
Sycomore : a Permissionless Distributed Ledger
that self-adapts to Transactions Demand

Emmanuelle Anceaume
CNRS / IRISA, France

emmanuelle.anceaume@irisa.fr

Antoine Guellier
CNRS / IRISA, France
antoine.guellier@irisa.fr

Romaric Ludinard
IMT Atlantique, France

romaric.ludinard@imt-atlantique.fr

Bruno Sericola
Inria, France

bruno.sericola@inria.fr

Abstract—We propose a new way to organise both transactions
and blocks in a distributed ledger to address the performance
issues of permissionless ledgers. In contrast to most of the existing
solutions in which the ledger is a chain of blocks extracted from
a tree or a graph of chains, we present a distributed ledger whose
structure is a balanced directed acyclic graph of blocks. We call
this specific graph a SYC-DAG. We show that a SYC-DAG allows us
to keep all the remarkable properties of the Bitcoin blockchain in
terms of security, immutability, and transparency, while enjoying
higher throughput and self-adaptivity to transactions demand. To
the best of our knowledge, such a design has never been proposed
so far.

I. INTRODUCTION

The goal of decentralized cryptocurrency systems is to offer
a medium of exchange secured by cryptography, without the
need of a centralized banking authority. An increasing number
of distributed cryptocurrencies systems are emerging, and
among them Bitcoin, which is often designated as the pioneer
of this kind of systems. Bitcoin circumvents the absence of
a global trusted third-party by relying on a blockchain, an
append-only data-structure, publicly readable and writable, in
which all the valid transactions ever issued in the system
are progressively appended through the creation of crypto-
graphically linked blocks. Construction of the blockchain is
distributed among the nodes of the system (several thousand of
nodes), and is secure even if malicious nodes own almost the
majority of the computational power of the system. This high
resilience relies on the smart orchestration of cryptography
primitives, distributed algorithms, and incentive mechanisms.

From a chain of blocks to a balanced directed acyclic
graph of blocks. In a chain of blocks, each block references
an earlier block by inserting a cryptographic link to this earlier
block in its header. This forms a tree of blocks, rooted at the
genesis block, in which a branch is a path from a leaf block to
the root of the tree. Each branch, taken in isolation, represents
a consistent history of the crypto-currency system, that is, does
not internally contain any conflicting transactions – double-
spending transactions. On the other hand, any two branches
of the tree do not need to be consistent with each other. The
reason is that, at any time, each node of the system selects a
unique branch to represent the history of the crypto-system –
this branch being the longest one of the tree, or equivalently
the one that required the most important quantity of work.

Garay and Kiayias [8] have characterized Bitcoin blockchain
via its quality and its common prefix properties. Specifically,
they have shown that, by keeping the creation rate of blocks
very low with respect to their propagation time in the network
(i) if the adversary controls no more than 1/3 of the network
hashing power then it provably controls less than a majority
of the blocks in the blockchain and, (ii) if the adversary
controls no more than 1/2 of the network hashing power
then the blockchains maintained by any two honest nodes
possess a large common prefix (up to the last k appended
blocks), and the probability that they are not mutual prefix
of each other decays exponentially in k. Unfortunately, this
compels Bitcoin’s blockchain to a low transaction confirmation
throughput: no more than 7 transactions can be permanently
confirmed per second in average, which is by too far very low.

A recent evolution in the structure of blockchains is emerg-
ing to deal with the performance issue aforementioned. Eyal
et al. [7] propose with BITCOIN-NG an off-chain mechanism:
blocks refer to a leader in charge of validating transactions
batched in micro-blocks out of the chain. LIGHTNING [12] fol-
lows the same principle by publishing results of a set of trans-
actions among two parties. HASHGRAPH [2], BYTEBALL [3],
and IOTA [13] leverage the presence of well known institutions
to get rid of blocks, GHOST [16] and SPECTRE [15] protocols
family modifies the blockchain data structure from linked-
list of blocks to a directed graph of blocks. In particular,
SPECTRE [15] organises blocks in a directed (but not acyclic)
graph of blocks. Blocks are built so that they acknowledge
the state of the directed graph at the time blocks were created
which decreases the opportunity for powerful attackers to
create blocks in advance. The number of created blocks is
increased with respect to classic blockchain-based systems,
since all the concurrently created blocks belong to the directed
graph. Unfortunately the absence of mechanisms to prevent the
presence of conflictual records (i.e., blocks with conflicting
transactions) and the cycles in the directed graph require that
participants execute a complex algorithm to extract from the
graph the set of accepted (i.e., valid) transactions [15].

SYC-DAG: A balanced directed acyclic graph of blocks.
The ledger we propose is not a chain of blocks, or a set of
transactions extracted from a tree of chains—as achieved in
existing solutions, e.g., [4], [7], [9], [10], [11], [15], [16] – but



a dedicated balanced directed acyclic graph of blocks, that we
call in the following a SYC-DAG. Construction of the SYC-DAG
ledger is achieved by the Sycomore protocol, a new distributed
protocol run by all the nodes of the system. The Sycomore
protocol, that we denote in the following by πsyc, resembles
in some aspects to Nakamoto’s one, denoted by πnak. Briefly,
πsyc is a distributed protocol allowing each participating node
to reach an agreement on a SYC-DAG. Similarly to πnak, at
the core of πsyc are two effective and simple ingredients:
a hashcash proof-of-work (PoW) mechanism to synchronize
the construction of blocks and to incentive nodes to correctly
behave and a block selection rule to handle block concurrency.
On the other hand, the unique features of πsyc are the following
ones.

