Monotony in Service Orchestrations

A. Bouillard S. Rosario A. Benveniste S. Haar

Web Services and Orchestrations

Web Services and Orchestrations

Web Services and Orchestrations

Web Services and Orchestrations

Web Services and Orchestrations

Web Services and Orchestrations

Web Services and Orchestrations

Contract, Contract Composition

Contract, Contract Composition

A non-monotonic orchestration

A non-monotonic orchestration

A non-monotonic orchestration

Overall latency : $\tau_{S_{2}}+\tau_{S_{4}}=7$

A non-monotonic orchestration

A non-monotonic orchestration

Overall latency : $\tau_{S_{1}}+\tau_{S_{3}}=12$

Colored, Occurrence Nets: to model orchestrations

Petri Nets

$$
\begin{aligned}
& N=\left(\mathcal{P}, \mathcal{T}, \mathcal{F}, M_{0}\right) \\
& \mathcal{P}: \text { Set of Places } \\
& \mathcal{T}: \text { Set of Transitions } \\
& \mathcal{F} \subseteq(\mathcal{P} \times \mathcal{T}) \cup(\mathcal{T} \times \mathcal{P}): \text { Flow Relation } \\
& M_{0}: \mathcal{P} \rightarrow \mathbb{N}: \text { Initial Marking }
\end{aligned}
$$

Petri Nets

$$
\begin{aligned}
M_{0}=\left\{p_{1}\right. & \rightarrow 2, p_{2} \rightarrow 1, p_{3} \rightarrow 0 \\
p_{4} & \left.\rightarrow 0, p_{5} \rightarrow 0\right\}
\end{aligned}
$$

Petri Nets

$$
\begin{aligned}
M_{0}=\left\{p_{1}\right. & \rightarrow 2, p_{2} \rightarrow 1, p_{3} \rightarrow 0 \\
p_{4} & \left.\rightarrow 0, p_{5} \rightarrow 0\right\}
\end{aligned}
$$

Petri Nets

Preset of a node x : ${ }^{\bullet} x$
for e.g, ${ }^{\bullet} t_{1}=\left\{p_{1}, p_{2}\right\}$

Petri Nets

Preset of a node x : ${ }^{\bullet} x$ for e.g, ${ }^{\bullet} t_{1}=\left\{p_{1}, p_{2}\right\}$

Postset of a node x : x^{\bullet} for e.g, $t_{1}^{\bullet}=\left\{p_{3}\right\}$

Petri Nets

Firing of transition t_{1}

Petri Nets

Causality Relation : \leq
for e.g, : $p_{3}<t_{1}<p_{1}$
$t_{1}<t_{2}<t_{4}$

Petri Nets

Causality Relation : \leq
for e.g, : $p_{3}<t_{1}<p_{1}$

$$
t_{1}<t_{2}<t_{4}
$$

Conflict Relation: \# for e.g, : $t_{2} \# t_{3}$

Petri Nets

Causality Relation : \leq
for e.g, : $p_{3}<t_{1}<p_{1}$

$$
t_{1}<t_{2}<t_{4}
$$

Conflict Relation: \# for e.g, : $t_{2} \# t_{3}$
$t_{4} \# t_{5}$

Petri Nets

A configuration is a sub-net κ s.t.:

1. κ is causally closed. If $x \in \kappa$ and $x^{\prime}<x$, then $x^{\prime} \in \kappa$.

Petri Nets

A configuration is a sub-net κ s.t.:

1. κ is causally closed. If $x \in \kappa$ and $x^{\prime}<x$, then $x^{\prime} \in \kappa$.
2. κ is conflict-free. $\nexists x, x^{\prime} \in \kappa$ s.t. $x \# x^{\prime}$

Occurrence Nets

A safe net N is called an occurrence net iff

1. No node of N is in self-conflict.
2. \leq is a partial order
3. $\lceil t\rceil=\{x \in N \mid x \leq t\}$ is finite for all transitions of N.
4. $|\cdot p| \leq 1$ for all places of N.

Our Model: OrchNets

OrchNets

- Tokens have colors: (value, date)

OrchNets

- Tokens have colors: (value, date)
- A transition t has functions $\left(\phi_{t}, \tau_{t}\right)$ that modify the token colors.

OrchNets: Definition

An OrchNet is a tuple $\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)$

OrchNets: Definition

An OrchNet is a tuple $\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)$

- N : occurrence net with token attributes $c=($ value, date $)$.

OrchNets: Definition

An $\operatorname{Orch} N e t$ is a tuple $\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)$

- N : occurrence net with token attributes $c=($ value, date $)$.
- $\Phi=\left(\phi_{t}\right)_{t \in \mathcal{T}}$: family of value functions.

OrchNets: Definition

An $\operatorname{Orch} N e t$ is a tuple $\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)$

- N : occurrence net with token attributes $c=($ value, date $)$.
- $\Phi=\left(\phi_{t}\right)_{t \in \mathcal{T}}$: family of value functions.
- $T=\left(\tau_{t}\right)_{t \in \mathcal{T}}$: family of latency functions.

