
Chapter 1
Sojourn Times in Dependability Modeling

Gerardo Rubino and Bruno Sericola

Abstract We consider Markovian models of computing or communication systems,
subject to failures and, possibly, repairs. The dependability properties of such sys-
tems lead to metrics that can all be described in terms of the time the Markov chain
spends in subsets of its state space. Some examples of such metrics are MTTF (Mean
Time To Failure) and MTTR (Mean Time To Repair), reliability or availability at a
point in time, the mean or the distribution of the interval availability in a fixed time
interval, and, more generally, different performability versions of these measures.
This paper reviews this point of view and its consequences, and discusses some new
related results.

1.1 Introduction

In this chapter, we are interested in Markovian models of systems subject to fail-
ures and, possibly, repairs. A typical framework is that of a system made of several
independently operating components or units, each of them belonging to a given
class. When the system starts operating, each component has a life-time distributed
according to the Exponential distribution whose parameter (the component failure
rate) is the same for all components in the same class. At the beginning, the sys-
tem starts with a given number of operational components in each of the classes.
Let K be the number of classes, indexed from 1 to K, and Nk the number of class k
units in the system. If nk is the number of class k units that are operational at any
point in time, 0 ≤ nk ≤ Nk, a basic case is when the vector (n1, . . . ,nK) suffices
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to obtain a Markovian evolution for the model. For instance, assume that the sys-
tem is non repairable, and that the only transitions are the individual components’
failures. Assume, for instance, that the system works when, for each class k, at
least mk units are operational (we say that, from the dependability viewpoint, it
works as a series of mk-out-of-Nk modules). The initial state for the Markovian
model X = {Xt , t ≥ 0} is X0 = (N1, . . . ,NK). For this simple structure, we need to
evaluate the system’s reliability at time t, R(t), which is here the probability that
the system is alive at time t, or the mean system’s life-time, typically called Mean
Time To Failure, MTTF. For this purpose, we consider that the state space of X is
S = {m1,m1 + 1, . . . ,N1}× ·· · × {mK ,mK + 1, . . . ,NK}∪ {a}, where state a is ab-
sorbing and the remaining (N1−m1+1) · · ·(NK−mK +1) states are transient. If we
denote B = S \ {a}, and if T is the absorption time of the chain, we have that T is
the sojourn time of X in B, there is only one such sojourn and R(t) =P{T > t} and
MTTF =E{T}.

With the same state representation as before, and the same system structure (the
series of mk-out-of-Nk modules), we can handle the case where any failed unit is
immediately repaired with some rate µk when it belongs to class k, the repair times
being also independent of anything else in the model. In that case, process X live
in S = {0, . . . ,N1}× ·· ·× {0, . . . ,NK}. The Markov chain X has a single recurrent
class, and the same B defined above, B = {(n1, . . . ,nK)∈ S | n1 ≥m1, . . . ,nK ≥mK},
together with its complement Bc define a partition of S. The model will spend some
random time working, during what we will call its first operational period. This is
referred to as the first sojourn time of X in B, whose duration will be denoted by
SB,1. Then, some failure will put it in Bc, that is, in a failed system situation. At that
point in time, a sojourn in Bc starts, that from the system point of view, can be seen
as a system repair. This length in time will be denoted by SBc,1. At some later point
in time, the system will come back to subset B and a new operational period will
start. This alternate sequence of operational periods and repair or unoperational ones
will thus continue forever. In this setting, it can be of interest to evaluate not only the
previously defined metrics (the reliability at t defined by R(t) =P{SB,1 > t} and the
MTTF = E{SB,1}) but also other ones, such as the mean availability on the interval
[0, t], defined as the mean fraction of that interval spent by X in B. Asymptotically,
we can consider the widely used asymptotic availability, which can be seen as the
limit of the previous fraction when t→ ∞.

As noted in the abstract, most dependability metrics can be associated with the
time the system’s model spends in subsets of its state space. The examples discussed
before illustrate the point, but they can get much more complex. For instance, as-
sume that in the repairable case described above, there is a single repair facility that
can handle one component at a time, connected to a buffering area where failed units
wait (say, in FIFO order) until the repair server is available. Then, we need to put
more information in the states’ definition to be able to build a Markovian evolution
on this state space, we need to know how many components of each class are work-
ing, but also some information about what happens at the repair facility. In all cases,
the same connection with sojourn times will hold.
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Generally speaking, we often have a stochastic process representing the system,
living in some state space S, and associated with each state x we have a function Φ

to indicate if the system is working or not when its state is x. The typical convention
is to use Φ(x) = 1 if the system works when its state is x, and 0 if it is failed.
This function Φ is called the system’s structure function, which defines the set of
operational states B = Φ−1(1) and its complement, where the system doesn’t work,
Bc = Φ−1(0). The main dependability metrics are defined as in the initial examples:
MTTF = E{SB,1}, R(t) = P{SB,1 > t}, Mean Time To Repair, MTTR = E{SBc,1},
etc., and they correspond to different aspects of the sojourns of X in B and/or in Bc.

For a global background on these topics, an appropriate reference is the blue (and
yellow) book [20]. All the basic mathematical objects used here are introduced and
carefully explained there. Another directly relevant reference is the Introduction of
the authors’ recent book [17], in particular Section 1.3. The reader can also find in
Kishor Trivedi’s Web pages many general presentations of the topics discussed in
this chapter. As an example, see [9] for an introduction to Markov models in depend-
ability and extensions to performability, or [8] for generalities about dependability
analysis.

The analysis of sojourn times in Markov chains, both in discrete and continuous
time, was started in dependability in [10]. In that paper, the distribution of the nth
sojourn time of the chain in a subset of its state space, in the irreducible and finite
case, is derived, and its asymptotic behavior is analyzed. The connections with state
lumping and the so-called “pseudo-aggregation” in [12], [16], are also discussed.
In [11], the corresponding absorbing case is analyzed. At the end of the chapter,
supplementary bibliographical notes are provided.

It appears that some of the results published in this area, for instance the basic
distributions, were known in a specific biological field called “ion channel analysis”,
as reported in [6]. As stated in [17], the analysis of sojourn times is also relevant in
queueing theory (think of the busy period of a single queue, for instance).

