then symbolically unfolded. We also show that unfolding
can be performed on-the-fly, observable event by observable event. We conclude
in Section 6 by presenting different perspectives on the use of the approach to
monitor real distributed systems.



2 An example of diagnosis under partial observation

2.1 The parameterized concurrent model

Our parameterized concurrent model is based on the standard high-level Petri
net introduced in [9] and augmented with free variables. It is exemplified in
Figure 1, which shows two interacting components, named A and B. Component
A may fail (observed as α) with a given non observable severity level (parameter
l). To be completely repaired, component A must execute a local action (observed
as ρ, and possible only if the severity level is less than 10), and wait for the
completion of the recovery procedure of component B, which has been informed
of the failure. To recover from a failure of severity l, component B must execute
l repairs, observed as γ. But, at any time, component B may also fail and stop
(observed as β). The initial transition ⊥ starts the system in feeding the places
1 and 2 with black tokens (transported by the local variable m). Component
A has two private states: safe, represented by place 1, and faulty, represented
by place 3. Upon entering its faulty state, component A emits an alarm α. The
failure of component A causes repairing actions in component B. This causality
is modeled by the shared place 4. The monitoring system of component B (sensor
B) only detects that component B provides an elementary action of repairing
(observed as γ). The last action recovers the fail by putting the system again in
state 2, shared with component A. This action is not observable.
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Fig. 1. A concurrent machine with two components, which may fail with an unknown
severity level and can be repaired accordingly.



All the observable events are also called alarms in the sequel, and represented
by a grek letter on the figures. The fact that a transition is not observable is
shown by writing ε instead of an alarm. It is to be noticed that the exact severity
level of the fail l is not observable, and will be inferred during supervision using
a kind of symbolic execution of the model.

In order to define the dynamics of such network, we consider that each place
can be fed by a multiset of values (often called “colors”). These values are tested
and forwarded by the transitions. As we can see, each transition associates a
label (α, β, γ, ρ, ε) and a predicate (printed near the transition in a curly brace,
as a conjunction of expressions), called the guard. Furthermore, each incident
edge is labeled by a local variable. The transition guard is composed with these
local free variables. Informally, a transition is fireable if its guard is satisfiable.
This means there exist some values to the variables for which the guard is true.
One can thus select an instance of these values, which are unified (matched) to
the variables. It is required that the values unified to the input arcs variables
are present in the input places. The firing of the transition removes these values
from the input places. The output places are then filled by the values unified to
the output arc variables. In our example, the firing of the transition ⊥ puts one
token in places 1 and 2. The transition labeled by α becomes fireable. When it
fires, it removes the tokens from 1 and 2 and puts a token in place 3 and an
arbitrary integer l (provided l ≥ 0) in place 4. The dynamics is formally defined
in Section 3.

2.2 Supervision architecture

We consider the following setup for diagnosis, assuming that messages are not
lost. Each sensor records its local alarms in sequence, while respecting causal-
ity (i.e. the observed sequence cannot contradict the causalities defined in the
model). The different sensors perform independently and asynchronously, and a
single supervisor collects the records from the different sensors. Thus any inter-
leaving of the records from different sensors is possible, and causalities among
alarms from different sensors are lost. This architecture is illustrated in Figure 2.

Supervisor

α, ρ, α γ, β

System under supervision

Sensor A Sensor B

Fig. 2. The considered supervision architecture, composed of several sensors that re-
port alarms asynchronously to a unique diagnoser.



For the development of the example, we consider that the system under
supervision produces the sequences αρα on sensor A, and γβ on sensor B.

We think such an architecture is the first important step towards a dis-
tributed supervision, in which the monitoring is itself distributed, with different
supervisors cooperating asynchronously. Each supervisor is attached to a sensor
(i.e. a component of the model), records its local alarms in sequence, and can
exchange supervision messages with the other supervisors, asynchronously. This
aspect is deferred to a subsequent paper.

2.3 Unfoldings: an efficient data structure to represent all runs

The construction of the runs of the high-level parameterized Petri net of Figure 1
is illustrated in Figure 3.