OrchNets: Definition

An $\operatorname{Orch} N e t$ is a tuple $\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)$

- N : occurrence net with token attributes $c=($ value, date $)$.
- $\Phi=\left(\phi_{t}\right)_{t \in \mathcal{T}}$: family of value functions.
- $T=\left(\tau_{t}\right)_{t \in \mathcal{T}}$: family of latency functions.
- $T_{\text {init }}=\left(\tau_{p}\right)_{p \in \min (\mathcal{P})}$: family of initial date functions.

OrchNets: Example

OrchNets: Example

OrchNets: Example

In general, ϕ_{t} and τ_{t} are non-deterministic functions.
$\omega \in \Omega$, a daemon variable that resolves non-determinism.
$\omega \in \Omega$, a daemon variable that resolves non-determinism.

For a given value of $\omega, \phi_{t}^{\omega}$ and τ_{t}^{ω} are deterministic functions.

For a fixed ω

For a fixed ω

For a fixed ω

For a fixed ω

For a fixed ω

For a fixed ω

Actually occurring configuration for a given ω : $\bar{\kappa}(\mathcal{N}, \omega)$

When $d^{\omega}<d^{\prime \omega}, \quad \bar{\kappa}(\mathcal{N}, \omega)$ is..

When $d^{\omega}<d^{\prime \omega}, \quad \bar{\kappa}(\mathcal{N}, \omega)$ is..

Execution Time

Execution Time of a maximal configuration $\bar{\kappa}$ of \mathcal{N} :

$$
E_{\omega}(\bar{\kappa}, \mathcal{N})=\left\{\max \left(d_{x}^{\omega}\right) \mid x \in \bar{\kappa}\right\}
$$

Execution Time

For a given ω, execution time of \mathcal{N} :

$$
E_{\omega}(\mathcal{N})=E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
$$

When $d^{\omega}<d^{\prime \omega}$..

When $d^{\omega}<d^{\omega}$..

$$
E_{\omega}(\mathcal{N})=d^{\omega}+\tau_{s}^{\omega}
$$

Characterising Monotony.

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where,

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where, 1. N, Φ : as before.

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where,

1. N, Φ : as before.
2. \mathbb{T} : sets of families of latency functions T.

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where,

1. N, Φ : as before.
2. \mathbb{T} : sets of families of latency functions T.
3. $\mathbb{T}_{\text {init }}$: sets of families of initial date functions $T_{\text {init }}$.

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where,

1. N, Φ : as before.
2. \mathbb{T} : sets of families of latency functions T.
3. $\mathbb{T}_{\text {init }}$: sets of families of initial date functions $T_{\text {init }}$.

Pre-Orchnets

Call pre-OrchNet a tuple $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ where,

1. N, Φ : as before.
2. \mathbb{T} : sets of families of latency functions T.
3. $\mathbb{T}_{\text {init }}$: sets of families of initial date functions $T_{\text {init }}$.

Write $\mathcal{N} \in \mathbb{N}$ if there exists $T \in \mathbb{T}$ and $T_{\text {init }} \in \mathbb{T}_{\text {init }}$ s.t.

$$
\mathcal{N}=\left(N, \Phi, T, T_{\text {init }}\right)
$$

Pre-Orchnets: Order Relation

For two families T and T^{\prime} of latency functions, write

$$
\begin{array}{r}
T \geq T^{\prime} \\
\text { if } \forall \omega \in \Omega, \forall t \in \mathcal{T} \Longrightarrow \tau_{t}^{\omega} \geq \tau_{t}^{\prime \omega}
\end{array}
$$

Pre-Orchnets: Order Relation

For two families T and T^{\prime} of latency functions, write

$$
\begin{aligned}
T & \geq T^{\prime} \\
\text { if } \forall \omega \in \Omega, \forall t \in \mathcal{T} \Longrightarrow \tau_{t}^{\omega} & \geq \tau_{t}^{\prime \omega}
\end{aligned}
$$

For $\mathcal{N}, \mathcal{N}^{\prime} \in \mathbb{N}$, write

$$
\mathcal{N} \geq \mathcal{N}^{\prime}
$$

if $T \geq T^{\prime}$ and $T_{\text {init }} \geq T_{\text {init }}^{\prime}$ both hold.

Monotony: Definition

Monotony: Definition

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is called monotonic if, $\forall \mathcal{N}, \mathcal{N}^{\prime} \in \mathbb{N}$ s.t. $\mathcal{N} \geq \mathcal{N}^{\prime}$,

$$
E_{\omega}(\mathcal{N}) \geq E_{\omega}\left(\mathcal{N}^{\prime}\right)
$$

holds.

A Sufficient Condition for Monotony..

A Sufficient Condition for Monotony.

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is monotonic if:

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(N), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

A Sufficient Condition for Monotony.

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is monotonic if:

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(N), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

Proof: Let $\mathcal{N}^{\prime} \geq \mathcal{N}$, then

A Sufficient Condition for Monotony..