1) The structure of the SYC-DAG self-adapts to fluctuations
of transactions demand: chains of blocks naturally split
into multiple ones to cope with burst of pending transac-
tions, while they merge back together to adapt to a drop
of activity;

2) The probability of forks decreases with the increasing
number of leaf blocks. Thus the rate at which blocks are
mined can be drastically augmented (e.g., one block every
20 seconds) without incurring more forks than in Bitcoin;

3) The frequency at which blocks are mined self-adapts to
the number of leaf-blocks in the SYC-DAG;

4) Miners cannot predict the branch in the SYC-DAG to
which their blocks will be appended. This prevents mali-
cious miners from devoting their computational work on
the growing of specific branches of the SYC-DAG.

5) Transactions are dynamically and evenly partitioned over
the SYC-DAG, i.e., there is no transaction that belongs to
two different blocks. This makes effective the parallelism
brought by the SYC-DAG, which allows us to increase the
number of confirmed transactions per second.

Altogether, these properties allow us to build a secure, im-
mutable and efficient distributed ledger whose structure self-
adapts to transactions demand.

The remaining of the paper is orchestrated as follows.
Section II presents the model of the system. Section III
introduces the SYC-DAG data structure and describes how
πsyc builds the SYC-DAG in a permissionless and distributed
system. Properties met by πsyc are stated in Section IV. Finally
Section V concludes.

II. MODEL OF THE SYSTEM

We suppose a permissionless system, that is a system
populated by a large, finite yet unbounded set of nodes and
whose composition may change over time, which participate to
the construction of the distributed ledger. The communication
delays between any two nodes, the time to execute a local
computation step, and the drift of local clocks are assumed to
be upper-bounded, however these upper-bounds are unknown
to nodes. These temporal assumptions fit the semi-synchrony
model [6]. To fit the permissionless model, we assume the
computational threshold adversary model, which describes the
power of the adversary in terms of computational resources

it controls [8]. Note that in the more classical distributed
computing literature, the threshold adversary model describes
the power of the adversary in terms of the number of nodes
it manipulates. Finally, as we are focusing on a financial
cryptosystem, we cannot just consider that nodes are either
obedient (i.e., they follow the prescribed algorithm) or mali-
cious. We suppose that most of the nodes are rational, that
is, strategically behave to increase their own utility function
without violating the prescribed protocols. For example, a
rational miner may in priority insert in its block all the
current transactions that provide the maximal fees while an
obedient one will insert transactions irrespective of the gain
they procure. Since rational nodes do not violate the protocol
specification, in the following we consider as correct both
obedient and rational nodes. We assume that nodes have
access to basic and safe cryptographic functions, including
a cryptographic hash function h – modeled as a random
oracle – and an asymmetric signature scheme – that allows
a node r to generate public and secret key pairs (pr, sr), to
compute signatures σr,h(d) on messages d, and to verify the
authenticity of a signature. By these properties, each object o
of the system – i.e., transaction and block – is assumed to be
uniquely identified. In practice, this is achieved by computing
o’s cryptographic digest h(o). We assume that correct nodes
use their cryptographic keys correctly, i.e. they do not disclose,
share or drop their secret keys. Finally, we do not suppose
the existence of any trusted public key infrastructure (PKI) to
establish nodes identities.

III. THE SYCOMORE PROTOCOL

The objective of the Sycomore protocol πsyc is to allow each
node u of the system to locally maintain its own local view
Lu of the ledger, so that at any time u can extract from Lu a
SYC-DAG (defined in Section III-A) denoted by L?u such that
for any two nodes u and v either L?u v L?v or L?v v L?u.

We assume a ”Bitcoin like crypto-system”. That is, similarly
to πnak, users create transactions to buy goods with coins. A
transaction T is uniquely identified by the hash of its content.
Its content is made of two sets, the input set denoted by I and
the output one denoted by O. Set I contains a set of refer-
ences to UTXOs (Unspent Transaction Outputs), credited by
previous transactions, together with the proof that the creator
of T is allowed to redeem each of those UTXOs. The output
set O contains a set of ”accounts” (or addresses in the Bitcoin
terminology), together with the amount of coins to be credited
and the challenges that will allow their owners to redeem these
coins. Once created, users submit their transactions to the peer-
to-peer network. Each node of the network should check the
validity of each received transaction prior to propagating it
to its neighborhood. Informally, a transaction T = (I,O) is
locally valid at node p if p has received all the transactions
that have credited all the inputs in I and has never received
transactions already using any of those inputs. If there exists
some transaction T ′ = (I ′, O′) and some input i such that
i belongs to both I and I ′, then input i is said to be in a
double-spending situation. Transaction T = (I,O) is conflict-

2



free if none of the inputs of T is involved in a double-
spending situation and all of the transactions that credited
T ’s inputs are conflict-free. By construction, the induction is
finite because Bitcoin creates money only through coinbase
transactions, which are by definition conflict-free [1]. Similarly
to πnak algorithm, blocks are created by successful miners, a
subset of the nodes involved in the proof-of-work competition.
The incentive to participate to this competition is provided
by a reward given to each successful miner. This reward is
made of a fixed amount of coins, and a fee associated to each
transaction contained in the newly created block. This reward
is inserted in the output of a particular transaction, called the
coinbase transaction.