This chapter reviews part of the basic material concerning the times spent by a
Markovian process in proper subsets of its state space, and adds some new elements
and guidelines for obtaining more results. Since we focus here on dependability ap-
plications, all our developments are in continuous time, but they have counterparts in
discrete time, not discussed here (see the references). We had to make some choices
because of the amount of material available. For this reason, until Section 1.5, we
limit the discussion to irreducible models. Section 1.2 reviews the basic facts when
studying these objects, namely, the distribution of the sojourn time of a Markov pro-
cess in a subset of its state space. The asymptotic behavior of this distribution is also
discussed. Section 1.3 presents the joint distribution of sojourn times. In Section 1.4,
we focus on a specific function of them, the sum of the first n sojourn times of the
chain in a given subset of states, its distribution, the computation of its moments, etc.
Section 1.5 illustrates how to deal with absorbing models, and at the same time, with
Markov models whose states are weighted by rewards (Markov reward models). In
Section 1.6, bibliographical notes are provided, together with some supplementary
comments and discussions.
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1.2 Successive Sojourn Times Distribution

We consider a homogeneous irreducible continuous-time Markov chain X = {Xt , t ≥
0} with finite state space denoted by S. Its initial probability distribution is given by
the row vector α and its transition rate matrix by A. The stationary distribution of X ,
denoted by π , is the row vector satisfying πA = 0 and π1= 1 where 1 is the column
vector with all its entries equal to 1, its dimension being given by the context of its
use. For every i ∈ S, we denote by λi the output rate of state i, that is λi = −Ai,i.
Let λ be a positive real number such that λ ≥ max{λi, i ∈ S} and let {Nt , t ≥ 0}
be a Poisson process with rate λ . We then define matrix P by P = I +A/λ , where I
is the identity matrix with dimension also determined by the context of its use. We
introduce the discrete-time Markov chain Z = {Zn, n≥ 0} on the state space S, with
transition probability matrix P and with initial probability distribution α . Assum-
ing that the processes {Nt} and Z are independent, the stochastic processes X and
{ZNt , t ≥ 0} are equivalent, i.e. they have the same finite-dimensional distributions.
This well-known construction is called the uniformization technique. The Markov
chain Z is called the discrete-time Markov chain associated with the uniformized
Markov chain of X with respect to the uniformization rate λ .

Let B be a proper subset of S, i.e. B 6= /0 and B 6= S. We denote by Bc the subset
S \B. Subset B contains the operational states and subset Bc contains the non oper-
ational ones. The subsets B, Bc form a partition of the state space S. Ordering the
states such that those in B appear first, then those in Bc, the partition induces the
following decomposition of matrices A and P and vectors α and π:

A =

(
AB ABBc

ABcB ABc

)
, P =

(
PB PBBc

PBcB PBc

)
, α =

(
αB αBc

)
and π =

(
πB πBc

)
.

Lemma 1. The matrices I−PB and I−PBc are invertible.

Proof. Consider the auxiliary discrete-time Markov chain Z′ on the state space B∪
a, where a is an absorbing state, with transition probability matrix P′ given by

P′ =
(

PB u
0 1

)
,

where u is the column vector defined by u = 1−PB1. The Markov chain X being
irreducible, the states of B are transient for Markov chain Z′. A well known result
about Markov chains says that if state j is transient, then for all state i, we have
(Pk)i, j −→ 0 as k −→ ∞, if P is the transition probability matrix of the chain, see
for instance [18]. Here, this translates into the fact that

lim
k−→∞

(PB)
k = 0.

From the immediate identity
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(I−PB)
K

∑
k=0

(PB)
k =

(
K

∑
k=0

(PB)
k

)
(I−PB) = I− (PB)

K+1,

we obtain, taking the limit as K −→ ∞, that the series ∑k≥0(PB)
k converges, and

calling M its limit, that (I−PB)M = M(I−PB) = I. This means that I−PB is invert-
ible and that (I−PB)

−1 = ∑k≥0(PB)
k. Replacing B by Bc and using again the same

argument, we obtain that I−PBc is invertible as well. ut

Consider the successive instants at which the Markov chain X enters subsets B
and Bc. We define TB,1 = inf{t ≥ 0 | Xt ∈ B} and TBc,1 = inf{t ≥ 0 | Xt ∈ Bc} and we
define, for every n≥ 2,

TB,n = inf{t > TB,n−1 | Xt− ∈ Bc, Xt ∈ B},
TBc,n = inf{t > TBc,n−1 | Xt− ∈ B, Xt ∈ Bc}.

Note that if X0 ∈ B (resp. X0 ∈ Bc) then we have TB,1 = 0 (resp. TBc,1 = 0). The nth
sojourn time of X in B is denoted by SB,n and we have, for every n≥ 1,

SB,n =

TBc,n−TB,n if X0 ∈ B

TBc,n+1−TB,n if X0 ∈ Bc.

Let VB,n (resp. VBc,n), for n ≥ 1, be the random variable representing the state of
B (resp. Bc) in which the nth sojourn of X in B (resp. BC) starts. With the usual
convention saying that the paths of X are right-continuous we have, for n≥ 1, VB,n =
XTB,n and VBc,n = XTBc,n . We introduce the matrices R and H defined by

R = (I−PB)
−1 PBBc and H = (I−PBc)−1 PBcB.

Note that both matrices R and H are stochastic matrices.

Theorem 1. The process VB = {VB,n, n≥ 1} is a homogeneous discrete-time Markov
chain with state space B. Its initial probability distribution, denoted by v(1), and its
transition probability matrix, denoted by G, are given by

v(1) = αB +αBcH and G = RH.

Proof. The sequence of instants TB,n being an increasing sequence of stopping
times, the process VB = {VB,n, n≥ 1} is a homogeneous discrete-time Markov chain
with state space B. For every i, j ∈ B, we have

P{VB,1 = j | X0 = i}=P{X0 = j | X0 = i}= 1{i= j}.

For every i ∈ Bc and j ∈ B, we have, using the Markov property,
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P{VB,1 = j | X0 = i}=P{XTB,1 = j | X0 = i}
= ∑

k∈S
Pi,kP{XTB,1 = j | Z1 = k,X0 = i}

= ∑
k∈B

Pi,k1{k= j}+ ∑
k∈Bc

Pi,kP{XTB,1 = j | X0 = k}

= Pi, j + ∑
k∈Bc

Pi,kP{VB,1 = j | X0 = k}.