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is monotonic if:

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(N), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

Proof: Let $\mathcal{N}^{\prime} \geq \mathcal{N}$, then

$$
E_{\omega}\left(\mathcal{N}^{\prime}\right)=E_{\omega}\left(\bar{\kappa}\left(\mathcal{N}^{\prime}, \omega\right), \mathcal{N}^{\prime}\right)
$$

A Sufficient Condition for Monotony..

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is monotonic if:

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(\mathcal{N}), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

Proof: Let $\mathcal{N}^{\prime} \geq \mathcal{N}$, then

$$
E_{\omega}\left(\mathcal{N}^{\prime}\right)=E_{\omega}\left(\bar{\kappa}\left(\mathcal{N}^{\prime}, \omega\right), \mathcal{N}^{\prime}\right) \geq E_{\omega}\left(\bar{\kappa}\left(\mathcal{N}^{\prime}, \omega\right), \mathcal{N}\right)
$$

A Sufficient Condition for Monotony..

Pre-Orchnet $\mathbb{N}=\left(N, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right)$ is monotonic if:

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(\mathcal{N}), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

Proof: Let $\mathcal{N}^{\prime} \geq \mathcal{N}$, then

$$
\begin{aligned}
E_{\omega}\left(\mathcal{N}^{\prime}\right)=E_{\omega}\left(\bar{\kappa}\left(\mathcal{N}^{\prime}, \omega\right), \mathcal{N}^{\prime}\right) & \geq E_{\omega}\left(\bar{\kappa}\left(\mathcal{N}^{\prime}, \omega\right), \mathcal{N}\right) \\
& \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})=E_{\omega}(\mathcal{N})
\end{aligned}
$$

A Necessary Condition ..

A Necessary Condition ..

If the sufficient condition

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, \quad & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(N), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

is violated,

A Necessary Condition ..

If the sufficient condition

$$
\begin{aligned}
\forall \mathcal{N} \in \mathbb{N}, & \forall \omega \in \Omega, \forall \bar{\kappa} \in \overline{\mathcal{V}}(N), \\
& E_{\omega}(\bar{\kappa}, \mathcal{N}) \geq E_{\omega}(\bar{\kappa}(\mathcal{N}, \omega), \mathcal{N})
\end{aligned}
$$

is violated, and for any two $\operatorname{Orch} N e t s \mathcal{N}, \mathcal{N}^{\prime}$ s.t $\mathcal{N} \in \mathbb{N}$,

$$
\mathcal{N}^{\prime} \geq \mathcal{N} \Longrightarrow \mathcal{N}^{\prime} \in \mathbb{N}
$$

holds, then \mathbb{N} is not monotonic.

A structural condition for monotony...

Workflow nets (WFnets)

We consider safe WF nets, without any loops.

We consider safe WF nets, without any loops.

(W,

We consider safe WF nets, without any loops.
$\left(W, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right): \quad$ pre-WFnet

We consider safe WF nets, without any loops.

$$
\left(W, \Phi, \mathbb{T}, \mathbb{T}_{\text {init }}\right): \quad \text { pre-WFnet }
$$

Unfolding W gives the occurrence net N_{W} and a corresponding Orchnet

$$
\left(N_{W}, \Phi_{W}, \mathbb{T}_{W}, \mathbb{T}_{\text {init }}\right)
$$

Clusters.

For a safe net N, a cluster is a minimal set \mathbf{c} of places and transitions of N such that

$$
\forall t \in \mathbf{c} \Longrightarrow{ }^{\bullet} t \subseteq \mathbf{c} \quad, \quad \forall p \in \mathbf{c} \Longrightarrow p^{\bullet} \subseteq \mathbf{c}
$$

Clusters

t_{1}, t_{2}, t_{3} are in the same cluster

Sufficient Condition for Monotony of WFnets

W : WFnet, $\quad N_{W}$: unfolding of W.

Sufficient Condition for Monotony of WFnets

W : WFnet, $\quad N_{W}$: unfolding of W.

Pre-Orchnet $\mathbb{N}_{W}=\left(N_{W}, \Phi_{W}, \mathbb{T}_{W}, \mathbb{T}_{\text {init }}\right)$ is monotonic if every cluster c of W satisfies:

Sufficient Condition for Monotony of WFnets

W : WFnet, $\quad N_{W}$: unfolding of W.

Pre-Orchnet $\mathbb{N}_{W}=\left(N_{W}, \Phi_{W}, \mathbb{T}_{W}, \mathbb{T}_{\text {init }}\right)$ is monotonic if every cluster c of W satisfies:

$$
\forall t_{1}, t_{2} \in c, t_{1} \neq t_{2} \Longrightarrow t_{1}^{\bullet}=t_{2}^{\bullet}
$$

Only a very restricted class of nets are indeed monotonic.

Conditional Monotony..

Conditional Monotony: Compare execution times only for identical responses.

In Conclusion..

- Identified and defined the problem of monotony in service compositions.
- Insights and reconsideration into the formulation of contracts.

Future Work..

- Extend the notion of monotony to probabilistic contracts.

Future Work..

- Extend the notion of monotony to probabilistic contracts.
- Consider more, QoS parameters in our study.

Thank you..