To fully take advantage of the SYC-DAG data structure,
blocks content is slightly different from the way blocks are
built in πnak. Briefly, blocks header contain a commitment for
each leaf block of the SYC-DAG (in Bitcoin, the commitment
is reduced to a single leaf block), and the choice of the set
of transactions embedded in the blocks takes advantage of
the presence of several parallel chains in the SYC-DAG. Prior
to providing a detailed description of the set of information
contained in a block, and how blocks are locally inserted in
the local view of the ledger, we first introduce the notion of
SYC-DAG.

A. A Sycomore Directed Acyclic Graph (SYC-DAG)

Let us consider graph G = (V,E) defined by a set of
vertices V and a set of edges E. Vertices are blocks of
transactions and edges represent a predecessor relationship.
More precisely and similarly to Bitcoin, a block bj ∈ V
“points” to a previous existing block bi ∈ V , that is, edges
point back in time. We have (bj , bi) ∈ E, nevertheless we say
that bi is the predecessor of bj and thus bj is the successor of
bi. Given two blocks bi and bj ∈ V , we say that bi is reachable
from bj if there exists a path in G from bj to bi. We denote
bj  bi. By convention, bi is always reachable from itself,
i.e., bi  bi.

A leaf block refers to a block bi ∈ V with no children (i.e.,
block bi is such that {bj ∈ V | bj  bi} = {bi}). Conversely,
a genesis block is a block bi ∈ V which is reachable from all
the blocks in G, (i.e., we have {bj ∈ V | bj  bi} = V ). In
the following, a genesis block is denoted by b0.

We define G′ = (V ′, E′) as a prefix of G = (V,E), denoted
by G′ v G, if V ′ ⊆ V and E′ ⊆ E and for any edge (bj , bi) ∈
E, we have bj ∈ V ′ ⇒ [bi ∈ V ′ ∧ (bj , bi) ∈ E′]. Note that b0
belongs to all the prefixes of G.

The notion of chain is central to our construction.

Definition 1 (Chain). A chain C = (b1b2 . . . bc), with c ≥ 2,
in G is a sequence of blocks starting at block b1 and ending
at block bc such that
• each block bi, with 2 ≤ i ≤ c in the sequence points to a

unique block and this block belongs to the sequence and,
• each block bi, with 1 ≤ i ≤ c − 1 in the sequence is

pointed by a unique block and this block belongs to the
sequence, and

• the first block b1 does not point to any block of the
sequence and the last block bc is not pointed by any block
in the sequence.

The length of a chain is the number of blocks of this chain.
Each block in G is assigned a binary string called label. The

length of a label ` is the number of bits of `, and is denoted by
|`|. A genesis block b0 is labelled with the empty binary string
ε. All the blocks of a chain have the label of the first block
of the chain they belong to. Thus, all the blocks of the chain
starting with the genesis block are labelled with the empty
string ε. Henceforth, a block will refer to both the block and
its label. We use the following notations in the remaining of
the paper: C` denotes a chain C whose label is `, b` denotes a
block whose label is `, and b`i indicates that block b is the i-th
block, i ≥ 1, of a chain labelled with `. Finally, the binary
string of label ` of length m is noted `0`1 . . . `m−1, and we
denote by `bk, 0 ≤ k < m, the prefix of ` of length k, i.e., the
k first bits of `.

The load of a block is the ratio between its number of bytes
and its maximal load (for instance, 1 MB in Bitcoin prior to
the date of SegWit activation). The load of a block is returned
by function LOAD(). We introduce the following three system
parameters: integer cmin > 0, and thresholds 0 < γ < Γ <
1 under and above which a block is considered respectively
under and upper loaded.

Definition 2 (Splittable and Mergeable Block). Let C =
(b1b2 . . . bc) be a chain with c ≥ cmin, then
• bc is called a splittable block if

1

cmin

cmin∑
j=1

LOAD(bc−cmin+j) > Γ.

• bc is called a mergeable block if
1

cmin

cmin∑
j=1

LOAD(bc−cmin+j) < γ.

A block which is neither splittable nor mergeable is called
a regular block.

We will rely on a distance function D that will allow us to
uniquely characterize the closest label to a given bit string.
This is obtained by computing the numerical value of the
“exclusive or” (XOR) of bit strings. To prevent two bit strings
to be at the same distance from a given one, bit strings are
suffixed with as many bits “0” as needed to equalize their
size to the maximal number s of bits of the longest bit string.
Suffixing a bit string ` with one “0” is denoted by `.0.

Definition 3 (Distance D). Let a = a0 . . . ad−1 and b =
b0 . . . bd′−1 be any two bit strings (note that the bit numbering
starts at zero for the most significant bit), and s = max(d, d′).

D(a, b) = D(a0 . . . ad−1.0
s−d, b0 . . . bd′−1.0

s−d′)

=

s−1∑
i=0

2s−1−i1{ai 6=bi},

where notation 1{A} denotes the indicator function which is
equal to 1 if the set A is not empty and 0 otherwise. Hence, bit

3



strings that have longer prefix in common are closer to each
other. For instance, let ` = 0001, `′ = 0000, and `′′ = 111
be any three bit string labels, then D(`, `′) = 1, D(`, `′′) =
8 + 4 + 2 + 1 = 15 and D(`′, `′′) = 8 + 4 + 2 = 14. Two
binary strings at distance 1 are called siblings, e.g. bit strings
` and `′ are sibling, which is denoted by ` = `′. Note that by
abuse of notation, two sibling blocks b and b′ will be denoted
by b and b′.