Denoting by M the matrix defined, for i ∈ Bc and j ∈ B by Mi, j = P{VB,1 = j |
X0 = i}, this last equality leads to M = PBcB +PBcM, that is, using Lemma 1, M =

(I−PBc)−1 PBcB, i.e. M = H. This leads, for every j ∈ B, to

v(1)j =P{VB,1 = j}= ∑
i∈B

αi1{i= j}+ ∑
i∈Bc

αiHi, j = α j +(αBc H) j,

that is v(1) = αB +αBcH.
Using the same arguments and denoting by K the matrix defined, for i ∈ B and

j ∈ Bc, by Ki, j =P{VBc,1 = j | X0 = i}, we obtain symmetrically K = R. For every
i, j ∈ B, we get, using the Markov property,

Gi, j =P{VB,2 = j |VB,1 = i) =P{VB,2 = j | X0 = i}
= ∑

k∈Bc
P{VBc,1 = k | X0 = i}P{VB,2 = j |VBc,1 = k,X0 = i}

= ∑
k∈Bc

P{VBc,1 = k | X0 = i}P{VB,1 = j | X0 = k}

= ∑
k∈Bc

Ri,kHk, j,

that is G = RH. ut

The Markov chain VB contains only one recurrent class, which we denote by B′,
containing the states of B that are directly accessible from Bc. More precisely,

B′ = { j ∈ B | ∃i ∈ Bc, Pi, j > 0}.

If B′ 6= B, we denote by B′′ the set B \B′. The subsets B′,B′′ form a partition of B
which induces the following decomposition of matrices G and H,

G =

(
G′ 0
G′′ 0

)
and H =

(
H ′ 0

)
. (1.1)

In the same way, the partition B′,B′′,Bc of S leads to the following decomposition
of P,

P =

 PB′ PB′B′′ BB′Bc

PB′′B′ PB′′ BB′′Bc

PBcB′ 0 PBc

 .
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The matrices H ′, G′ and G′′ are given by the following theorem.

Theorem 2. We have

H ′ = (I−PBc)−1 PBcB′ ,

G′ = (I−QB′B′′PB′′B′)
−1
(

QB′B′′PB′′Bc +(I−PB′)
−1 PB′Bc

)
H ′,

G′′ = (I−QB′′B′PB′B′′)
−1
(

QB′′B′PB′Bc +(I−PB′′)
−1 PB′′Bc

)
H ′,

where

QB′B′′ = (I−PB′)
−1 PB′B′′ (I−PB′′)

−1 and QB′′B′ = (I−PB′′)
−1 PB′′B′ (I−PB′)

−1 .

Proof. Since PBcB′′ = 0, we get

H = (I−PBc)−1 PBcB =
(

H ′ 0
)
,

with H ′ = (I−PBc)−1 PBcB′ . Next, from G = RH or equivalently

(I−PB)G = G−PBG = PBBcH,

we have G = PBG+PBBcH. Using now the decomposition of matrices G, PB, PBBc

and H with respect to the partition {B′,B′′} of B, we obtainG′ = PB′G′+PB′B′′G′′+PB′BcH ′,

G′′ = PB′′B′G′+PB′′G′′+PB′′BcH ′.

This gives G′ = (I−PB′)
−1 PB′B′′G′′+(I−PB′)

−1 PB′BcH ′,

G′′ = (I−PB′′)
−1 PB′′B′G′+(I−PB′′)

−1 PB′′BcH ′.

Putting the second relation in the first one leads to the expression of G′ and putting
the first relation in the second one leads to the expression of G′′. ut

We denote by v(n) the distribution of the state from which the nth sojourn of X
in B starts, which means that v(n) is the distribution of VB,n. Since VB is a Markov
chain, we have, for every n≥ 1,

v(n) = v(1)Gn−1.

Using these results, we derive the distribution of SB,n, the nth sojourn time of X in
subset B.

Theorem 3. For every n≥ 1 and for all t ≥ 0, we have

P{SB,n > t}= v(n)eABt
1= v(1)Gn−1eABt

1.
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Proof. Using a classical backward renewal argument, as for instance in [18], we
have, for every i ∈ B,

P{SB,1 > t | X0 = i}= ∑
j∈S

Pi, j

∫
∞

0
P{SB,1 > t | Z1 = j,T1 = x,X0 = i}λe−λxdx,

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. We then
have

P{SB,1 > t | X0 = i}=
∫

∞

t
λe−λxdx+ ∑

j∈B
Pi, j

∫ t

0
P{SB,1 > t− x | X0 = j}λe−λxdx.

The change of variable x := t− x in the second integral leads to

P{SB,1 > t | X0 = i}= e−λ t

(
1+ ∑

j∈B
Pi, j

∫ t

0
P{SB,1 > x | X0 = j}λeλxdx

)
.

Introducing the column vector w(t) defined by wi(t) = P{SB,1 > t | X0 = i}, for
every i ∈ B, we get w(0) = 1 and

w(t) = e−λ t
(
1+λPB

∫ t

0
w(x)eλxdx

)
.

Differentiating with respect to t leads to

w′(t) =−λw(t)+λPBw(t) = ABw(t),

that is
w(t) = eABtw(0) = eABt

1. (1.2)

For every n ≥ 1 and for all t ≥ 0, we have, using now the Markov property, the
homogeneity of X and (1.2),

P{SB,n > t}= ∑
i∈B

v(n)i P{SB,n > t |VB,n = i}

= ∑
i∈B

v(n)i P{SB,1 > t | X0 = i}

= v(n)eABt
1,

which completes the proof. ut

The next theorem gives the limiting distribution of SB,n when n tends to infinity.
To determine the limiting distribution, we need the following lemma.

Lemma 2. The row vector πB satisfies

πB = πBPBBc (I−PBc)−1 PBcB (I−PB)
−1 .
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Proof. Since πA = 0, we also have πP = π that isπB = πBPB +πBcPBcB

πBc = πBPBBc +πBcPBc .

The second equation gives

πBc = πBPBBc (I−PBc)−1 .

The first equation gives
πB = πBcPBcB (I−PB)

−1 .

Replacing the value of πBc in this last relation, we get

πB = πBPBBc (I−PBc)−1 PBcB (I−PB)
−1 ,

which completes the proof. ut

Theorem 4. For every t ≥ 0, the sequence P{SB,n > t} converges in the Cesàro
sense when n tends to infinity to veABt

1, where

v =
πBcPBcB

πBcPBcB1

is the stationary distribution of the Markov chain VB. The convergence is simple if
and only if matrix G′ is aperiodic.