The algorithm is to consider all the transitions of the original Petri net, and to
place them, one at a time, if they are possible. Let us start by placing the initial
transition ⊥. Once placed, a transition becomes a unique event (denoted by ⊥,
a1, e1 etc.) in the graph. The local variables acquire then the status of global
variables and for this purpose are renamed (actually indexed by the event name).
An event e, instance of a transition t, is placed only if its preset (the input places)
is present in the graph and if the following enabling condition is satisfiable. The
enabling condition is formed by the conjunction of the local conditions of the
events located in the causal past of e (see below the definition of causality) and
of its local condition. The local condition is the guard of the transition t (in
which the local variables have been renamed by their global names), augmented
with the constraint that the variables of the input arcs have the same values that
the variables of the output arcs of the input event of the input places, in order to
capture the causal relation. To keep track of this condition, we associate a new
predicate with the new event. In the graph of Figure 3, the local condition of each
event is printed in a curly brace. This graph is usually infinite. We have drawn
only a prefix of it. In the formal description of Section 4, the local condition is
the predicate loc pred(e) and the enabling condition is the predicate pred(e).

Two events linked by a path of the graph are causally related, since there
exists a flow of values between them. Two events are concurrent if they are
causally related and if they are not in conflict (i.e. cannot belong to a same
run). There are two causes of conflict. The first one, called structural conflict is
that they have been separated by a choice in the system, represented in the graph
by a branching from an ancestor place of these events. The second possibility
is specific to the parameterized model: two events are also in conflict (called
non-structural conflict) if their predicates are not simultaneously satisfiable. We
thus show that the symbolic unfolding is an interesting structure to represent
the different runs, in which causality and concurrency are explicitly given. The
different runs are superimposed in the graph and separated by the notion of
conflict. In Figure 3, the event r is a cause of event a′

2; the event e1 is concurrent
with event r; event a2 is structurally in conflict with event e′1. A non-structural
conflict is also possible between the event r and an event labeled by γ reachable



after more than 10 consecutive repairs on component B (not represented in the
prefix chosen in the figure).
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Fig. 3. Some runs of the example represented in a branching process.

2.4 Asynchronous diagnosis

Figure 3 showed different runs of the system, represented in a single graph. The
question now is to select the runs that are compatible with the observations. In
Figure 4, we have projected the graph of Figure 3 by considering that some events
are not compatible with the actual observation. This is the case for instance for
the first β transitions, which cannot be considered since γ have to be explained



before and that the occurrence of β stops the production of γ in the model. The
resulting graph shows two possible explanations: the first corresponds to the left
part of the graph with the following partial order α.(ρ ‖ ε).α.γ.β; the second
is the right part of the graph: α.(ρ ‖ (γ.ε)).α.β. We see that these two possible
explanations share a same prefix α.ρ in the graph. Another interesting fact is
the refinement of constraints on variables during the unfolding: for instance, at
the end of the first explanation, we can infer that the severity level of the first
fail α was 0, because of the conjunction of the predicates of the events a1 and
e1.
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Fig. 4. The causal graph resulting of our diagnosis algorithm.



In practice, the desired projection is obtained by synchronizing the system
model with the observations. This augmented model is then unfolded. The last
phase is to keep only the system part of the unfolding to present the explanations
to the user. Figure 5 shows our original model, constrained with the considered
observations. The sequencing of local observations are represented as the linear
nets at the left and right parts of the figure. The observations constrain the
execution of the original model since the treatment of the next local observation
requires that a transition with the same label in the model has been fired. This
is the role of places A, B, and their complements A and B in the figure.
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Fig. 5. The model of Figure 1, constrained by the observation.



The rest of the paper defines mathematically these different objects and
operations. The final contribution is an on-the-fly algorithm, which builds the
different possible explanations in the form of an unfolding, increasing step by
step at each observation.

3 Mathematical background: high-level Petri nets

Basic references are [2,4,14]. We use the standard notations, adopted from [10].

3.1 Notations

We recall the notations:

– f : A 7−→ B denotes a mapping f from A to B;
– A ] B denotes the disjoint union of the sets A and B;
– e[n← n′] is the expression e in which all the occurrences of the name n have

been replaced by the expression n′.
e[n← f(n)]n∈N is the result of the parallel replacement of each name n ∈ N

by the expression f(n).