Definition 4 (Split Chains). Chain C`(1) = (b`
(1)

1 . . . b`
(1)

n ),
n ≥ 1, and chain C`(2) = (b`

(2)

1 . . . b`
(2)

m ), m ≥ 1 are split
chains if b`

(1)

1 and b`
(2)

1 point back to the same splittable block
b`. We have `(1) = `.0 and `(2) = `.1.

Note that by definition of the labels, all the blocks of C`(1)

(resp. C`(2) ) have labels `(1) (resp. `(2)).

Definition 5 (Merged Chain). Chain C` = (b`1 . . . b
`
j), j ≥ 1,

is a merged chain if b`1 points back to two sibling mergeable
blocks b`

(1)

and b`
(2)

(i.e., b`
(1)

and b`
(2)

are two mergeable
blocks whose respective chains are issued from the same
splittable block) such that `(1) = `0 . . . `|`(1)|−1, `(1) = `(2)

and we have ` = `0 . . . `|`(1)|−2.

By abuse of language, we say that chain C` is the prede-
cessor of chain C`′ if the first block of C`′ points back to the
last block of C`. This is denoted by C` = pred(C`′ ).

Based on the above definitions, we are ready to define what
is a SYC-DAG.

Definition 6 (SYC-DAG ). A graph G = (V,E) is a SYC-DAG
if G has a unique genesis block b0 and there exists a partition
P = {C`1 , . . . , C`n} of V such that ∀i s.t. 1 ≤ i ≤ n, C`i is
a chain with label `i (note that several chains in P may be
assigned the same label) and the following three properties
hold:

∀C`i ∈ P,∀k s.t. 0 ≤ k < |`i|, C`
bk
i ∈ P (1)

∀C`i a merged chain ∈ P, C`i.0, C`i.1 ∈ P (2)
∀C`i , C`j ∈ P, `i = `j ⇒ [pred(C`i) 6= pred(C`j )] (3)

Note that if G is a SYC-DAG then by Property 1, Cε ∈ P .
Figure 1 shows a possible ledger built by πsyc, and we will
use it to illustrate all introduced notions. Vertices of graph
G = (V,E) are partitionned into P = {Cε1 , C02 , C13 , C004 ,
C015 , C106 , C117 , C08 , C009 , C0110}. For any chain C` ∈ P we have
∀k s.t. 0 ≤ k < |`|, Cbk ∈ P . In particular, we have Cε ∈ P .
For any chains C`i , C`j (e.g. C02 and C08 ), we have pred(Ci) 6=
pred(Cj). Finally, for any merged chain C`i ∈ P (e.g. C08 ), we
have b`1 points back to two sibling mergeable blocks b`.0j and
b`.1k (i.e., last blocks of respectively C004 ∈ P and C015 ∈ P).

Remark that most of the blockchain-like systems build a
chain of blocks, which is a restriction of a SYC-DAG to a
unique chain.

B. Construction of a block

We are now ready to describe how blocks are constructed
to allow each node of the system to locally maintain its

local view of the ledger. As previously said, blocks contain
additional information with respect to Bitcoin’s blocks so that
(i) malicious miners cannot devote their computational power
to the growing of a specific chain of the SYC-DAG (Property 1),
(ii) transactions are partitioned over the blocks of the SYC-DAG
(Property 2), and (iii) the number of leaf blocks self-adapts to
transactions demand (Property 3).

Property 1. The predecessor of a block is neither predictable
nor choosable.

Let u be any miner, b be the block miner u is currently
creating, Lu be u’s local view of ledger, and b`1 . . . b`j be the
leaf blocks of Lu. The objective of Property 1 is to guarantee
that miner u can neither foresee nor chose the chain to which
its block will be appended (if it is effectively appended)
prior to having irremediably completed the construction of
his block’s header. The reason is to prevent an adversary
from devoting all its computational power to the growing of
a specific chain. The solution we propose to achieve this goal
is (i) to insert in bu’s header the view on the current state
of Lu (i.e. hashes of the leaf blocks), and (ii) a commitment
on the future state of Lu, that is a commitment that must be
valid whatever the leaf block to which bu will be appended.
As detailed below, this commitment is sealed with a proof-
of-work. Finally, all these pieces of information allows us to
derive the predecessor of bu. Specifically, when u creates block
bu, it inserts in bu’s header a set H defined as

H =
{(

h(b`1), `
′

1,m
`
′
1

)
, . . . ,

(
h(b`j ), `

′

j ,m
`
′
j

)}
, (4)

where h(b`1) . . . h(b`j ) are the hashes of the leaf blocks
b`1 . . . b`j of Lu, and for each b`i , 1 ≤ i ≤ j, label `′i
represents the label of the next block to be appended to
b`i . That is if b`i is a regular block, then by construction
of the SYC-DAG, `′i = `i. On the other hand, if b`i is a
splittable block then by Definition 4, only two split chains can
succeed to block b`i , and thus two tuples

(
h(b`i), `i.0,m

`i.0
)

and
(
h(b`i), `i.1,m

`i.1
)

will appear in H. Finally, if b`i is a
mergeable block and its sibling leaf block is also mergeable,
then by Definition 5, only a merged chain can succeed to block
b`i , and thus two tuples