Proof. It suffices to prove that the sequence v(n) converges in the Cesàro sense.
The Markov chain VB has a finite state space B and a single recurrent class B′, so
it has a unique invariant distribution which we denote by v. We thus have vG = v,
with v1 = 1. According to the partition B′,B′′ of B, we write v = (v′ 0) and the
decomposition of matrix G described in (1.1) leads, for every n≥ 1, to

Gn =

(
G′n 0

G′′G′n−1 0

)
.

The general properties of Markov chains tell us that G′n converges in the Cesàro
sense to 1v′ and that the convergence is simple if and only if G′ is aperiodic. In
the same way, G′′G′n−1 also converges to 1v′, since G′′1= 1. Using Lemma 2, we
obtain

πB(I−PB) = πBPBBc (I−PBc)−1 PBcB,

which implies that πB(I−PB) = πB(I−PB)G. Normalizing this vector, we have

v =
πB(I−PB)

πB(I−PB)1
=

πBcPBcB

πBcPBcB1
,

which completes the proof. ut
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Note that there is no relation between the periodicity of matrix P and the peri-
odicity of matrix G′. The four situations in which each matrix is either periodic or
aperiodic is possible as shown in Figures 1.1 and 1.2. In all cases, the state space
is S = {1,2,3,4}, and we have B = {1,2} and Bc = {3,4}. An arrow between two
states means that the corresponding transition probability is positive.

1 2

3 4

1 2

3 4

Fig. 1.1 On the left graph P and G′ are both aperiodic. On the right graph both P and G′ are
periodic.

1 2

3 4

1 2

3 4

Fig. 1.2 On the left graph P is periodic and G′ is aperiodic. On the right graph P aperiodic and G′

is periodic.

1.3 Joint Distributions of Sojourn Times

In many situations, we are interested in functions of several sojourn times of X in a
subset of states B, which means that we need the joint distribution of these random
times. For instance, when B is composed of the operational states only, we would
like to evaluate the random variable minn≤N SB,n, or we may want to move control
variables in the model in order to obtain that for some N ∈ N, t > 0 and ε > 0,
we have P(SB,1 > t,SB,2 > t, . . . ,SB,N > t) > 1− ε . The point is that the random
variables SB,1,SB,2, . . . are in general dependent. To get a feeling of this, just consider
the example depicted in Figure 1.3, where B= {1,2}. If ε is small, the sojourn times
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of X in state 1 are “very short” and in state 2 are “very long”. The topology of the
chain says that knowing that previous sojourn was a short one, it is highly probable
that the next one will be short as well.

1 2

3 4

11 ε

1

ε1

Fig. 1.3 Illustrating the dependence in the sequence of sojourn times of X in a subset B of states;
here, B = {1,2}. If SB,n−1 was small, it is highly probable that the (n− 1)th sojourn in B was a
holding time in state 1. We then expect that the next one, SB,n, will be small as well.

If we are interested in studying the correlations between successive operational
times, we need to evaluate second order moments, and, again, we need the joint
distribution of sojourn times. This is the topic of this subsection.

Recall that the matrices R and H are defined by R = (I−PB)
−1 PBBc and H =

(I−PBc)−1 PBcB and that we have G = RH. We also recall that VBc,1 = XTBc ,1 and
that for every i, ` ∈ B and j,k ∈ Bc,

P{VBc,1 = j | X0 = i}= Ri, j and P{VB,1 = ` | X0 = k}= Hk,`.

We first give a lemma that will be used in the next theorem.

Lemma 3. For all s, t ≥ 0, we have

P{SB,1 > t,VBc,1 = j | X0 = i}=
(
eABtR

)
i, j , for i ∈ B, j ∈ Bc,

P{SBc,1 > s,VB,1 = j | X0 = i}=
(
eABc sH

)
i, j , for i ∈ Bc, j ∈ B,

P{SB,1 > t,SBc,1 > s,VB,2 = j | X0 = i}=
(
eABtReABc sH

)
i, j , for i ∈ B, j ∈ B.

Proof. We introduce the matrix L(t) defined, for every i ∈ B and j ∈ Bc, by

Li, j(t) =P{SB,1 > t,VBc,1 = j | X0 = i}.

Using again classical backward renewal arguments, as for instance in [18], we have
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Li, j(t) =P{SB,1 > t,Z1 = j | X0 = i}+ ∑
k∈B
P{SB,1 > t,VBc,1 = j,Z1 = k | X0 = i}

= Pi, je−λ t + ∑
k∈B

Pi,ke−λ t
P{VBc,1 = j | X0 = k}+ ∑

k∈B
Pi,k

∫ t

0
Lk, j(t− x)λe−λxdx

= e−λ t

(
Pi, j + ∑

k∈B
Pi,kRk, j + ∑

k∈B
Pi,k

∫ t

0
Lk, j(x)λeλxdx

)
.

This gives in matrix notation

L(t) = e−λ t
(

PBBc +PBR+λPB

∫ t

0
L(x)eλxdx

)
.

Differentiating with respect to t leads to

L′(t) =−λL(t)+λPBL(t) = ABL(t),

which gives L(t) = eABtL(0) and since L(0) = R, we get

L(t) = eABtR,

which completes the proof of the first relation. The second relation follows imme-
diately from the first one by interchanging the role played by subsets B and Bc. The
third relation is easily obtained from the first two. Indeed, for every i, j ∈ B, we
have, using the Markov property and the homogeneity of X ,

P{SB,1 > t,SBc,1 > s,VB,2 = j | X0 = i}
= ∑

k∈Bc
P{SB,1 > t,VBc,1 = k,SBc,1 > s,VB,2 = j | X0 = i}

= ∑
k∈Bc

P{SBc,1 > s,VB,2 = j | SB,1 > t,VBc,1 = k,X0 = i}
(
eABtR

)
i,k

= ∑
k∈Bc

P{SBc,1 > s,VB,1 = j | X0 = k}
(
eABtR

)
i,k

= ∑
k∈Bc

(
eABtR

)
i,k

(
eABc sH

)
k, j

=
(
eABtReABc sH

)
i, j ,

which completes the proof. ut

Theorem 5. For every n≥ 1, for all t1, . . . , tn ≥ 0 and s1, . . . ,sn ≥ 0, we have

P{SB,1 > t1,SBc,1 > s1, . . . ,SB,n > tn,SBc,n > sn}

= αB

[
n−1

∏
k=1

eABtk ReABc sk H

]
eABtnReABc sn1+αBc

[
n−1

∏
k=1

eABc sk HeABtk R

]
eABc snHeABtn1.