A multiset over a set X is a mapping µ : X 7−→ N. We denote x ∈ µ if

µ(x) > 0. We define the empty multiset ∅ as ∅(x)
def

= 0 for all x ∈ X . We define

the union of two multisets µ1 and µ2 over X as (µ1 +µ2)(x)
def

= µ1(x)+µ2(x) for
all x ∈ X . For two multisets µ and µ′ over X , we write µ ≤ µ′ if for all x ∈ X ,
µ(x) ≤ µ′(x). A multiset µ is finite if {x ∈ X | x ∈ µ} is finite. In this case
we can represent it with {| . . . |} delimiters. For example {|a, a, b|} will denote the
multiset µ defined by µ(a) = 2, µ(b) = 1 and µ(x) = 0 for all x ∈ X \ {a, b}. For
a mapping h : X 7−→ Y , we denote {|h(x) | x ∈ µ|} or h(µ) the multiset µ′ over

Y such that for all y ∈ Y , µ′(y)
def

=
∑

x∈X∧h(x)=y

µ(x) .

3.2 High-level Petri nets

In this section we present the formal model we use to represent the system we
work on and its behavior. The example of Figure 1 illustrates this model.

It is assumed that there exists a (finite or infinite) set Tok of elements (or
‘colors’) 1 and a set VAR of variable names, such that Tok ∩ VAR = ∅.

A high-level Petri net is a quadruple N
def

= (P, T, W, ι) such that:

– P and T are disjoint sets of places and transitions respectively;
– W is a multiset over (P ×VAR× T ) ∪ (T ×VAR× P ) of arcs;

– ι maps each t ∈ T to a predicate ι(t) on VAR(t), where VAR(t)
def

= {v |
(p, v, t) ∈W ∨ (t, v, p) ∈W}. For every t ∈ T , ι(t) is called the guard of t.

1 We do not mention any type conditions on the colors because this is not essential
for our application. Adding types would only be a refinement of the firing conditions
of the transitions.



For two nodes y, y′ ∈ P∪T , we denote y → y′ if there exists a variable v such that
(y, v, y′) ∈ W . The reflexive and irreflexive transitive closures of → are denoted

respectively by � and ≺. For a transition t ∈ T , let •t
def

= {|(p, v) | (p, v, t) ∈W |},

t•
def

= {|(p, v) | (t, v, p) ∈W |}.
In figures, places are usually represented by circles and transitions by squares.

Labeled arrows between places and transitions represent the arcs. The guards of
the transitions are printed in a curly brace.

A homomorphism from a high-level Petri net N = (P, T, W, ι) to a high-level
Petri net N ′ = (P ′, T ′, W ′, ι′) is a mapping h : P ∪ T 7−→ P ′ ∪ T ′ such that:

– h(P ) ⊆ P ′ and h(T ) ⊆ T ′;

– for all t ∈ T ,







•h(t) = {|(h(p), v) | (p, v) ∈ •t|}
h(t)• = {|(h(p), v) | (p, v) ∈ t•|}
ι′(h(t)) = ι(t)

A firing mode of a transition t is a mapping σ : VAR(t) 7−→ Tok such
that ι(t) evaluates to true under the substitution given by σ. We denote
•(t, σ)

def

= {|(p, σ(v)) | (p, v) ∈ •t|} and (t, σ)•
def

= {|(p, σ(v)) | (p, v) ∈ t•|}.

A marking of a net N is a multiset over P ×Tok. A transition t is enabled at
marking M with firing mode σ if •(t, σ) ≤M . Such a transition can fire, leading

to a new marking M ′ def

= M − •(t, σ) + (t, σ)•.

A high-level Petri net system is a high-level Petri net Υ
def

= (P, T, W, ι), which
has a unique initial transition called ⊥ such that •⊥ = ∅. In the sequel we assume
that ι(⊥) is satisfiable, i.e. ⊥ has at least one firing mode. ⊥ fires only once, at
the empty marking, to start the system.

Remark: low-level Petri nets can be seen as particular high-level Petri nets, in
which all the arcs use the same variable m, and all the guards are (m = •).
The drawback with low-level Petri nets is the lack of manipulations of data.
In practice, the data aspects have to be enumerated, and thus explode and are
limited to finite domains for variables. This is why we consider the extension to
the so-called high-level Petri nets.

4 Symbolic unfolding

This section formally defines the structure we use to represent the different
runs of a system. Figure 3 shows a symbolic branching process of the system of
Figure 1. For each event e, the predicate loc pred(e) is printed near the event.