(
h(b`i), `′i,m

`′i

)
and

(
h(b`i), `′i,m

`′i

)
will appear in H, with `′i the largest common prefix of `i and
`i. Finally, for each label `′i, the Merkle root m`′i of the set
of locally pending transactions whose identifier is prefixed by
`′i is inserted in H (Property 2 will detail this point). Hence,
if j is the number of leaf blocks in Lu (at the time miner u
created bu), then the number of tuples in H is equal to j+ j1
if j1 leaf blocks of Lu are splittable.1

Now miner u derives from H the leaf block that will be
the predecessor of bu without being able to favor one leaf
block among all the leaf blocks of Lu, while guaranteeing
this choice to be verifiable by anyone. This is achieved by
relying on the proof-of-work mechanism. Specifically, miner
u works to find a nonce ν such that h(H||ν) ≤ T , where T is

1Note that as long as a splittable block has not been appended by two split
blocks then that splittable block is still considered as a leaf block.

4



the target of the proof-of-work, and —— is the concatenation
operator. The difficulty of obtaining a hash that matches the
specific pattern T increases exponentially as the number of
the most significant bits in T set to “0” increases. Once nonce
ν is found, miner u inserts ν in bu’s header, and derives the
unique predecessor of his block bu as the leaf block (let us
call it b`i ) whose successor will carry the closest label `′i to
b = h(H||ν) mod 2s, i.e.,

`′i = arg min
`′k s.t. (−,`′k,−)∈H

D(`′k, b),

where s is the number of bits of the longest successor’s label,
and the distance D is computed as defined in Definition 3.
The label `u of bu is set to `′i. Notice that in case `′i belongs
to two tuples in H, then block bu will have as predecessor the
two mergeable blocks b`ii and b`ii .

It is very important to see that no specific reference to the
predecessor is added in a block header. The reason is that the
header is sealed (thanks to the proof-of-work) prior to having
derived such an information. As a consequence, when a node
receives a block, it checks the block validity, and derives the
block predecessor.

In the following we suppose the absence of temporary forks.
Their resolution is detailed in Section III-C.

Property 2. For any transaction T ∈ Lu,
• it exists a unique block b` ∈ Lu such that T ∈ b`, and
• it exists a unique path starting from a leaf block b`

′
to the

genesis block that contains b`, and both `′ and ` share a
common prefix.

Property 2 is related to the parallel creation of blocks. It
guarantees that a transaction belongs to a unique block, and
that looking for that block in the ledger only requires to
traverse a single and well identified path whose length is in the
best case logarithmic in the number of blocks of the ledger. As
briefly aforementioned, the solution we propose to implement
Property 2 is to partition pending transactions according to the
prefix of their identifier so that only transactions that are pre-
fixed by label `u are inserted in block bu (see Property 1). Note
that the Merkle root of this set of pending transactions exactly
matches the Merkle root that appears in tuple

(
b`ii , `

′
i,m

`′i

)
of bu’s H set with `u = `′i.

Note that in addition to bu’s transactions, the miner creates
the coinbase transaction that awards him for his block creation
work. This is the only transaction of bu whose prefix does not
necessarily match label `u.

Property 3. The number of leaf blocks self-adapts to trans-
actions demand.

Property 3 is implemented by having any miner u locally
compute the average load of the last cmin blocks of each chain
of Lu to determine the presence of splittable or mergeable
leaf blocks. Any splittable block (which is ascribable to a
pick of transactions demand, see Definition 2), can only be
the predecessor of two split blocks (more precisely of the

first blocks of two split chains), each one in charge of its
own partition of transactions. Similarly in presence of a drop
of transactions demand (see Definition 2), the successor of
two sibling mergeable leaf blocks can only be a block in
charge of both partitions of transactions. The fact that a block
is splittable or two blocks are mergeable, is observable and
verifiable by anyone once these blocks are appended to the
ledger.

Let us illustrate the construction of block bu based on
the local view Lu of the ledger at miner u depicted on
Figure 1. Miner u progressively computes H by iterating
on all the leaf blocks a, b, c and d of Lu. We have H ={(

h(a00), 00,m00
)
,
(
h(a01), 010,m010

)
,
(
h(a01), 011,m011

)
,(

h(a10), 1,m1
)
,
(
h(a11), 1,m1

)}
, where m00, . . . ,m1 are

the Merkle roots of the four transactions partitions. Notice
the presence of the splittable block b and the two mergeable
sibling blocks c and d. Then miner u iterates on h(H||ν)
until finding a nonce ν such that h(H||ν) ≤ T with T the
current traget of Sycomore. Suppose that the last three bits of
h(H||ν) are equal to 101 (three is the maximal length of the
blocks labels that will be appended to the actual leaf blocks
a,. . . ,d), then bu’s predecessor are the mergeable blocks c
and d, and bu’s label is equal to 1. Finally, miner u includes
in bu’s body pending transactions of the partition 1.

In Bitcoin, the rate at which blocks are found is regulated
by the difficulty parameter D. The difficulty is simply the
ratio between the maximal target and the current target T . It is
easier to speak in terms of difficulty than in terms of the target.
The maximal target is (216−1)2208 or approximately 2224. A
random hash has a chance of about 2−32 to be lower than the
maximal target. It follows that if the difficulty is D, it takes
on average 232D hashes to find a block, and thus assuming
the network hashrate is H , then the block creation rate can be
approximated as H/(232D). Every Hmax = 2016 blocks, the
difficulty D is adjusted based on the time it took to mine the
last 2016 blocks. In Sycomore, the difficulty is adjusted based
on both the network hashrate H and on the number c ≥ 1 of
chains in Lu (which is an indicator of the current transactions
demand). Specifically, adjustment occurs every time all the
chains of Lu have been extended with Hmax additional blocks
with respect to the last time the difficulty has been adjusted,
that is, when their height h satisfies h = 0 mod Hmax.