(1.3)
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Proof. The proof is made by recurrence over integer n. Consider first the case i ∈ B.
For n = 1, we have, using the third relation of Lemma 3 and the fact that H is a
stochastic matrix,

P{SB,1 > t1,SBc,1 > s1 | X0 = i}= ∑
j∈B
P{SB,1 > t1,SBc,1 > s1,VB,2 = j | X0 = i}

= ∑
j∈B

(
eABt1ReABc s1H

)
i, j

=
(
eABt1ReABc s11

)
i .

which is Relation (1.3) since the product is equal to the identity matrix when n = 1.
Suppose that Relation (1.3) is true for integer n− 1. We have, using the Markov
property, the homogeneity of X , the third relation of Lemma 3 and the recurrence
hypothesis,

P{SB,1 >t1,SBc,1 > s1, . . . ,SB,n > tn,SBc,n > sn | X0 = i}
= ∑

j∈B
P{VB,2 = j,SB,1 > t1,SBc,1 > s1, . . . ,SB,n > tn,SBc,n > sn | X0 = i}

= ∑
j∈B
P{SB,1 > t1,SBc,1 > s1,VB,2 = j | X0 = i}

×P{SB,2 > t2,SBc,2 > s2, . . . ,SB,n > tn,SBc,n > sn |VB,2 = j}
= ∑

j∈B

(
eABt1ReABc s1H

)
i, j

×P{SB,1 > t2,SBc,1 > s2, . . . ,SB,n−1 > tn,SBc,n−1 > sn | X0 = j}

= ∑
j∈B

(
eABt1ReABc s1H

)
i, j

([
n−1

∏
k=2

eABtk ReABc sk H

]
eABtnReABc sn1

)
j

=

([
n−1

∏
k=1

eABtk ReABc sk H

]
eABtnReABc sn1

)
i

.

In the same way, interchanging the role played by subsets B and Bc, we obtain, for
every i ∈ Bc,

P{SB,1 > t1,SBc,1 > s1, . . . ,SB,n > tn,SBc,n > sn | X0 = i}

=

([
n−1

∏
k=1

eABc sk HeABtk R

]
eABc snHeABtn1

)
i

.

Unconditioning with respect to the initial state gives the result. ut

Corollary 1. For every n≥ 1 and for all t1, . . . , tn ≥ 0, we have

P{SB,1 > t1, . . . ,SB,n > tn}= v(1)
[

n−1

∏
k=1

eABtk G

]
eABtn1, (1.4)
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Proof. Putting s1 = · · ·= sn = 0 in Theorem 1.3 gives the result. ut

We obtain, in the same way, the joint distribution of the first n sojourn times in
subset Bc by interchanging the role played by subsets B and Bc.

For instance, as illustrated at the beginning of the subsection, if we want to make
sure that the first N operational periods are long enough, that is, formally, if we want
that the probability that each of these periods lasts at least t units of time is, at least,
1− ε , we must check that

P{SB,1 > t, . . . ,SB,N > t}= v(1)
(
eABtG

)N−1eABt
1≥ 1− ε.

The independence of the sequences (SB,n) and (SBc,n) is discussed in [13].

1.4 Sum of the First n Sojourn Times

In this section, we focus on the distribution of the sum of the first n sojourn times.
We denote this random variable by TSB,n. We then have

TSB,n =
n

∑
`=1

SB,`.

The distribution of TSB,n is given by the following theorem which uses the next
lemma. We first introduce the column vectors wB(n, t) and wBc(n, t) defined by

wB(n, t) = (P{TSB,n > t | X0 = i}, i ∈ B)

and
wBc(n, t) = (P{TSB,n > t | X0 = i}, i ∈ Bc) .

Lemma 4. For every n≥ 1 and for all t ≥ 0, we have

wBc(n, t) = HwB(n, t).

Proof. For i ∈ Bc, we have, using the Markov property and since X0 = Z0,

P{TSB,n > t | X0 = i}= ∑
j∈S
P{TSB,n > t,Z1 = j | Z0 = i}

= ∑
j∈B

Pi, jP{TSB,n > t | X0 = j}

+ ∑
j∈Bc

Pi, jP{TSB,n > t | X0 = j}.

This gives, in matrix notation,

wBc(n, t) = PBcBwB(n, t)+PBcwBc(n, t),
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that is
wBc(n, t) = (I−PBc)−1 PBcBwB(n, t) = HwB(n, t),

which completes the proof. ut

Theorem 6. For every n≥ 1 and for all t ≥ 0, we have

P{TSB,n > t}= wneMnt
1,

where wn =
(

v(1) 0 · · · 0
)

is the row vector with length n|B| (each 0 represents here

the null vector with length |B|) and Mn is the (n|B|,n|B|) matrix given by

Mn =



Q1 Q2 0 0 · · · 0 0
0 Q1 Q2 0 0 · · · 0 0
0 0 Q1 Q2 0 0 · · · 0 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Q1 Q2
0 0 · · · 0 Q1


with Q1 = AB and Q2 =−ABBc (ABc)−1 ABcB (each 0 represents here the (n|B|,n|B|)
null matrix).

Proof. For n = 1, the result is immediate since w1 = v(1) and M1 = Q1 = AB. Let
n ≥ 2. We use classical backward renewal arguments, see for instance [18]. For
every i ∈ B, we have

P{TSB,n > t | X0 = i}= ∑
j∈S

Pi, j

∫
∞

0
P{TSB,n > t | Z1 = j,T1 = x,X0 = i}λe−λxdx

= ∑
j∈S

Pi, j

∫ t

0
P{TSB,n > t | Z1 = j,T1 = x,X0 = i}λe−λxdx

+
∫

∞

t
λe−λxdx

= ∑
j∈B

Pi, j

∫ t

0
P{TSB,n > t− x | X0 = j}λe−λxdx

+ ∑
j∈Bc

Pi, j

∫ t

0
P{TSB,n−1 > t− x | X0 = j}λe−λxdx+ e−λ t .

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. The
change of variable x := t− x leads to
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P{TSB,n > t | X0 = i}= e−λ t

(
1+ ∑

j∈B
Pi, j

∫ t

0
P{TSB,n > x | X0 = j}λeλxdx

+ ∑
j∈Bc

Pi, j

∫ t

0
P{TSB,n−1 > x | X0 = j}λeλxdx

)
.