4.1 High-level occurrence nets

The net N
def

= (P, T, W, ι) is called ordinary if for each pair y, y′ of nodes of N ,
there exists at most one arc connecting y and y′ (

∑

v∈VAR
W ((y, v, y′)) ≤ 1).



Two nodes (places or transitions), y and y′, of an ordinary net N
def

=
(P, T, W, ι) are in structural conflict, denoted by y#y′, if there exist distinct
transitions t, t′ ∈ T and a place p ∈ P such that p→ t, p→ t′, t � y and t′ � y′.
A node y is in structural self-conflict if y#y.

A high-level occurrence net is an ordinary net system ON
def

= (B, E, G, ι),
where B is a set of conditions (places), E is a set of events (transitions) and G

is a flow relation, satisfying the following conditions:

– for every b ∈ B, there exists a unique pair (e, v) called •b such that (e, v, b) ∈
G;

– for every y ∈ B ∪ E,















¬(y#y)
¬(y ≺ y)
⊥ � y

there are finitely many y′ such that y′ ≺ y.

≺ is called the causality relation. We say that node y is causally related to
node y′ if y ≺ y′.

For all e ∈ E we denote dee
def

= {f ∈ E | f � e}. For all F ⊆ E we denote

dF e
def

=
⋃

f∈F dfe.

For a high-level occurrence net ON
def

= (B, E, G, ι) we define the mappings
loc pred and pred which map each e ∈ E to the predicates

loc pred(e)
def

= ι(e)[v ← ve]v∈VAR(e)

∧
∧

(b,v)∈•e

(ve = v′e′) with •b = (e′, v′)

pred(e)
def

=
∧

f�e

loc pred(f)

4.2 Symbolic branching processes

A symbolic branching process of Υ is a pair π
def

= (ON, h) such that:

– ON is a high-level occurrence net such that for all e ∈ E, pred(e) is satisfiable;
– h is a homomorphism from ON to Υ ;
– h(⊥) = ⊥;
– for all e, f ∈ E, if h(e) = h(f) and •e = •f , then e = f .

4.3 Non structural conflict, concurrency

In branching processes of high-level Petri nets, the causality relation is the same
as in branching processes of low-level Petri nets. But there are two different
causes of conflict. The structural conflict is the equivalent of the conflict relation
in branching processes of low-level Petri nets; and we define a non structural

conflict, that restricts the concurrency relation. This notion of non structural
conflict is due to the existence of symbolic parameters.



The events of the set F ⊆ E are in non structural conflict if
∧

f∈F pred(f) is
not satisfiable. We note that for all F in non structural conflict and F ′ ⊆ E, if
dF e ( dF ′e then F ′ is also in non structural conflict.

The events of F are in minimal non structural conflict if there does not exist
any F ′ ⊆ E such that dF ′e ( dF e and the events of F ′ are in non structural
conflict.

The events of the set F ⊆ E are concurrent if they are not in non structural
conflict, and for each e, e′ ∈ F , neither e ≺ e′, nor e′ ≺ e, nor e # e′ holds.

A co-set is a set C of conditions such that the events {e ∈ E | ∃b ∈ C e→ b}
are not in (structural or non structural) conflict, and there does not exist any
b, c ∈ C, e ∈ E such that b→ e ≺ c.

4.4 Symbolic unfolding

The set of all symbolic branching processes of a high-level Petri net system is
uniquely defined, up to an isomorphism (i.e. a renaming of the conditions and
events), and we shall not distinguish isomorphic branching processes. For π, π′

two symbolic branching processes, π′ is a prefix of π, written π′ v π, if there
exists an injective homomorphism φ from π′ into π, such that φ(⊥) = ⊥, and the
composition h ◦ φ coincides with h′, where ◦ denotes the composition of maps.

Thus, the notion of unfolding of a Petri net as the unique maximum branch-
ing process up to isomorphism, proved in theorem 23 of [3], can be adapted
to symbolic branching processes of high-level Petri nets to define the symbolic

unfolding UΥ of a high-level Petri net system Υ .

Branching processes of a (high-level) Petri net represent the different runs.
The interest is that the causalities and the concurrency between the transitions
figuring in the run are explicitly represented in a graph. This is why, this kind
of behavioral semantics for Petri nets is called “true concurrency semantics”,
and fits particularly well with the kind of trajectories we want to produce as the
monitoring activity.