To cope with the fact that all the chains do not grow at the
same rate, and thus do not reach height h at the same instant,
once a chain of Lu has reached height h, then miner u does
not take this chain into account to determine the predecessor
of its block bu, i.e., he only considers all the leaf blocks whose
height have not reached the re-adjusting point yet. Note that
this does not endanger the security of the algorithm as this
is verifiable by anyone. By doing so, the gap between the
tallest chain and the smallest one rapidly decreases until all
the chains reach height h, instant at which the difficulty can be
recomputed. A study of this gap is presented in Section IV.

5



ε ε ε

Splittable

0 0 0

Splittable

00 00 00

Mergeable

01 01 01

Mergeable

0 0 0

Splittable

00 00

Block a

Regular

01 01 01

Block b

Splittable

1 1 1 1

Splittable

10 10 10 10 10 10

Block c

Mergeable

11 11 11 11 11 11

Block d

Mergeable

Cε1

C02

C13

C004

C015

C106

C117

C08

C009

C0110

Fig. 1. A possible ledger built with πsyc

C. Upon receipt of a block

Once created, blocks are propagated in the system, so that
each node v of the system updates its local view Lv of the
ledger L with the new received block assuming that the block
is valid. Block b is valid if

1) the proof-of-work of b is correct, and
2) for each block b′ referenced in set H of b’s header, b′

belongs to the local view Lv , and
3) all non-coinbase transactions embedded in b match the

label of b and do not redeem an already spent output.
If case 2) does not hold (node v may not have received b′

yet), b’s label cannot be computed and thus case 3) cannot be
evaluated yet. Thus b is temporarily stored in v’s orphan set,
and its validity is postponed until case 2) holds. Note that if
case 1) or case 3) is violated, block b is invalid and rejected.

The distributed block creation process may lead to forks,
that is the presence of two or more blocks with the same
label and pointing back to the same predecessor in Lv which
violates Property 3 of Definition 6. Notice the difference
with split blocks. Two split blocks have the same predecessor
but each one inherits the label of their predecessor extended
respectively with ”0” and ”1”. Split blocks are created as a
response to an increase of transactions demand, while forks
are due to concurrency. Since the presence of forks gives rise
to several concurrent but valid SYC-DAG (see Definition 6), we
introduce a rule, Rule 1, that allows any node v to determinis-
tically extract from its local view Lv a single valid SYC-DAG,
denoted by L?v , that respects Property 3 of Definition 6. Note
that Figure 1 does not contain any fork, and thus represents a
valid SYC-DAG.

Rule 1. [Fork Rule] At any time, keep the SYC-DAG for which
the confirmation level of the genesis block is the largest.

The confirmation level of some block b in Lv is computed
by determining the longest path of blocks that commit the
presence of b in Lv . Specifically let Fb rooted at b be the
directed acyclic graph that contains all the blocks in Lv that
commit the presence of b in Lv . Fb = (Vb, Eb) where Vb ⊆ V
and, for any two blocks (bj , bi) ∈ V 2, we have (bj , bi) ∈
Eb if (h(bi),−,−) belongs to Hbj , with Hbj the header of

block bj as defined in Equation (4). The set Vb is defined
by Vb = {bj ∈ V | bj  b} ∪ {b}. Recall that relation  
refers to the existence of a path from bj to b. The confirmation
level of b is equal to the length of the longest path of Fb.
Note that by definition of Fb, this path necessarily ends at b.
Surprisingly enough, the fork rule is exactly the same one as
in Bitcoin when the SYC-DAG is reduced to a single chain.
This makes sense since it amounts to favor the SYC-DAG that
has been acknowledged by the largest proportion of miners.
Note that the largest confirmation level of the genesis block
can be temporarily reached in two concurrent SYC-DAG. By
convention, L?v is kept as long as it is not superseded.

Similarly to Bitcoin, Rule 1 may give rise to the pruning of a
chain of blocks due to the presence of a fork. However, once a
block has been inserted deep enough in the SYC-DAG then, by
construction of the blocks and by Rule 1, with high probability
such a block will remain forever in L?v for any node v. The
notion of “deep enough” relates to the confirmation level of a
block.

Lemma 1 (Deep confirmation level). For any node v main-
taining Lv , the probability that a block b with confirmation
level k is removed from L?v decreases exponentially with k.

Proof: Let b ∈ Lv . By Rule 1, and by the computation
of Fb, we can apply the same argument as the one used
by Nakamoto [11] and Rosenfeld [14]) to show that the
probability that block b remains in L?v increases exponentially
with the length of the longest path of Fb.

IV. PROPERTIES OF THE SYCOMORE PROTOCOL

This section is devoted to the study of the properties of
the Sycomore protocol, and in particular of L?v , for any node
v. We show that at any time a single coherent history exists,
meaning that at any time a unique SYC-DAG is the valid SYC-
DAG. This is achieved by first showing that L?v is a prefix of
Lv and that L?v is a SYC-DAG. We conjecture that for any two
correct nodes u and v, L?u v L?v or L?v v L?u. Then we study
the probability of fork, the confirmation level of transactions,
and finally the maximal gap between any two chains at the
instant at which the difficulty is readjusted.