Using the column vectors wB(n, t) and wBc(n, t) defined above, we obtain

wB(n, t) = e−λ t
(
1+λPB

∫ t

0
wB(n,x)eλxdx+λPBBc

∫ t

0
wBc(n−1,x)eλxdx

)
.

Differentiating with respect to t we get

w′B(n, t) =−λwB(n, t)+λ (PBwB(n, t)+PBBcwBc(n−1, t)) .

Using Lemma 4, we have

w′B(n, t) =−λwB(n, t)+λ
(
PBwB(n, t)+PBBc(I−PBc)−1PBcBwB(n−1, t)

)
=−λ (I−PB)wB(n, t)+λPBBc(I−PBc)−1PBcBwB(n−1, t).

Note that since−λ (I−P) = A, we have−λ (I−PB) = AB, λPBBc(I−PBc)−1PBcB =

−ABBc (ABc)−1 ABcB and thus

w′B(n, t) = ABwB(n, t)−ABBc (ABc)−1 ABcBwB(n−1, t)
= Q1wB(n, t)+Q2wB(n−1, t).

Introducing the column vector uB(n, t) defined by

uB(n, t) = (wB(n, t),wB(n−1, t), . . . ,wB(1, t)) ,

this gives
u′B(n, t) = MnuB(n, t)

and thus, since uB(n,0) = 1,

uB(n, t) = eMntuB(n,0) = eMnt
1.

Finally,
P{TSB,n > t}= αBwB(n, t)+αBcwBc(n, t).

Using Lemma 4, we get

P{TSB,n > t}= (αB +αBcH)wB(n, t) = v(1)wB(n, t) = wnuB(n, t) = wneMnt
1,

which completes the proof. ut

To compute the distribution of TSB,n for a fixed n we proceed as follows. Let β

be a positive real number such that β ≥ max{λi, i ∈ B}. The matrix Tn defined by
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Tn = I +Mn/β is substochastic and given by

Tn =



P1 P2 0 0 · · · 0 0
0 P1 P2 0 0 · · · 0 0
0 0 P1 P2 0 0 · · · 0 0

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

0 0 · · · 0 P1 P2
0 0 · · · 0 P1


,

where P1 = I +Q1/β and P2 = Q2/β . We then have

P{TSB,n > t}= wneMnt
1=

∞

∑
k=0

e−β t (β t)k

k!
wn(Tn)

k
1.

The special form of matrix Tn leads to the following form of its kth power, i.e.

(Tn)
k =

(
(P1)

k Wn−1,k
0 (Tn−1)

k

)
,

where, by writing (Tn)
k = Tn(Tn)

k−1, the matrix Wn−1,k, which is a (|B|,(n−1)|B|)
matrix, is given for k,n≥ 2 by

Wn−1,k = P1Wn−1,k−1 +Wn−1,1(Tn−1)
k−1

with Wn−1,1 = (P2 0 · · ·0). If xB(n,k) denotes the column vector composed of the
first |B| entries of vector (Tn)

k
1, we have

xB(n,0) = 1 for n≥ 1, xB(1,k) = (P1)
k
1 for k ≥ 0

and, for n≥ 2 and k ≥ 1,

xB(n,k) = (P1)
k
1+Wn−1,k1

= (P1)
k
1+P1Wn−1,k−11+Wn−1,1(Tn−1)

k−1
1

= (P1)
k
1+P1Wn−1,k−11+P2xB(n−1,k−1)

= P1

(
(P1)

k−1
1+Wn−1,k−11

)
+P2xB(n−1,k−1)

= P1xB(n,k−1)+P2xB(n−1,k−1). (1.5)

We then have

P{TSB,n > t}=
∞

∑
k=0

e−β t (β t)k

k!
v(1)xB(n,k).
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Let ε be a given specified error tolerance associated with the computation of the
distribution of TSB,n and let K be the integer defined by

K = min

{
k ∈N

∣∣∣∣∣ k

∑
j=0

e−β t (β t) j

j!
≥ 1− ε

}
.

This gives

P{TSB,n > t}=
K

∑
k=0

e−β t (β t)k

k!
v(1)xB(n,k)+ e(K),

where

e(K) =
∞

∑
k=K+1

e−β t (β t)k

k!
v(1)xB(n,k)≤

K

∑
k=0

e−β t (β t)k

k!
= 1−

K

∑
k=0

e−β t (β t)k

k!
≤ ε.

We consider now the moments of the sum of the first n sojourn times of X in subset
B. From Theorem 6, we have

E

{
(TSB,n)

k
}
= (−1)kk!wn(Mn)

−k
1.

The expected value of TSB,n is given by

E{TSB,n}=
n

∑
`=1
E{SB,`}=−v(1)

(
n−1

∑
`=0

G`

)
(AB)

−1
1.

For the higher moments of TSB,n we need the following lemma. We denote by
Mn[i, j] the submatrix of matrix Mn, of dimension (|B|, |B|) defined for i, j = 1, . . . ,n
by

Mn[i, j] =


Q1 if i = j,

Q2 if i = j−1,

0 otherwise.

We define in the same way the blocks (Mn)
−k [i, j] of matrix (Mn)

−k. For k = 1,
these blocks are given by the following result.

Lemma 5. For every i, j = 1, . . . ,n, we have

(Mn)
−1 [i, j] =


(−1) j−i (Q1)

−1
(

Q2 (Q1)
−1
) j−i

= G j−i (Q1)
−1 if i≤ j,

0 if i > j.

Proof. The matrix Mn being upper triangular, the matrix (Mn)
−1 is also upper tri-

angular. For i = j, we clearly have (Mn)
−1 [i, i] = (Q1)

−1. For i < j, by writing
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I = Mn (Mn)
−1, we have 0 = Q1 (Mn)

−1 [i, j]+Q2 (Mn)
−1 [i+1, j], that is

(Mn)
−1 [i, j] =−(Q1)

−1 Q2 (Mn)
−1 [i+1, j].