Some applications use the notion of finite complete prefix defined on low-
level Petri nets. We do not need this notion in the area of diagnosis because the
unfoldings we generate are finite, as the model is constrained by the observation.
Furthermore we think that it would not be obvious to define a notion of finite
complete prefix for symbolic unfoldings of high-level Petri nets, because of the
theoretical power of the model.

4.5 Algorithm

We propose an algorithm to compute the symbolic unfolding of a high-level
Petri net. This algorithm needs to decide if the predicates pred(e) are satisfiable.
This is possible if the guards of the transitions are expressed in some weak
enough language. One possible framework is the use of Presburger arithmetics
[12] (arithmetics without multiplication).



The algorithm consists in a non deterministic iteration, after the placement
of the initial event ⊥. In each iteration we choose a transition t and a co-set C

to create a new event e. The predicate pred(e) is memorized for each event. The
minimal non structural conflicts are memorized in the variable conflict, which is
used to find the co-sets.

In the area of diagnosis, the net is constrained by the observation as we will
see in Section 5. Thus its unfolding is finite and the algorithm terminates, if
we except models that contain loops of non observable transitions. But in the
general case the unfolding may be infinite, and precautions have to be taken to
ensure that all the events of the unfolding are computed. One method is to use
the causal depth of the events defined as follows: the causal depth of an event
e ∈ E is the number of events on the longest path from ⊥ to e. For all integer n,
the number of events at depth n is finite. If the algorithm is forced to compute
all the events at depth n before those at depth n + 1, then all the events will be
computed.

Initialization

1. initialize the sets B, E, G to ∅, h and pred to the empty mapping and
conflict to ∅;

2. add the event ⊥ to E, and update h with h(⊥) = ⊥;
3. for each (p, v) ∈ ⊥•, add a new condition b to B, add (⊥, v, b) to G and

update h with h(b) = p;
4. extend pred with pred(⊥) = ι(⊥)[v ← v⊥]v∈VAR(⊥);

Non deterministic iteration
Repeat until no transition can be chosen:

1. choose nondeterministically a transition t ∈ T \ {⊥} such that there exist
a co-set C and a bijection pin from •t to C, satisfying:
– for all (p, v) ∈ •t, h(pin((p, v))) = p;

– the predicate pred e
def

= loc pred ∧
∧

b∈C pred(b) is satisfiable, where:

• pred(b)
def

= pred(e′) with •b = (e′, v′)

• loc pred
def

= ι(t)[v ← ve]v∈VAR(t)

∧
∧

(p,v)∈•t

(ve = v′e′ ) with •pin((p, v)) = (e′, v′)

• e is a new event.
2. add the event e to E, and update h with h(e) = t;
3. for each (p, v) ∈ •t, add (pin((p, v)), v, e) to G;
4. for each (p, v) ∈ t•, add a new condition b to B, add (e, v, b) to G and

update h with h(b) = p;
5. extend pred with pred(e) = pred e;
6. extend conflict with the newly created minimal non structural conflicts,

if any.



5 Symbolic diagnosis: formal problem setting

5.1 Observations

Observations and their impact on the original system model are represented by
adding new places and transitions in the high-level Petri net.

A sensor is a place s of a high-level Petri net that has no output arc and at
most one input arc from each transition t ∈ T . To simplify the notations, we
assume that the variable associated with this arc is always λs. When a transition
t ∈ T fires, the value taken by λs is called the alarm.

A local observation sequence from the sensor s is a finite sequence of alarms
(λs,1, . . . , λs,ns

). A global observation from a set S of sensors is a mapping A from
sensors s ∈ S to observation sequences (λs,1, . . . , λs,ns

). Consider two observa-
tions A and A′, which associate with each sensor s ∈ S, the observation sequences
(λs,1, . . . , λs,ns

) and (λ′
s,1, . . . , λ

′
s,n′

s

) respectively. We say that A is a prefix of A′,

written A ≤ A′, if for all s ∈ S, ns ≤ n′
s and (λs,1, . . . , λs,ns

) = (λ′
s,1, . . . , λ

′
s,ns

).