6



1e− 10

1e− 09

1e− 08

1e− 07

1e− 06

1e− 05

0.0001

0.001

0.01

0 5 10 15 20 25 30

P
ro
b
a
b
il
it
y
o
f
fo
rk

d
u
ri
n
g
[0
,t
]

Elapsed time t (seconds)

Πnak λ0 = 1/600
Πsyc λ = λ0 c = 5
Πsyc λ = λ0, c = 10
Πsyc λ = λ0 c = 20

Fig. 2. Probability of fork as a function of time (seconds). The block creation
rate is Bitcoin’s one, i.e., λ = 1/600 (one block every 10 mns in average).

0

100

200

300

400

500

600

1 5 10 15 20 25 30 35

M
ea
n
in
te
r-
b
lo
ck

ti
m
e
(s
)

c

1/(cλ0)

Fig. 3. Mean inter-block time as a function of the number of leaf blocks c
to meet Bitcoin’s probability of fork (i.e., p(t) = 0.0012 which is obtained
with λ0 = 1/600)

Lemma 2. For any node v maintaining its the local view Lv ,
we have L?v v Lv

Lemma 3. For any correct node v, L?v is a maximal SYC-DAG

For space reasons proofs of both lemmata are omitted.

Conjecture 1. For any two correct nodes u and v, L?u v L?v
or L?v v L?u.

Let L?v be v′s SYC-DAG. Suppose that L?v has c leaf
blocks, b`1 , . . . , b`c . Let pi be the probability with which the
block creation procedure (see Section III-B) chooses b`i as
predecessor of a new block. We have

∑c
i=1 pi = 1.

Lemma 4 (Forks occur with low probability). The probability
that two blocks have block b`i as predecessor during an
interval of time [0, t] is pi(t) = 1 − e−λt/c(1 + λt/c), where
λ is the block creation rate.

Proof: We first suppose that c = 1. We model the block
creation procedure as a Poisson process. An event represents
the creation of a block. Let {N(t), t ≥ 0} be a Poisson

process with rate λ representing the number of events in the
interval (0, t). We then have, for every n ≥ 0,

P{N(t) = n} = e−λt
(λt)n

n!
.

For all t > 0, we denote by p(t) the probability that at least
two events of this process occur in an interval of length t. We
then have

p(t) = P{N(t) ≥ 2} = 1− P{N(t) = 0} − P{N(t) = 1}
= 1− e−λt(1 + λt).

We now suppose that c > 1. Let b`1 , . . . , b`c be the c leaf
blocks of L?v . An event of type i represents the creation of
a block that has b`i as predecessor. The events produced by
the Poisson process can be of c different types. We suppose
that each event produced is of type i with probability pi,
for i = 1, . . . , c. The successive choices for the types are
supposed to be independent of each other and also independent
of the Poisson process. For every i = 1, . . . , c, we denote by
{Ni(t), t ≥ 0} the number of events of type i produced by
the Poisson process. It is well-known that {Ni(t), t ≥ 0} is
a also Poisson process with rate λpi and that these c Poisson
processes are independent. We denote by pi(t) the probability
that at least two events of type i occur in the interval (0, t).
We then have, for every i = 1, . . . , c,

pi(t) = P{Ni(t) ≥ 2} = 1− e−λpit(1 + λpit).

If pi = 1/c, we get

pi(t) = P{Ni(t) ≥ 2} = 1− e−λt/c(1 + λt/c).

This completes the proof of the lemma.
Note that case c = 1 corresponds to the fork probability in

Bitcoin. Figure 2 shows the probability of fork when blocks are
created every 10 mn in average (i.e. λ0 = 1/600 in Bitcoin’s
setup). The interval of time that we consider (i.e. 30 seconds)
corresponds to the time it takes for a block to be received by
a large proportion of the nodes in the peer-to-peer system [5].
This graph shows that the probability of fork in Bitcoin is
small (i.e. equal to p(t) = 0.0012 in the time interval of 30
seconds) which was confirmed by Decker’s observations [5],
while in Sycomore this probability of fork is even smaller and
decreases as a function of the number of leaf blocks c. For
instance the probability that in the time interval of 30 seconds
a fork occurs is equal to p(30) = 4.9 × 10−5 when c = 5,
p(30) = 1.2 × 10−5 when c = 10 and p(30) = 3.1 × 10−6

when c = 20. This clearly means the capability of Sycomore
to sustain a higher rate at which blocks are mined without
exceeding Bitcoin’s probability of fork. This is shown in
Figure 3. In this figure, the relationship between c and the
rate at which block are mined to guarantee a probability of
fork equal to the one of Bitcoin is depicted. For instance, in
presence of c = 30 leaf blocks, blocks can be mined every
20 seconds in average while guaranteeing a probability of
fork not greater than the one of Bitcoin. This adaptiveness
is a remarkable feature of Sycomore, which to the best of our
knowledge, is not present in any other ledger design.

7



TABLE I
VALUES OF t∗, t1, t2 FOR DIFFERENT VALUES OF Hmax AND a∗ .