Since (Mn)
−1 [i, i] = (Q1)

−1 we easily get the first equality recursively. The second
one follows immediately from the first one. ut

For every k ≥ 2, it is easily checked that the matrix (Mn)
−k has the same structure

as matrices Mn and (Mn)
−1, that is, that the blocks (Mn)

−k [i, j] only depend on the
difference j− i. We thus get

E

{
(TSB,n)

2
}
= 2wn(Mn)

−2
1

= 2v(1)
n

∑
j=1

(Mn)
−2 [1, j]1

= 2v(1)
n

∑
j=1

j

∑
h=1

(Mn)
−1 [1,h] (Mn)

−1 [h, j]1

= 2v(1)
n

∑
j=1

j

∑
h=1

Gh−1 (Q1)
−1 G j−h (Q1)

−1
1.

For k ≥ 2, we obtain

(Mn)
−k [1, j] =

j

∑
h=1

(Mn)
−1 [1,h] (Mn)

−k+1 [h, j]

=
j

∑
h=1

Gh−1 (Q1)
−1 (Mn)

−k+1 [1, j−h+1].

Let us introduce the column vectors θn(k, j) of dimension |B|, defined by θn(k, j) =
(Mn)

−k [1, j]1. To compute these vectors, we have the following recurrence relation.

θn(k, j) =
j

∑
h=1

Gh−1 (Q1)
−1 (Mn)

−k+1 [1, j−h+1]1

=
j

∑
h=1

Gh−1 (Q1)
−1

θn(k−1, j−h+1)

=
j

∑
h=1

G j−h (Q1)
−1

θn(k−1,h),

with θn(1, j) = G j−1 (Q1)
−1
1, for j = 1, . . . ,n. We then have
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E

{
(TSB,n)

k
}
= (−1)kk!wn(Mn)

−k
1

= (−1)kk!v(1)
n

∑
j=1

(Mn)
−k [1, j]1

= (−1)kk!v(1)
n

∑
j=1

θn(k, j).

1.5 Extension to absorbing chains with rewards

We consider now the case where the state space S of X is composed of transient
states and an absorbing state denoted by a. The subset of operational states is de-
noted by B and we denote by B′ the set of the other transient states. We then have the
partition S = B∪B′∪{a}. The set of non operational states is thus Bc = B′∪{a}. A
reward rate or performance level ri is associated with each state i ∈ S. We suppose
that we have ri > 0 for every i∈B and we denote by RB the (|B|, |B|) diagonal matrix
with entries ri, for i∈ B. As we will see, the value of the rewards associated with the
other states has no influence on the sojourn times considered here. The partition B,
B′, {a} of the state space S induces the following decomposition of matrices A and
P = I +A/λ and vector α .

A =

 AB ABB′ ABa
AB′B AB′ AB′a

0 0 0

 , P =

 PB PBB′ PBa
PB′B PB′ PB′a

0 0 1

 and α =
(

αB αB′ αa
)
.

For n ≥ 1, we denote by Si,B,n the total time spent by X in state i ∈ B during the
nth sojourn of X in B, if it exists. If the process gets absorbed before the nth sojourn
of X in B, we set Si,B,n = 0. For n ≥ 1, the random variable SB,n representing the
accumulated reward during the nth sojourn of X in B is defined by

SB,n = ∑
i∈B

riSi,B,n.

Following the same steps used for the irreducible case, it is easily checked that the
distribution v(n) of the random variable VB,n representing the state of B in which the
nth sojourn of X in B starts is given, for every n≥ 1, by v(n) = v(1)Gn−1, where

v(1) = αB +αB′(I−PB′)
−1PB′B = αB−αB′(AB′)

−1AB′B,

G = (I−PB)
−1PBB′(I−PB′)

−1PB′B = (AB)
−1ABB′(AB′)

−1AB′B.

The distribution of SB,n is given by the following theorem.

Theorem 7. For every n ≥ 1 and for all t ≥ 0, the distribution of the accumulated
reward in B during the nth sojourn of X in B, is given by
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P{SB,n > t}= v(1)Gn−1e(RB)
−1ABt

1.

Proof. The proof is quite similar to the proof of Theorem 3. Using a classical back-
ward renewal argument, as for instance in [18], we have, for every i ∈ B,

P{SB,1 > t | X0 = i}= ∑
j∈S

Pi, j

∫
∞

0
P{SB,1 > t | Z1 = j,T1 = x,X0 = i}λe−λxdx,

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. We then
have

P{SB,1 > t |X0 = i}=
∫

∞

t/ri

λe−λxdx+∑
j∈B

Pi, j

∫ t/ri

0
P{SB,1 > t−rix |X0 = j}λe−λxdx.

The change of variable x := t− rix in the second integral leads to

P{SB,1 > t | X0 = i}= e−λ t/ri

(
1+ ∑

j∈B
Pi, j

∫ t

0
P{SB,1 > x | X0 = j}λ

ri
eλx/ridx

)
.

Introducing the column vector w(t), defined by wi(t) = P{SB,1 > t | X0 = i}, for
every i ∈ B, we get w(0) = 1 and

w(t) = e−λ (RB)
−1t
(
1+

∫ t

0
eλ (RB)

−1x
λ (RB)

−1PBw(x)dx
)
.

Differentiating with respect to t leads to

w′(t) =−λ (RB)
−1w(t)+λ (RB)

−1PBw(t) = (RB)
−1ABw(t),

that is,
w(t) = e(RB)

−1ABtw(0) = e(RB)
−1ABt

1. (1.6)

For every n ≥ 1 and for all t ≥ 0, we have, using now the Markov property, the
homogeneity of X and (1.6),

P{SB,n > t}= ∑
i∈B

v(n)i P{SB,n > t |VB,n = i}

= ∑
i∈B

v(n)i P{SB,1 > t | X0 = i}

= v(n)e(RB)
−1ABt

1,

which completes the proof. ut

In the same way, the distribution of the accumulated reward over the first n sojourn
times of X in B is given by the following result.

Theorem 8. For every n≥ 1 and for all t ≥ 0, we have
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P{TSB,n > t}= wneMnt
1,

where wn =
(

v(1) 0 · · · 0
)

is the row vector with length n|B| (each 0 represents here

the null vector with length |B|) and Mn is the (n|B|,n|B|) matrix given by

Mn =



Q1 Q2 0 0 · · · 0 0
0 Q1 Q2 0 0 · · · 0 0
0 0 Q1 Q2 0 0 · · · 0 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Q1 Q2
0 0 · · · 0 Q1


with Q1 = (RB)

−1AB and Q2 = −(RB)
−1ABB′ (AB′)

−1 AB′B (each 0 represents here
the (n|B|,n|B|) null matrix).