5.2 Diagnosis net D(N, A)

In this section we show how to build a net D(N, A) from a net N modeling a
system and an observation A of this system. The idea is to constrain the model so
that each transition of the model that sends an alarm to a sensor s is not allowed
to fire until all the previous alarms sent to s have been treated. To achieve this
we create a new place s̄, add an arc from s̄ to each transition that sends an alarm
to s, and ensure that s contains a token if and only if all the alarms sent to s have
been treated. The treatment of the alarms received by sensor s is modeled by a
set of new transitions ts,i, i = 1, . . . , ns (one for each observation). Transition ts,i
guarantees that the ith alarm received by s matches the observation λs,i. Once
the alarm is treated, ts,i puts a token in the place s̄, which allows the transitions
of the model to emit new alarms. The formal definition of D(N, A) follows.

For a net N
def

= (PN , TN , WN , ιN ) and an observation A from a set S of sensors

of N , we define the net D(N, A)
def

= (P, T, W, ι), called net N observed as A, as
follows (we assume that m is a fresh variable name):

– P
def

= PN ] {s̄ | s ∈ S} ] {ps,i | s ∈ S, i = 0, . . . , ns}

– T
def

= TN ] {ts,i | s ∈ S, i = 1, . . . , ns}

– W
def

= WN + {|(⊥, m, s̄), (⊥, m, ps,0) | s ∈ S|}
+ {|(s̄, m, t) | s ∈ S ∧ (t, λs, s) ∈ WN |}
+ {|(s, λs, ts,i), (ts,i, m, s̄) | s ∈ S, i = 1, . . . , ns|}
+ {|(ps,i−1, m, ts,i), (ts,i, m, ps,i) | s ∈ S, i = 1, . . . , ns|}

– ι(t)
def

= ιN (t) ∧ (m = •) if t ∈ TN

ι(ts,i)
def

= (λs = λs,i) ∧ (m = •) for all s ∈ S, i = 1, . . . , ns

Figure 5 shows the net of Figure 3 observed as α, ρ, α from sensor A and γ, β

from sensor B.



Remark. For two observations A and A′ such that A ≤ A′, D(N, A) is a subnet of
D(N, A′). Indeed D(N, A′) can be built from D(N, A) by adding the places and
transitions required by the new alarms, and arcs connecting the new transitions.
No new arc is added to the old transitions. That is why every execution of the
net D(N, A) is also a valid execution of D(N, A′).

5.3 Global diagnosis

We call diagnosis of observation A on net N the symbolic unfolding UD(N,A) of
the net N observed as A. For each set F ⊆ E of concurrent events such that the
restriction of h to F is a bijection from F to {ts,ns

| s ∈ S}, the configuration
dF e explains the observation A.

We may want to get rid of the causalities due to the observation. For this
purpose, we remove all the events and conditions corresponding to the sensors or
to the observation. This operation, called projection on N removes the causalities
due to the observation. But we must keep the information of the (structural and
non structural) conflicts due to the observation, that do not appear any more in
the projected net.

Figure 4 shows all the possible explanations of the example of Figure 3.

On-the-fly computation. The unfolding of D(N, A) can be computed by the algo-
rithm of Section 4.5. Moreover, we can adapt this algorithm in order to compute
on-the-fly the partial order histories that explain the observed alarms. Indeed, if
A and A′ are two observations such that A is a prefix of A′, then, consecutively
to the final remark of Section 5.2, each branching process of D(N, A) is also a
branching process of D(N, A′). Then we can compute on-the-fly the explanations
by updating D(N, A) each time a new alarm is observed. After this modification
is done, the algorithm will continue and compute the explanations of the new
observation.

6 Conclusion

We have presented a possible approach to the supervision/diagnosis of dis-
tributed systems, in which the explanations are given by a family of partial
orders on the observable events, represented by an unfolding graph. The main
contribution of the paper is to consider parameters in the model. These param-
eters are used to model incomplete information on the system under supervision
(i.e. partially observed). We think it is an important aspect to deal with real
contexts. We have different perspectives. From the practical point of view, we
are starting the implementation of the algorithm. The main extension we plan
is to deal with a distributed supervision architecture; that is extend the ap-
proach presented in [7] to the symbolic framework we consider. An other work
in progress is to study time Petri nets as a particular case of our parameter-
ized model. The variables of the model are used to model the different instant
of transition firings. This will define a new notion of unfolding for time Petri



nets, which keeps concurrency. More generally, because of the “local” property
of the unfolding algorithm, we think our approach could be extended to deal
with dynamic systems, in which the model can evolve during observation.
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