(Hmax, a∗) a t1 t∗ t2
(2016, 1732) 1732 18700 18722 18743

1500 16225 17516 18811
(10080, 9431) 9431 97507 97537 97567

7500 77704 87583 97737
(20160, 19237) 19237 196911 196967 197023

15000 153812 175166 153812

Finally, we focus on the maximal gap that exists between
any two leaf blocks at the time the difficulty must be
readjusted, that is when the first leaf block reaches height
h = 0 mod Hmax. We model the update of the ledger as a
ball and urn problem where each produced event is of type
i with probability pi, for i = 1, . . . , c, with c the number of
leaf blocks of the ledger. If the events of type i are placed in
an urn numbered i, then Ni(t) can be seen as the number of
events in urn i at time t. We denote by M(t) and by m(t)
respectively the maximun and minimun levels among the c
urns at time t. We thus have

M(t) = max
i=1,...,c

{Ni(t)} and m(t) = min
i=1,...,c

{Ni(t)}.

We would like to evaluate the instants t at which the level of all
the c urns is between a and Hmax. More precisely we want to
determine, for every integer a, Hmax and for every ε ∈ (0, 1),
the instants t such that P{M(t) ≤ Hmax,m(t) ≥ a} ≥ 1− ε.
For all t ≥ 0, Hmax ≥ 0 and 0 ≤ a ≤ Hmax, we have when
pi = 1/c,

P{M(t) ≤ Hmax,m(t) ≥ a} =

c∏
i=1

P{a ≤ Ni(t) ≤ Hmax}

=

c∏
i=1

Hmax∑
j=a

e−λpit
(λpit)

j

j!

 =

Hmax∑
j=a

e−λt/c
(λt/c)j

j!

c .
We denote by f this function when pi = 1/c. Then we can
show that f has a unique maximum at point t = t∗ given by

t∗ =
c

λ

(
Hmax!

(a− 1)!

)1/(Hmax−a+1)

.

Indeed, introducing the notation

vj(t) = e−λt/c
(λt/c)j

j!
and ur(t) =

r∑
j=0

e−λt/c
(λt/c)j

j!
,

we have f(t) =
(
uHmax(t) − ua−1(t)

)c
and since u′r(t) =

−λvr(t)/c, then derivative of f is given by

f ′(t) = c
(
uHmax(t) − ua−1(t)

)c−1(−λvHmax(t)

c
+
λva−1(t)

c

)
.

We then have

f ′(t) = 0⇔ vHmax(t) = va−1(t)⇔ t =
c

λ

(
Hmax!

(a− 1)!

) 1
Hmax−a+1

.

Since f(0) = 0 and limt−→∞ f(t) = 0, if f(t∗) ≥ 1− ε then
there exist two values of t called t1 and t2 such that for all
t ∈ [t1, t2] we gave f(t) ≥ 1− ε.

Numerical application. To illustrate these results, we fix
ε = 0.01 and for different values of Hmax, we compute the
greatest value a∗ of a such that f(t∗) ≥ 1− ε. We also give
for some values of a and Hmax the intervals of time [t1, t2] in
which we have f(t) ≥ 1− ε. We obtain the results shown in
Table I where the time is expressed in minutes.

V. CONCLUSION

In this paper, we have proposed Sycomore, a dedicated
balanced directed acyclic graph of blocks. Sycomore aims
at addressing performance issues of permissionless ledgers.
We show that Sycomore allows us to keep all the remarkable
properties of the Bitcoin blockchain in terms of security, im-
mutability, and transparency, while enjoying higher throughput
and self-adaptivity to transactions demand. We are currently
investigating a formal evaluation of Sycomore behavior while
working on implementation to bring this solution to a real
world usage.

REFERENCES

[1] E. Anceaume, T. Lajoie-Mazenc, R. Ludinard, and B. Sericola. Safety
Analysis of Bitcoin Improvement Proposals. In 15th IEEE International
Symposium on Network Computing and Applications (NCA), 2016.

[2] L. Baird. The SWIRLDS Hashgraph Consensus Algorithm: Fair,
Fast, Byzantine Fault Tolerance. http://www.swirlds.com/downloads/
SWIRLDS-TR-2016-01.pdf, 2016.

[3] A. Churyumov. ByteBall : A Decentralized System for Storage and
Transfer of Value. https://byteball.org/Byteball.pdf, 2017.

[4] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets Strong
Consistency. In Proc. of the ICDCN International Conference, 2016.

[5] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
in the bitcoin network. In Procs of the IEEE International Conference
on Peer-to-Peer Systems, 2013.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the Presence of
Partial Synchrony. J. ACM.

[7] I. Eyal, A. E. Gencer, E. Gün Sirer, and R. Van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’16, 2016.

[8] J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone
Protocol: Analysis and Applications. In Proceedings of the Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques - Advances in Cryptology (EUROCRYPT), 2015.

[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP, 2017.

[10] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In Proc. of the USENIX Security
Symposium, 2016.

[11] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[12] J. Poon and T. Dryja. The Bitcoin Lightning Network:

Scalable Off-Chain Instant Payments. https://lightning.network/
lightning-network-paper.pdf, 2016.

[13] S. Popov. The Tangle. https://iota.org/IOTA Whitepaper.pdf, 2017.
[14] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.

org/abs/1402.2009, 2014.
[15] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A fast and

scalable cryptocurrency protocol. IACR Cryptology ePrint Archive,
2016, 2016.

[16] Y. Sompolinsky and A. Zohar. Accelerating Bitcoin’s Transaction
Processing. Fast Money Grows on Trees, Not Chains. IACR Cryptology
ePrint Archive, 2013, 2013.

8