Proof. For n = 1, the result is immediate since w1 = v(1) and M1 = Q1 = (RB)
−1AB.

Let n ≥ 2. We use the same classical backward renewal arguments already used in
the proof of Theorem 6. For every i ∈ B, we have

P{TSB,n > t | X0 = i}= ∑
j∈B

Pi, j

∫ t/ri

0
P{TSB,n > t− rix | X0 = j}λe−λxdx

+ ∑
j∈B′

Pi, j

∫ t/ri

0
P{TSB,n−1 > t− rix | X0 = j}λe−λxdx

+Pi,ae−λ t/ri .

The rest of the proof is identical to the proofs of Theorems 7 and 6. ut

Note that unlike the irreducible case, the matrix G is substochastic and if we
denote by NB the total number of visits to the subset B until absorption, the events
{NB > k} and {SB,k+1 > 0} are equal for every k ≥ 0. It follows that

P{NB > k}=P{SB,k+1 > 0}= v(1)Gk
1.

In particular, we have

E{NB}=
∞

∑
k=0

v(1)Gk
1= v(1)(I−G)−1

1.

Observe that if we know that the process has visited the set B at least n times, for
n ≥ 1, that is, given that SB,n > 0, the evaluation of the accumulated reward during
the nth sojourn in B changes. The conditional distribution of SB,n given that SB,n > 0
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can be written, for n≥ 1 and t ≥ 0, as

P{SB,n > t | SB,n > 0}=
P{SB,n > t}
P{SB,n > 0}

=
v(1)Gn−1e(RB)

−1ABt
1

v(1)Gn−11
.

The total accumulated reward in subset B until absorption is defined by

TSB,∞ =
∞

∑
n=1

SB,n.

Its distribution is given in [3] for semi-Markov reward processes. In the case of
Markov reward processes, it becomes

P{TSB,∞ > t}= v(1)e(Q1+Q2)t1.

Finally the distribution of the sojourn times SB,n for semi-Markov reward processes
has been obtained in [15].

1.6 Notes

As stated in the introduction, the analysis of sojourn times of Markov models in
subsets of their state spaces, in the dependability area, apparently started in [10],
in the irreducible case. In biology, close related work, with differences however,
was known before (see [6]). There are other papers related to the analysis of these
objects. For instance, [1] and [4] provide bounds on reliability metrics by exploiting
the fact that in many dependability models, when the system is highly reliable, there
is a huge difference in the holding times the chain spends in its states.

Perhaps even closer to this chapter, we can mention [2], where the authors define
a “conditional MTTF” in the case of a system subject to very different failures. If the
chain has, say, two absorbing states a and a′, representing two different situations
where the system has failed, depending on the causes of such a failure, it makes
sense to analyze the mean time the system operates given that it will be absorbed in
state a, that is, the metricE{T | X∞ = a}, where T is the system’s life-time. If, more
generally, we are interested in some subset B of transient states, we can look at the
nth sojourn time of the process X in B, if it exists.

Using the notation in this chapter, let us briefly outline how to derive the dis-
tribution of the nth sojourn time of X in B, given that X∞ = a. As in Section 1.5,
we simplify the presentation avoiding the fact that we must define SB,n and VB,n for
all n, in particular when the nth sojourn in B does not exist (in that case, SB,n = 0
and VB,n is assigned a specific extra state). After doing that and simplifying, we can
write
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P{SB,n > t | X∞ = a}= ∑
i∈B
P{SB,n > t,VB,n = i | X∞ = a}

= ∑
i∈B
P{SB,n > t |VB,n = i, X∞ = a}P{VB,n = i | X∞ = a}

= ∑
i∈B
P{SB,1 > t | X0 = i}P{VB,n = i | X∞ = a}.

Then, for every i, j ∈ B,

P{VB,n+1 = j |VB,n = i, X∞ = a}=
P{X∞ = a |VB,n+1 = j,VB,n = i}Gi, j

P{X∞ = a |VB,n = i}

=
P{X∞ = a |VB,n+1 = j}Gi, j

P{X∞ = a |VB,n = i}

=
P{X∞ = a | X0 = j}Gi, j

P{X∞ = a | X0 = i}
.

The quantities P{X∞ = a | X0 = k} are well-known in Markov chain theory, and the
distributions P{SB,1 > t | X0 = k} were given in Section 1.2. This type of compu-
tation also appears in [7], where bounds on the asymptotic availability, and more
generally of the asymptotic reward, are derived. The Markov model considered is
irreducible on a state space partitioned into three classes, say B, C, C′. The object
of interest is the sojourn time of the process in B, given that when leaving B the
process will visit C next. Concerning Section 1.2, see that we can get more informa-
tion about sojourn times following the same lines as described there. For instance,
assume that we are interested in the last state of B visited by X during its nth visit to
that subset. Call it WB,n, and call w(n) its distribution:P{WB,n = i}=w(n)

i . Following
the same path as in Theorem 1, we have for n≥ 1,

w(n) = w(1)Mn−1 = v(n) (I−PB)
−1 ,

where M = PBBc (I−PBc)−1 PBcB (I−PB)
−1. Note that this is the matrix appearing

in Lemma 2, where it is stated that πB = πBM.
In [13], we analyze conditions under which the sequence of sojourn times of

a Markov chain X in a subset B of states is i.i.d., with applications always in the
analysis of dependability properties. A particularly important metric appearing in
dependability, more complex to analyze than previously considered ones, is the in-
terval availability over an interval [0, t], which is the random variable

IAt =
1
t

∫ t

0
1{Xs∈B}ds,

where B is the set of operational states. In words, IAt is the fraction of [0, t] dur-
ing which the system is operational. The first paper where the distribution of this
variable is proposed using the uniformization techniques (as we do in this chapter)
is [19]. We proposed some improvements to the algorithms (including the possibil-
ity of dealing with infinite state spaces) in [14]. Many of the results described here
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can be extended to semi-Markov processes, and also to the case where the states in
the model are weighted by rewards, or costs. Some of these extensions have been
presented in Section 1.5. See also [11] or [15]. The monograph [5] also discusses
many of these results together with several other related issues.
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